1 Cloud Robotics and Automation

What if robots and automation systems were not limited by onboard computation, memory, or programming? This is now practical with wireless networking and rapidly expanding Internet resources. In 2010, James Kuffner at Google introduced the term “Cloud Robotics” [54] to describe a new approach to robotics that takes advantage of the Internet as a resource for massively parallel computation and real-time sharing of vast data resources. The Google autonomous driving project exemplifies this approach: the system indexes maps and images that are collected and updated by satellite, Streetview, and crowdsourcing from the network to facilitate accurate localization. Another example is Kiva Systems new approach to warehouse automation and logistics using large numbers of mobile platforms to move pallets using a local network to coordinate planforms and update tracking data. These are just two new projects that build on resources from the Cloud. Steve Cousins of Willow Garage aptly summarized the idea: “No robot is an island.” Cloud Robotics recognizes the wide availability of networking, incorporates elements of open-source, open-access, and crowdsourcing to greatly extend earlier concepts of “Online Robots” [36] and “Networked Robots” [35, 56].

The Cloud has been used as a metaphor for the Internet since the inception of the World Wide Web in the early 1990’s. As of 2012, researchers are pursuing a number of cloud robotics and automation projects [39] [70]. New resources range from software architectures [19] [30] [42] [48] to computing resources [44]. The RoboEarth project [74] aims to develop “a World Wide Web for robots: a giant network and database repository where robots can share information and learn from each other about their behavior and their environment” [15]. Cloud Robotics and Automation is related to concepts of the “Internet of Things” [20] and the “Industrial Internet,” which envision how RFID and inexpensive processors can be incorporated into a vast array of objects from inventory items to household appliances to allow them to communicate and share information.

This report reviews five ways that Cloud Robotics and Automation has potential to improve performance: 1) providing access to global libraries of images, maps, and object data, eventually annotated with geometry and mechanical properties, 2) massively-parallel computation on demand for demanding tasks like optimal motion planning and sample-based statistical modeling, 3) robot sharing of outcomes, trajectories, and dynamic control policies, 4) human sharing of “open-source” code, data, and designs for programming, experimentation, and hardware construction, and 5) on-demand human guidance (“call centers”) for exception handling and error recovery.

Updated information and links are available at: http://goldberg.berkeley.edu/cloud-robotics/
1.1 Big Data

The term “Big Data” describes data sets that are beyond the capabilities of standard relational database systems, which describes the growing library of images, maps, and many other forms of data relevant to robotics and automation on the Internet. One example is grasping, where online datasets can be consulted to determine appropriate grasps. The Columbia Grasp dataset [37] and the MIT KIT object dataset [49] are available online and have been widely used to evaluate grasping algorithms [28] [27] [76] [64].

Related work explores how computer vision can be used with Cloud resources to incrementally learn grasp strategies [24] [59] by matching sensor data against 3D CAD models in an online database. Examples of sensor data include 2D image features [43], 3D features [38], and 3D point clouds [23]. Google Goggles [7], a free network-based image recognition service for mobile devices, has been incorporated into a system for robot grasping [50] as illustrated in Figure 2.

Dalibard et al. attach “manuals” of manipulation tasks to objects [26]. The RoboEarch project stores data related to objects maps, and tasks, for applications ranging from object recognition to mobile navigation to grasping and manipulation (see Figure 5) [74].

As noted below, online datasets are effectively used to facilitate learning in computer vision. By leveraging Google’s 3D warehouse, [55] reduced the need for manually labeled training data. Using community photo collections, [31] created an augmented reality application with processing in the cloud.

Figure 2: System Architecture for cloud-based object recognition for grasping. The robot captures an image of an object and sends via the network to the Google object recognition server. The server processes the image and returns data for a set of candidate objects, each with pre-computed grasping options. The robot compares the returned CAD models with the detected point cloud to refine identification and to perform pose estimation, and selects an appropriate grasp. After the grasp is executed, data on the outcome is used to update models in the cloud for future reference [50]. (Image reproduced with permission from authors).

1.2 Cloud Computing

As of 2012, Cloud Computing services like Amazon’s EC2 elastic computing engine provide massively-parallel computation on demand [18]. Examples include Amazon Web Services [2] Elastic Compute Cloud, known as EC2 [1], Google Compute Engine [6], Microsoft Azure [8]. These provide a large pool of computing resources that can be rented by the public for short-term computing tasks. These services were originally used primarily by web application developers, but have increasingly been used in scientific and technical high performance computing (HPC) applications [47] [57] [71] [13].

Cloud computing is challenging when there are real-time constraints [45]; this is an active area of research. However there are many robotics applications that are not time sensitive such as decluttering a room or pre-computing grasp strategies.

There are many sources of uncertainty in robotics and automation [34]. Cloud computing allows massive sampling over error distributions and Monte Carlo sampling is “embarrassingly parallel”; recent research in fields as varied as medicine [75] and particle physics [67] have taken advantage of the cloud. Real-time video and image analysis can be performed in the Cloud [55] [60] [62]. Image processing in the cloud has been...
used for assistive technology for the visually impaired [22] and for senior citizens [32]. Cloud computing is ideal for sample-based statistical motion planning under uncertainty, where it can be used to explore many possible perturbations in object and environment pose, shape, and robot response to sensors and commands [72]. Cloud-based sampling is also being investigated for grasping objects with shape uncertainty [51] [52] (see Figure 3). A grasp planning algorithm accepts as input a nominal polygonal outline with Gaussian uncertainty around each vertex and the center of mass to compute a grasp quality metric based on a lower bound on the probability of achieving force closure.

Figure 3: A cloud-based approach to geometric shape uncertainty for grasping [51] [52]. (Image reproduced with permission from authors).

1.3 Collective Robot Learning

The Cloud allows robots and automation systems to “share” data from physical trials in a variety of environments, for example initial and desired conditions, associated control policies and trajectories, and importantly: data on performance and outcomes. Such data is a rich source for robot learning.

One example is for path planning, where previously-generated paths are adapted to similar environments [21] and grasp stability of finger contacts can be learned from previous grasps on an object [27]. The MyRobots project [9] from RobotShop proposes a “social network” for robots: “In the same way humans benefit from socializing, collaborating and sharing, robots can benefit from those interactions too by sharing their sensor information giving insight on their perspective of their current state” [14].

1.4 Open-Source and Open-Access

The Cloud facilitates sharing by humans of designs for hardware, data, and code. The success of open-source software [25] [40] [61] is now widely accepted in the robotics and automation community. A primary example is ROS, the Robot Operating System, which provides libraries and tools to help software developers create robot applications [11] [65]. ROS has also been ported to Android devices [12]. ROS has become a standard akin to Linux and is now used by almost all robot developers in research and many in industry.

Additionally, many simulation libraries for robotics are now open-source, which allows students and researchers to rapidly set up and adapt new systems and share the resulting software. Open-source simulation
libraries include Bullet [4], a physics simulator originally used for video games, OpenRAVE [10] and Gazebo [5], simulation environments geared specifically towards robotics, OOPSMP, a motion-planning library [63], and GraspIt!, a grasping simulator [58].

Another exciting trend is in open-source hardware, where CAD models and the technical details of construction of devices are made freely available [29] [66]. The Arduino project [3] is a widely-used open-source microcontroller platform, and has been used in many robotics projects. The Raven [53] is an open-source laparoscopic surgery robot developed as a research platform an order of magnitude less expensive than commercial surgical robots [16].

The Cloud can also be used to facilitate open challenges and design competitions. For example, the African Robotics Network with support from IEEE Robotics and Automation Society hosted the “$10 Robot” Design Challenge in the summer of 2012. This open competition attracted 28 designs from around the world including a winning entry from Thailand that modified a surplus Sony game controller, adapting its embedded vibration motors to drive wheels and adding lollipops to the thumb switches as inertial counterweights for contact sensing, which can be built from surplus parts for US $8.96 [17].

![Image of Suckerbot](image.jpg)

Figure 5: Suckerbot, designed by Tom Tilley of Thailand, a winner of the $10 Robot Design Challenge [17]. (Image reproduced with permission from authors).

1.5 Crowdsourcing and Call Centers

In contrast to automated telephone reservation and technical support systems, consider a future scenario where errors and exceptions are detected by robots and automation systems, which then access human guidance on-demand at remote call centers. Human skill, experience, and intuition is being tapped to solve a number of problems such as image labeling for computer vision [73] [24] [48] [54]. Amazon’s Mechanical Turk is pioneering on-demand “crowdsourcing” that can draw on “human computation” or “social computing systems”. Research projects are exploring how this can be used for path planning [41], to determine depth layers, image normals, and symmetry from images [33], and to refine image segmentation [46]. Researchers
are working to understand pricing models [69] and apply crowdsourcing to grasping [68] (see Figure 1).

1.6 Acknowledgements

The authors thank James Kuffner, Steve Cousins, Raffaello D’Andrea, Alex Waibel, Gary Bradski, Vijay Kumar, Erico Guizzo, Dmitry Berenson, and Ben Kehoe for ongoing insights and advice on this topic.

1.7 Contact

Ken Goldberg, craigslist Distinguished Professor of New Media Professor, IEOR and EECS, College of Engineering, UC Berkeley Dept of Art Practice and School of Information, UC Berkeley Professor, Department of Radiation Oncology, UC San Francisco Contact: 425 Sutardja Dai Hall, Berkeley, CA 94720-1758 twitter: @Ken_Goldberg — g+: http://j.mp/Ken_Goldberg (510) 643-9565 — goldberg@berkeley.edu — http://goldberg.berkeley.edu

2 References

References

[65] Morgan Quigley and Brian Gerkey. ROS: an open-source Robot Operating System. In *ICRA Workshop on Open Source Software*, number Figure 1, 2009.

