Understanding BCNF : Boyce Codd Normal Form

(Ken Goldberg, UC Berkeley IEOR Dept, Jan 2014)
Recall the definition of 3NF:
R is in 3 NF if $\forall X \rightarrow Y$, either \mathbf{X} is a superkey or \mathbf{Y} is a prime attribute.
BCNF is stricter:
R is in BCNF if $\forall X \rightarrow Y, \mathbf{X}$ is a super key. (BCNF is stronger, it eliminates second option)

Conditions for violating BCNF:

Consider $\mathrm{R}(\mathrm{A}, \mathrm{B}, \mathrm{C})$
R is in 3NF but NOT in BCNF if all 5 of these conditions hold:

1) $\mathrm{AB} \rightarrow \mathrm{C} \quad$ (required by the fact that AB is a Candidate Key)
2) $\mathrm{A} \quad \rightarrow \mathrm{C} \quad$ (A does NOT determine C : otherwise R is not in 3NF)
3) $\mathrm{B} \mid \rightarrow \mathrm{C} \quad$ (similarly, otherwise R is not in 3NF)
4) $\mathrm{C} \rightarrow \mathrm{B} \quad$ (violates BCNF)
5) $\mathrm{C} \quad \mid \rightarrow \mathrm{A} \quad$ (otherwise given $4, \mathrm{C}$ would be a superkey)

We can normalize R into BCNF:
R1 (A,C)
R2(C,B)

Example:
StudentMajor(SID, Major, Advisor)
Note: a student can have more than one Major, and one Advisor for each of their Major, and note that Advisors only advise in one Major

Advisor \rightarrow Major
StudentMajor is in 3NF since Major is a Prime Attribute but it is NOT in BCNF because Advisor is not a superkey.

To Normalize into BCNF
StudentAdvisors(SID, Advisor)
AdvisorMajor(Advisor, Major)
(Aside: Note:
StudentMajors(SID, Major)
AdvisorMajor(Advisor, Major)
This is in BCNF but does not capture which Advisors a student has.)

