Understanding BCNF : Boyce Codd Normal Form

Recall the definition of 3NF:
\mathbf{R} is in $3 N F$ if $\forall X \rightarrow Y$, either \mathbf{X} is a superkey or Y is a prime attribute.

BCNF is stricter:
\mathbf{R} is in $\mathbf{B C N F}$ if $\forall X \rightarrow Y, \mathbf{X}$ is a superkey.
(BCNF eliminates second option)

Conditions for violating BCNF:

Consider R(A,B,C)
R is in $3 N F$ but NOT in BCNF if all 5 of these conditions hold:

1) $A B \rightarrow C \quad$ (required by the fact that $A B$ is a Candidate Key)
2) $A \quad C \quad(A$ does NOT determine C : otherwise R is not in 2NF)
3) $\mathrm{B} \square \mathrm{C}$ (similarly, otherwise R is not in 2NF)
4) $C \rightarrow B \quad$ (violates BCNF)
5) $C \quad A \quad$ (otherwise given 4, C would be a superkey)

We can normalize R into BCNF :
R1 (A,C)
R2(C.B)

Consider:
StudentMajor(SID, Major, Advisor)
Note: a student can have more than one Major, and one Advisor
for each of their Major, and note that Advisors only advise in one Major
Advisor \rightarrow Major
StudentMajor(SID, Major, Advisor)
is in 3NF since Major is a Prime Attribute
but it is NOT in BCNF because Advisor is not a superkey.
To Normalize into BCNF, replace:
StudentMajor(SID, Major, Advisor)
With:
StudentMajors(SID, Major)
Advises_in_Major(Advisor, Major)
(This is in BCNF but does not capture which Advisors a student has.)

