PHP & MySQL Lab 1
	What is PHP?

· PHP is described in its official website http://www.php.net as:
· PHP is a widely-used general-purpose scripting language that is especially suited for Web development and can be embedded into HTML.
· PHP is the recursive acronym for “PHP: Hypertext Preprocessor”.
· It is a server side scripting language. The PHP code is ran on the webserver and then the output is returned to the user through a web browser.
· PHP use has increased dramatically over the last 5 years. Go to http://www.php.net/usage.php to find a survey on how popular PHP is. The main reasons for its popularity are:
· It is open-source and free!
· Easy to use. It has a very simple syntax unlike other languages such as Perl or C. Rather than writing lots of code to create a webpage, we create HTML documents and embed simple PHP codes into them.
· It has multi-platform support. It supports all major operating systems. Moreover, the syntax is consistent among different platforms. You can create PHP codes in Windows and easily switch to Unix.
· PHP supports many new technologies. In particular, it supports MySQL.
· The history of the PHP is quite interesting:
· PHP succeeds an older product, named PHP/FI. PHP/FI was created by Rasmus Lerdorf in 1995, initially as a simple set of Perl scripts for tracking accesses to his online resume. He named this set of scripts 'Personal Home Page Tools'. As more functionality was required, Rasmus wrote a much larger C implementation, which was able to communicate with databases, and enabled users to develop simple dynamic Web applications. Rasmus chose to release the source code for PHP/FI for everybody to see, so that anybody can use it, as well as fix bugs in it and improve the code.

· PHP/FI, which stood for Personal Home Page / Forms Interpreter, included some of the basic functionality of PHP as we know it today. It had Perl-like variables, automatic interpretation of form variables and HTML embedded syntax. The syntax itself was similar to that of Perl, albeit much more limited, simple, and somewhat inconsistent.

· By 1997, PHP/FI 2.0, the second write-up of the C implementation, had a cult of several thousand users around the world (estimated), with approximately 50,000 domains reporting as having it installed, accounting for about 1% of the domains on the Internet. While there were several people contributing bits of code to this project, it was still at large a one-man project.

· PHP/FI 2.0 was officially released only in November 1997, after spending most of its life in beta releases. It was shortly afterwards succeeded by the first alphas of PHP 3.0.
· For more, go to http://us2.php.net/manual/en/history.php#history.php .

· Useful links:

· http://www.php.net The official PHP website. Downloads, documentation, latest news and release information and much more.

· http://us3.php.net/tut.php An introductory tutorial.

· http://www.php.net/docs.php Online PHP manuals.

· http://www.planet-php.net/ Latest news aggregated from PHP related weblogs.

· http://www.hotscripts.com/PHP/ Many PHP resources including scripts you can download.

· http://www.justphukit.com/php-tutorials.php A collection of PHP tutorials.

· FOR MORE USEFUL LINKS GO TO http://www.php.net/links.php .

	We will use the PHP codes from “How to do Everything with PHP & MySQL” by Vikram Wasvani, from McGraw Hill / Osbourne publications. You can buy the book from Amazon. The book is also available at Barnes & Noble.
Recall that PHP is a widely used general-purpose scripting language that is especially suited for web development. PHP can be embedded into HTML documents to create dynamically generated web pages quickly.
All PHP commands are enclosed within special start and end tags:

<?php

…PHP code…

?>
For instance, if the PHP code is embedded into an HTML document, the PHP interpreter reads and executes only the PHP code enclosed within the start and end tags.

	To see how PHP works with HTML, create the code below using notepad.

<html>

<head><basefont face= "Arial "></head>

<body>

<h2>Q: This creature can change color to blend in with its surroundings. What is its name?</h2>

<?php

//print output

echo "<h2><i>A: Chameleon </i></h2>";

?>

</body>

</html>

(A PHP script consists of one or more statements, with each statement ending in a semicolon (ex: echo ‘<h2><i>A: Chameleon </i></h2>’;).
(For greater readability, you should add comments to your code. Comments can be written after “//” (ex: //print output).

Save this script as question.php and browse to it. View the source code of the web page you have created by clicking “Source” in the “View” tab in Internet Explorer. You will see:

<html>

<head><basefont face="Arial"></head>

<body>

<h2>Q: This creature can change color to blend in with its surroundings. What is its name?</h2>

<h2><i>A: Chameleon </i></h2>
</body>

</html>
When the code is executed, PHP converted the code inside the “<?php” and “?>” tags to regular HTML code! Everything outside these tags is ignored by PHP and returned as is.

	A variable in PHP can be used to store both numeric and nonnumeric data.

(Every variable has a name, which is preceded by a dollar ($) symbol.

(Variable names are case sensitive and they must begin with a letter or underscore character.

We can replace the PHP code above with:

<?php

//define variable

$answer = 'A: Chameleon';

//print output

Echo "<h2><i>$answer</i></h2>";

?>
This will produce the same result as before.

(To assign a value to a variable, use the equality (=) symbol (ex: $answer = ‘A: Chameleon’;).

(To use a variable value in your script, call the variable by its name. PHP will substitute its value when the code is executed (ex: Echo “<h2><i>$answer</i></h2>”;).

	You can add interactivity to your web site using FORMS. A form enables your users to submit inputs to your web site. Create the HTML document below to get user input (save it as getinput.html). Then we will manipulate this input using a PHP script.

<html>

<head></head>

<body>

<form action= "message.php" method= "post">

Enter your message: <input type= "text" name= "msg" size= "30">
<input type="submit" value="Send">

</form>

</body>

</html>
(“action” attribute specifies the name of the script that will process the information entered into the form. Here, the input entered into the form will be sent to message.php.
(The value of the input entered is stored in the variable named msg.
Now create the script that will process the input and save it as message.php:

<?php

// retrieve form data in a variable

$input = $_POST['msg'];

// print it

Echo "You said: <i>$input</i>";
?>
(To access the value of a form variable, use its name inside $_POST (ex: $_POST['msg']).

Now, run the getinput.html and enter some data into the form (“hello”) and submit it. Message.php should read it and display it back to you (“You said: hello).

	There are four basic data types in PHP. PHP can automatically determine the variable type by the context in which it is being used.

Data Type

Description

Example

Boolean

Specifies a true or false value.

$auth = true;

Integer

Integers like -98, 2000.
$age = 28;
Floating-point
Fractional numbers such as 12.8 or 3.149391
$temp = 76;
String
Sequence of characters. May be enclosed in either double quotes or single quotes.
$name = ‘Ismail’;
(The data type of a variable can be retrieved by the function gettype($variable_name).

(If a string variable is enclosed within double quotes, the variables are automatically replaced by their values.

<?php
$identity = 'James Bond';

// this would contain the string “My name is James Bond”

$sentence = "My name is $identity";

// this would contain the string “My name is $identity”

$sentence = 'My name is $identity';

?>

	There are over 15 operators in PHP that can be used to perform operations on the variables:

Operator

What It Does

=

Assignment

+

Addition

-

Subtraction

*

Multiplication

/

Division, returns quotient

%

Division, returns modulus

.

String concatenation

= =

Equal to

= = =

Equal to and of the same type

! = =

Not equal to or not of the same type

<>

Not equal to

<, <=, >, >=

Less than, Less than or equal to etc.

&&

Logical AND

||
Logical OR
xor
Logical XOR
!
Logical NOT
(PHP has its own set of rules about which operators have precedence over others (Operators on the same line have the same level of precedence):

1. “!”

2. “*”, “/”, “%”

3. “+”, “-”, “.”

4. “<”, “<=”, “>”, “>=”

5. “= =”, “!=”, “= = =”, “!= =”

6. “&&”

7. “||”

	A conditional statement enables you to test whether a specific condition is true or false, and to perform different actions on the basis of the test result. We will use the if() statement to create conditional statements:

<?php

if (conditional test)

{

 do this;

}

else

{

 do this;

}

?>
(If the conditional expression after “if” evaluates to true, all PHP code within the following curly brackets is executed. If not, the code coming after the “else” is executed.

(The “else” part of the above code can be removed. In that case, if the conditional expression is false, the code within the curly braces is skipped and the lines following the “if” construct are executed.

<?php

if ($temp >= 100)

{

echo 'Very hot!';

}

else

{

echo 'Within tolerable limits';

}

?>
PHP also provides you with a way of handling multiple possibilities:
<?php

if ($country == 'UK')

{

$capital = 'London';

}

elseif ($country == 'US')

{

$capital = 'Washington';

}

elseif ($country == 'FR')

{

$capital = 'Paris';

}

else
{

$capital = 'unknown';

}

?>

	A loop is a control structure that enables you to repeat the same set of commands over and over again. The actual number of repetitions may be dependent on a number you specify, or on the fulfillment of a certain condition.

The simplest loop in PHP is the while loop With this loop type, so long as the conditional expression specified evaluates to true, the loop will continue to execute. When the condition is false, the loop will be broken and the statements following it will be executed.

<?php

// define number and limits for multiplication tables

$num = 11;

$upperLimit = 10;

$lowerLimit = 1;

// loop and multiply to create table

while ($lowerLimit <= $upperLimit)

{

echo "$num x $lowerLimit =" . ($num*$lowerLimit);

$lowerLimit++;

}

?>
This script uses a while loop to create a multiplication table for the given table. It starts with “11 x 1 = 11” and continues until “11 x 10 = 110”.
(“$lowerLimit++;” does the same job as “$lowerLimit = $lowerLimit + 1;”.

If the loop condition evaluates as false on the first iteration of the loop, the loop will never be executed. However, sometimes you might need to execute a set of commands at least once. Regardless of how the conditional expression evaluates. For such situations, PHP offers the do-while loop. The construction of the do-while() loop is such that the statements within the loop are executed first, and the condition to be tested is checked after.
The structure of the do-while loop is as follows:

<?php

do

{

 do this

} while (condition is true)

?>
Let’s now revise the previous PHP script so that it runs at least once, regardless of how the conditional expression evaluates the first time.

<?php

// define number and limits for multiplication tables

$num = 11;

$upperLimit = 10;

$lowerLimit = 12;

// loop and multiply to create table

do

{

 echo "$num x $lowerLimit =" . ($num*$lowerLimit);

 $lowerLimit++;

} while ($lowerLimit <= $upperLimit)

?>

	Both while and do-while loops continue to iterate for so long as the specified conditional expression remains true. But there often arises a need to execute a certain set of statements a fixed number of times. We use the for() loop for this purpose.
<?php

for (initialize counter; conditional test; update counter)

{

 do this

}

?>
The for loop uses a counter that is initialized to a numeric value, and keeps track of the number of times the loop is executed. Before each execution of the loop, a conditional statement is tested. If it evaluates to true, the loop will execute once more and the counter will be incremented by 1 (or more). If it evaluates to false, the loop will be broken and the lines following it will be executed instead.

To see how this loop can be used, create the following script, which lists all the numbers between 2 and 100:

<?php

for ($x = 2; $x <=100; $x++)

{

 echo "$x";

}

?>

QUIZ (Due to the beginning of next class)
Create a website that asks a simple question and retrieves the viewer’s answer. Display messages on the screen depending on the answer:

· If the answer is correct, display “Congratulations!”.

· Otherwise, display a message like “Your answer was ---------. The correct answer is --------.”

Please, save this webpage as “quiz1.html” and ‘quiz1.php’ and send the files to the GSI’s email box.

