PHP & MySQL Lab 2
	This handout is based on the book “How to do Everything with PHP & MySQL” by Vikram Wasvani, from McGraw Hill / Osbourne publications. You can buy the book from Amazon. The book is also available at Barnes & Noble.
In this lab, we will learn:
· How to create and manage a database using SQL commands in MySQL. In particular we will create tables, insert records into these tables and make queries that extract the desired information from these tables.

	SQL Basics and Using the MySQL Command Line Client
We will use the MySQL Command Line Client to run our SQL commands. The latest MySQL server is available for download at: http://dev.mysql.com/downloads/mysql/5.0.html.

We will use MySQL Administrator graphical administration 1.1 client to access the MySQL server. You can download it from: http://dev.mysql.com/downloads/administrator/1.1.html.

After installing the MySQL server and the MySQL Adminnistrator, open the MySQL Administrator and enter the password you have created during the installation.

You first need to create a database in which you will store your tables. This can be considered analogous to opening a blank database in Microsoft Access. To create a database we use the CREATE DATABASE command:
mysql> CREATE DATABASE moviedb;

Query OK, 1 row affected (0.00 sec)
Before starting to work (e.g. create tables, write queries etc.) with your database, you must indicate the database you are going to use. To do this, we use the USE command:
mysql> USE moviedb;

Database changed
Now, all the operations will be implemented on the database with the name moviedb.

There are no tables in this database yet. To create tables, we use the CREATE TABLE command:
mysql> CREATE TABLE movies (

 -> mid int(10) UNSIGNED NOT NULL AUTO_INCREMENT,

 -> mtitle varchar(255) NOT NULL default ' ',

 -> myear year(4) NOT NULL default '0000',

 -> PRIMARY KEY (mid)

 ->) TYPE=MyISAM;

Query OK, 0 rows affected (0.18 sec)

With the command above, we created a table with the name “movies” which has 3 fields: mid, mtitle and myear. In MySQL, we must specify a data type for each field. The most commonly used data types in MySQL are given in the table below:
Data Type

Description

TINYINT, SMALLINT, MEDIUMINT, INT, BIGINT

Integer values

FLOAT, DOUBLE

Floating-point values

DECIMAL

Decimal values

CHAR

Fixed length strings up to 255 characters

VARCHAR

Variable length strings up to 255 characters
TINYBLOB, BLOB, MEDIUMBLOB, LONGBLOB
Longer blocks of text data
DATE, TIME, YEAR
Date; time or duration; year values
DATETIME
Combined data and time values
TIMESTAMP
Timestamps
ENUM
One of a set of predefined values
SET
Zero or one
In addition to the data type of the fields, we can also specify field modifiers and keys when creating a table:
· Is the field allowed to be empty? We can specify this using the modifiers NULL and NOT NULL.

· Using the DEFAULT modifier we can specify a default value for the field.

· AUTO_INCREMENT modifier enables us to create values for a field automatically.
· If we want the values for a field to be unique, we can use the UNIQUE modifier.

The last line in the CREATE TABLE command, ”TYPE=MyISAM” or ”TYPE=MyISAM” (in MySQL 5.0), selects a table type for the table movies. There are several table types in MySQL. By default the table type is MyISAM. Some of the tables types and the features they support are given below:
Table Type

Features

MyISAM

Default table type. Optimized for speed and reliability. Does not support foreign key constraints. In the future, MySQL AB is planning to implement foreign key constraints for MyISAM type tables.
InnoDB
Successor to the MyISAM table type. The most sophisticated table type in MySQL. It supports foreign key constraints.
BDB (Berkeley DB)
One of the advanced table types in MySQL. Not easily portable between different operating systems. Lacks many optimization routines of the MyISAM tables.

	Now, let’s create two other tables: persons and roles.
CREATE TABLE persons (

pid int(11) NOT NULL AUTO_INCREMENT,

pname varchar(255) NOT NULL default '',

PRIMARY KEY (pid)

) Type=MyISAM;

CREATE TABLE roles (

mid int(11) NOT NULL default '0',

pid int(11) NOT NULL default '0',

role enum('A','D') NOT NULL default 'A',

PRIMARY KEY (mid, pid, role)
) Type=MyISAM;
Altering Tables
We use the command ALTER TABLE to modify the design of the tables after we create them. There are various types of altering operations in MySQL:

· Renaming a table:

mysql> ALTER TABLE movies RENAME TO movie;

or

mysql> RENAME TABLE movies to movie;
· Renaming a field:

Mysql> ALTER TABLE movies CHANGE mid movieid varchar(255);
· Adding a new field:

Mysql> ALTER TABLE movies ADD director varchar(255) NOT NULL;
· Deleting a field:

mysql> ALTER TABLE movies DROP director;
· Adding a primary key:

mysql> ALTER TABLE movies ADD PRIMARY KEY (id);
· Changing table types:
mysql> ALTER TABLE movies ENGINE=INNODB;
· Deleting a database:
mysql> DROP DATABASE moviesdb;
· Deleting a table and deleting all the records:

Mysql> DROP TABLE movies;

Mysql> TRUNCATE TABLE movies;
Viewing Database, Table and Field Information

· Viewing all available databases:

Mysql> SHOW DATABASES;
· Viewing all available tables from a databases:

Mysql> SHOW TABLES FROM moviedb;
· Viewing design properties of a table:

Mysql> DESCRIBE movies;
Inserting, Deleting and Editing Records

We use the INSERT command to enter records into our tables:
mysql> INSERT INTO movies (mtitle, myear) VALUES ('Rear Window',1954),

('To Catch A Thief', 1955), ('The Maltese Falcon', 1941);
To delete records in a table, we use the DELETE command:
mysql> DELETE FROM movies WHERE myear>1960;
To change an existing record we use the UPDATE command:

mysql> UPDATE movies SET mtitle = ‘Maltese Falcon, The’ WHERE mtitle = ‘The Maltese Falcon’;
Performing Queries

Before querying the database, let’s enter more records in our tables:

mysql> INSERT INTO movies (mtitle, myear) VALUES ('Rear Window', 1954),

('To Catch A Thief', 1955), ('The Maltese Falcon', 1941),

('The Birds', 1963), ('North By Northwest', 1959),

('Casablanca', 1942), ('Anatomy Of A Murderer', 1959);

mysql> INSERT INTO persons VALUES (NULL, 'Alfred Hitchcock'),

(NULL, 'Cary Grant'),

(NULL, 'Grace Kelly'),

(NULL, 'Humphrey Bogart'),

(NULL, 'Sydney Greenstreet'),

(NULL, 'James Stewart');

mysql> INSERT INTO roles VALUES (1,1,'D'),

(1,3,'A'),

(1,6,'A'),

(2,1,'D'),

(2,2,'A'),

(2,3,'A'),

(3,4,'A'),

(3,5,'A'),

(4,1,'D'),

(5,1,'D'),

(5,2,'A'),

(6,4,'A');

We can use the SELECT command to extract information from the existing tables in our database. Following are some examples of SQL SELECT queries that is supported by MySQL:

· Evaluating mathematical expressions:

mysql> SELECT 45/3, 84-8/4;
· Retrieving all records in a table:

mysql> SELECT * FROM movies;

· Retrieving specific columns:

mysql> SELECT mtitle FROM movies;

· Filtering records:

mysql> SELECT myear FROM movies WHERE mtitle = 'Casablanca';
· Using operators (To see a full list of operators visit the link at the end of this handout):

mysql>SELECT myear, mtitle FROM movies WHERE myear>1950;
mysql>SELECT myear, mtitle FROM movies WHERE myear<>1950;

mysql>SELECT mtitle FROM movies WHERE myear BETWEEN 1955 AND 1965;

mysql>SELECT mtitle FROM movies WHERE mtitle LIKE '%BIRD%';
· Sorting records:

mysql> SELECT * FROM persons ORDER BY pname ASC;
mysql> SELECT * FROM persons ORDER BY pname DESC;

· Eliminating duplicates:

mysql> SELECT DISTINCT myear FROM movies;
· Limiting the number of records:

mysql> SELECT mtitle FROM movies LIMIT 0,4;
· Using built in functions (To see other built in functions go to the relevant link at the end of this handout):

mysql> SELECT COUNT(*) FROM movies;
· Grouping records:

mysql> SELECT * FROM persons GROUP BY psex;

mysql> SELECT psex, COUNT(psex) FROM persons GROUP BY psex;
mysql> SELECT mid, COUNT(pid) FROM roles GROUP BY mid;

mysql> SELECT mid, COUNT(pid) FROM roles GROUP BY mid HAVING COUNT(pid) >=2;

· Joining tables:

mysql> SELECT * FROM movies, roles WHERE movies.mid = roles.mid;

mysql> SELECT * FROM movies INNER JOIN roles USING (mid);

mysql> SELECT * FROM movies LEFT JOIN roles ON movies.mid = roles.mid;

· Using subqueries (To see other examples go to the link at the of this handout):

mysql> SELECT mid FROM roles WHERE role = 'A'

AND pid = (SELECT pid FROM persons WHERE pname = 'cary Grant');
· Using aliases:
mysql> SELECT p.psex AS Sex, p.pname AS RealName FROM persons AS p;
For more information you can visit the following webpages:
· More examples for the SELECT command:

http://dev.mysql.com/doc/mysql/en/select.html
· MySQL operators:

http://dev.mysql.com/doc/mysql/en/non-typed_operators.html
· Built-in functions:

http://dev.mysql.com/doc/mysql/en/functions.html
· Joining tables:

http://www.melonfire.com/community/columns/trog/article.php?id=148

· Using subqeries:

http://www.melonfire.com/community/columns/trog/article.php?id=204

Quiz:

Install MySQL and create the ‘moviedb’ database in MySQL, following the instruction of the lab notes. Return the screenshot of all the three tables created.
