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Abstract—The Cloud, an infrastructure and extensive set of
Internet-accessible resources, has potential to provide significant
benefits to robots and automation systems. This survey is orga-
nized around four potential benefits: 1) Big Data: access to remote
libraries of images, maps, trajectories, and object data, 2) Cloud
Computing: access to parallel grid computing on demand for
statistical analysis, learning, and motion planning, 3) Collective
Robot Learning: robots sharing trajectories, control policies, and
outcomes, and 4) Human Computation: use of crowdsourcing to
tap human skills for analyzing images and video, classification,
learning, and error recovery. The Cloud can also improve robots
and automation systems by providing access to a) datasets,
publications, models, benchmarks, and simulation tools, b) open
competitions for designs and systems, and c) open-source soft-
ware. This survey includes over 150 references on results and
open challenges. A website with new developments and updates
is available at: http://goldberg.berkeley.edu/cloud-robotics/

Note to Practitioners—Most robots and automation systems
still operate independently using onboard computation, memory,
and programming. Emerging advances and the increasing avail-
ability of networking in the “Cloud” suggests new approaches
where processing is performed remotely with access to dynamic
global datasets to support a range of functions. This paper
surveys research to date.

Index Terms—Cloud Automation, Cloud Robotics, Big Data,
Cloud Computing, Open Source, Crowdsourcing

I. INTRODUCTION

As illustrated in Fig. 1, the Cloud has potential to enhance
a broad range of robots and automation systems. The National
Institute of Standards and Technology (NIST) defines the
Cloud as “a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable re-
sources (e.g., servers, storage, networks, applications, and ser-
vices) that can be rapidly provisioned and released with mini-
mal management effort or service provider interaction” [112].
An example is the online word processing capabilities offered
by Google Docs. One can send Microsoft Word documents
over the Internet, but Google Docs differs in that the document
and software does not reside locally. the data and code is
stored in the Cloud using remote server farms with shared
processors and memory. This is helpful because one does not
have to worry about maintenance, outages, and software or
hardware updates. The Cloud also provides economies of scale
and facilitates sharing data across applications and users [119].

Cloud Robot and Automation systems can be broadly de-
fined as follows: Any robot or automation system that relies
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Fig. 1. The Cloud has potential to enable a new generation of robots and
automation systems to use wireless networking, big data, cloud computing,
statistical machine learning, open-source, and other shared resources to
improve performance in a wide variety of tasks such as assembly,caregiving,
package delivery, driving, housekeeping, and surgery.

on either data or code from a network to support its opera-
tion, i.e., where not all sensing, computation, and memory is
integrated into a single standalone system. This definition is
intended to include future systems and many existing systems
that involve networked teleoperation or networked groups of
mobile robots such as UAVs [113], [97] or warehouse robots
[93], [43] as well as advanced assembly lines, processing
plants, and home automation systems, and systems with com-
putation performed by humans [130], [154]. Due to network
latency, variable quality of service, and downtime, Cloud
Robot and Automation systems often include some capacity
for local processing for low-latency responses and during
periods where network access is unavailable or unreliable.
This is not a binary definition; there are degrees to which
any system will fit under this definition.

The Google self-driving car exemplifies the idea. It in-
dexes maps and images collected and updated by satellite,
Streetview, and crowdsourcing from the Cloud to facilitate
accurate localization. Another example is the Kiva Systems
pallet robot for warehouse logistics. These robots communi-
cate wirelessly with a local central server to coordinate routing
and share updates on detected changes in the environment.

In 2010, James Kuffner coined the term “Cloud Robotics”
and described a number of potential benefits [95]. An article
in IEEE Spectrum quickly followed [68] and Steve Cousins
summarized the concept as “No robot is an island.” The next
section considers the history of this important idea.

This survey is organized around four potential benefits from
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the Cloud: 1) Big Data: access to remote libraries of images,
maps, trajectories, and object data, 2) Cloud Computing: ac-
cess to parallel grid computing on demand for statistical analy-
sis, learning, and motion planning, 3) Collective Robot Learn-
ing: robots sharing trajectories, control policies, and outcomes,
and 4) Human computation: using crowdsourcing access to
remote human expertise for analyzing images, classification,
learning, and error recovery. This survey also cites examples
where the Cloud can enhance robotics and automation systems
by facilitating access to a) datasets, publications, models,
benchmarks, and simulation tools, b) open competitions for
designs and systems, and c) open-source software.

II. A BRIEF HISTORY

The value of networking to connect machines in manufac-
turing automation systems was recognized over 30 years ago.
In the 1980’s, General Motors developed the Manufacturing
Automation Protocol (MAP) [79]. A diverse set of incom-
patible proprietary protocols were offered by vendors until a
shift began in the early 1990’s when the World Wide Web
popularized the HTTP over IP protocols [118].

In 1994, the first industrial robot was connected to the Web
with an intuitive graphical user interface that allowed visitors
to teleoperate the robot via any internet browser [61]. In the
mid and late 1990’s, researchers developed a series of web
interfaces to robots and devices to explore issues such as user
interfaces and robustness [62], [63] that initiated the subfield
of “Networked Robotics” [64], [109].

In 1997, work by Inaba et al. on “remote brained robots”
described the advantages of remote computing for robot con-
trol [78].

In May 2001, the IEEE Robotics and Automation Society
established the Technical Committee on Networked Robots
[10] which organized a number of workshops. Two chapters
of the first Springer Handbook on Robotics were focused on
Networked Tele-robots (where robots are operated remotely by
humans using global networks) and Networked Robots (where
robots communicate with each other using local networks)
respectively [96], [142].

In 2009, the RoboEarth project was announced. It en-
visioned “a World Wide Web for robots: a giant network
and database repository where robots can share information
and learn from each other about their behavior and environ-
ment” [22], [155] as illustrated in Fig. 2. Under a major
European Union grant, the RoboEarch research team devel-
oped a series of system architectures for service robotics [31],
[51], developing cloud networking [73], [85], and computing
resources [77] to generate 3D models of environments, speech
recognition, and face recognition [148].

As noted in the previous section, James Kuffner introduced
the term “Cloud Robotics” in 2010. This broader term sup-
planted earlier terminology and has been adopted by many
researchers including the organizers of this Special Issue of the
IEEE Transactions on Automation Science and Engineering.

Cloud Robotics and Automation is related to several other
new initiatives. The “Internet of Things” [33], a term also
introduced in 2010, describes how RFID and inexpensive

Fig. 2. The RoboEarth systems architecture designed to allow robots to share
data and learn from each other [22], [155]. (Image reproduced with permission
from authors).

processors could be incorporated into a vast array of robots and
physical objects from inventory items to household appliances
[107] to allow them to communicate and share information.

The term “Industry 4.0,” introduced in Germany in 2011,
predicts a fourth industrial revolution that will use networking
to follow the first (mechanization of production using water
and steam power), the second (mass production with electric
power), and the third (use of electronics to automate produc-
tion) industrial revolutions [11].

In 2012, General Electric introduced the term “Industrial
Internet”, to describe new efforts where industrial equipment
such as wind turbines, jet engines, and MRI machines connect
over networks to share data and processing for industries
including energy, transportation, and healthcare [53], [91]. For
example, GE is using sensor readings from aircraft engines
to optimize fuel consumption under a myriad of conditions
[57]. The power of the Cloud is being harnessed to optimize
water usage for irrigation [50]. Big Data and Cloud Computing
are extensively being used to optimize production in oil fields
[145] and other industries [25], [110].

Many related projects are emerging. In August 2014,
Ashutosh Saxena announced the “RoboBrain” project, “a
large-scale computational system that learns from publicly
available Internet resources, computer simulations, and real-
life robot trials.”

III. BIG DATA

The Cloud can provide robots and automation systems
with access to vast resources of data that are not possible to
maintain in onboard memory. “Big Data” describes “data that
exceeds the processing capacity of conventional database sys-
tems” [52] including images, video, maps, real-time network
and financial transactions [99], and vast networks of sensors
[158].

A recent U.S. National Academy of Engineering Report
summarizes many research opportunities and challenges cre-
ated by Big Data [123] and other challenges are summarized
in [30], [164]. For example sampling algorithms can provide
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Fig. 3. Data can be collected from many sources as shown in this schematic
architecture for the Mobile Millennium, a Cloud-based transportation system
that combines streaming data from taxis, maps, and road-based sensors [76].
Mobile Millennium uses the Big Data and Collective Robot Learning aspects
of Cloud Robotics and Automation. (Image reproduced with permission from
authors).

reasonable approximations to queries on large datasets to keep
running times manageable [38], but these approximations can
be seriously affected by “dirty data” [157].

Hunter et al. [76] presents algorithms for a Cloud-based
transportation system, Mobile Millennium, which uses the
GPS in cellular phones to gather traffic information, process
it, and distribute it and also to collect and share data about
noise levels and air quality (see Fig. 3).

Large datasets can facilitate machine learning, as has been
demonstrated in the context of computer vision. Large-scale
image datasets such as ImageNet [48], PASCAL visual object
classes dataset [54], and others [141], [150] have been used
for object and scene recognition. By leveraging Trimble’s
SketchUp 3D warehouse, Lai et al. reduced the need for
manually labeled training data [98]. Using community photo
collections, Gammeter et al. created an augmented reality ap-
plication with processing in the cloud [55]. Combining internet
images with querying a local human operator, Hidago-Pena et
al. provided a more robust object learning technique [71]. Deep
learning is a technique using many-layered neural networks
that can take advantage of Big Data [47], and has been used
for computer vision [94], [139] and grasping [101].

Grasping is a persistent challenge in robotics: determining
the optimal way to grasp a newly encountered object. Cloud
resources can facilitate incremental learning of grasp strategies
[40] [117] by matching sensor data against 3D CAD models
in an online database. Examples of sensor data include 2D
image features [74], 3D features [66], and 3D point clouds
[39].

Google Goggles [9], a free image recognition service for
mobile devices (see Fig. 4), has been incorporated into a
Cloud-based system for robot grasping [87] as illustrated in
Fig. 5.

The RoboEarth project stores data related to objects and
maps for applications ranging from object recognition to mo-
bile navigation to grasping and manipulation (see Fig. 2) [155].
The Columbia Grasp dataset [65], the MIT KIT object dataset

Fig. 4. Google’s object recognition system combines an enormous dataset of
images and textual labels with machine learning to facilitate object recognition
in the Cloud [9], [95]. (Image reproduced with permission).

Image

Object Label

3D CAD
Model

Candidate
Grasps

Google
Object Recognition

Engine

Google
Cloud Storage

Select Feasible
 Grasp with 

Highest Success 
Probability

Pose
Estimation

Camera

Robots

Cloud

3D Sensor
Point Cloud

Grasp
Execution
Results

Fig. 5. System Architecture for cloud-based object recognition for grasping.
The robot captures an image of an object and sends via the network to the
Google object recognition server. The server processes the image and returns
data for a set of candidate objects, each with pre-computed grasping options.
The robot compares the returned CAD models with the detected point cloud to
refine identification and to perform pose estimation, and selects an appropriate
grasp. After the grasp is executed, data on the outcome is used to update
models in the cloud for future reference [87]. This project uses the Big Data,
Cloud Computing, and Collective Robot Learning aspects of Cloud Robotics
and Automation. (Image reproduced with permission).

[86], and the Willow Garage Household Objects Database [40]
are available online and have been used to evaluate different
aspects of grasping algorithms, including grasp stability [45]
[44], robust grasping [161], and scene understanding [126].
Dalibard et al. attach “manuals” of manipulation tasks to
objects [42].

One research challenge is defining cross-platform formats
for representing data. While sensor data such as images and
point clouds have a small number of widely-used formats, even
relatively simple data such as trajectories have no common
standards yet but research is ongoing [147], [149], [127].
Another challenge is working with sparse representations for
efficient transmission of data, e.g., algorithms for sparse mo-
tion planning for robotic and automation systems [49] [102].

Large datasets collected from distributed sources are often
“dirty” with erroneous, duplicated, or corrupted data [6],
[157], such as 3d position data collected during robot cali-
bration [108]. New approaches are required that are robust to
dirty data.

IV. CLOUD COMPUTING

Massively-parallel computation on demand is now widely
available [30] from commercial sources such as Amazon’s
Elastic Compute Cloud [1], [2], Google’s Compute Engine
[8], and Microsoft’s Azure [12]. These systems provide access
to tens of thousands of remote processors for short-term
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Fig. 6. A cloud-based approach to geometric shape uncertainty for grasping.
(Top) Uncertainty in object pose and shape. (Bottom) Computed push grasps.
Kehoe et al. use sampling over uncertainty distributions to find a lower bound
on the probability of success for grasps [88]–[90].

computing tasks [102], [103]. These services were originally
used primarily by web application developers but have increas-
ingly been used in scientific and technical high performance
computing (HPC) applications [20], [84], [111], [151].

Uncertainty in sensing, models, and control is a central
issue in robotics and automation [60]. Such uncertainty can be
modeled as perturbations in position, orientation, shape, and
control. Cloud computing is ideal for sample-based Monte-
Carlo analysis. For example parallel Cloud computing can be
used to compute the outcomes of the cross-product of many
possible perturbations in object and environment pose, shape,
and robot response to sensors and commands [153]. This idea
is being explored in medicine [156] and particle physics [140].

Cloud-based sampling can be used to compute robust grasps
in the presence of shape uncertainty [88]–[90] (see Fig. 6).
This grasp planning algorithm accepts as input a nominal
polygonal outline with Gaussian uncertainty around each
vertex and the center of mass and uses parallel-sampling to
compute a grasp quality metric based on a lower bound on
the probability of achieving force closure.

Cloud computing has potential to speed up many
computationally-intensive robotics and automation systems
applications such as robot navigation by performing SLAM in
the Cloud [132], [133] as illustrated in Fig. 7 and next-view
planning for object recognition [122]. Cloud-based formation
control of ground robots has also been demonstrated [152].

For optimal sampling-based motion planning methods such
as RRT*, Cloud computing is useful to generate the graphs;
it is also important to recognize that these graphs can grow
rapidly so algorithms for graph reduction are needed to facil-
itate data transfer as illustrated in Fig. 8.

The Cloud also facilitates video and image analysis [120],
[136], and mapping [116], [134] (see Fig. 7. Image processing
in the cloud has been used for assistive technology for the
visually impaired [36] and for senior citizens [56].

Bekris et al. [34] propose an architecture for efficiently
planning the motion of new robot manipulators designed for
flexible manufacturing floors in which the computation is split

Fig. 7. A Cloud framework for robot navigation using cooperative tracking
and mapping (C2TAM). Riazuelo et al. demonstrate computer intensive
bundle adjustment for navigation using simultaneous localization and map-
ping (SLAM) performed in the Cloud [132]–[134]. (Image reproduced with
permission).

Fig. 8. Distributed sampling-based motion planning. A roadmap of trees
for motion planning in high-dimensional spaces. Plaku et al. show that their
planner can “easily solve high-dimensional problems that exhaust resources
available to single machines” [124].(Image reproduced with permission).

between the robot and the cloud.
It is important to acknowledge that the Cloud is prone

to varying network latency and quality of service. Some
applications are not time sensitive, such as decluttering a
room or pre-computing grasp strategies or offline optimization
of machine scheduling, but many applications have real-time
demands [82] and this is an active area of research [26], [27],
[92], [106].

V. COLLECTIVE ROBOT LEARNING

The Cloud facilitates sharing of data for robot learning by
collecting data from many instances of physical trials and
environments. For example robots and automation systems
can share initial and desired conditions, associated control
policies and trajectories, and importantly: data on the resulting
performance and outcomes.
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Fig. 9. Schematic architecture of CloudThink. Wilhem et al. developed an
open-standard for self-reporting sensing devices such as sensors mounted
in automobiles. Cloud-enabled storage of sensor network data can enable
collaborative sharing of data for traffic routing and other applications [162].
CloudThink uses the Collective Robot Learning aspect of Cloud Robotics and
Automation. (Image reproduced with permission from authors).

Fig. 10. (Left) Schematic architecture of the Lightning path planning
framework. Berenson et al. show a system that is able to learn from experience
from pre-computed motion plans, which could be stored in the Cloud. The
planner attempts to find a brand-new plan as well as find an existing plan
for a problem similar to the current one. Whichever finishes first is chosen
[35]. Lightning uses the Big Data, Cloud Computing, and Collective Robot
Learning aspects of Cloud Robotics and Automation. (Image reproduced with
permission from authors).

The “Lightning” framework (see Fig. 10), proposes a frame-
work for Collective Robot Learning by indexing trajectories
from many robots over many tasks and using cloud computing
for parallel planning and trajectory adjustment [35].

Such systems can also be expanded to global networks to
facilitate shared path planning, including traffic routing as
shown in Fig. 9.

For grasping [37], grasp stability of finger contacts can

Fig. 11. Tiered human assistance using Cloud-based resources for teleop-
eration. Leeper et al. developed an interface for operators to control grasp
execution using a set of different strategies. The results indicate humans are
able to select better and more robust grasp strategies [100], [163]. (Image
reproduced with permission).

be learned from previous grasps on an object [44]. Sharing
data through Collective Robot Learning can also improve the
capabilities of robots with limited computational resources
[67].

The MyRobots project [13] from RobotShop proposes a
“social network” for robots: “In the same way humans benefit
from socializing, collaborating and sharing, robots can benefit
from those interactions too by sharing their sensor information
giving insight on their perspective of their current state” [21].

The RoboEarth and RoboBrain databases in Section III are
designed to be updated with new information from connected
robots. The RoboBrain project “learns from publicly available
Internet resources, computer simulations, and real-life robot
trials.” [16]

KIVA Systems [43], [93] uses hundreds of mobile platforms
to move pallets in warehouses using a local network to
coordinate motion and update tracking data.

VI. HUMAN COMPUTATION: CROWDSOURCING AND CALL
CENTERS

Human skill, experience, and intuition is being tapped to
solve a number of problems such as image labeling for
computer vision [40], [85], [95], [154], and learning associ-
ations between object labels and locations [137]. Amazon’s
Mechanical Turk is pioneering on-demand “crowdsourcing”
with a marketplace where tasks that exceed the capabilities of
computers can be performed by human workers. In contrast
to automated telephone reservation systems, consider a future
scenario where errors and exceptions are detected by robots
and automation systems which then contact humans at remote
call centers for guidance.

Research projects are exploring how this can be used for
path planning [72], [81], to determine depth layers, image
normals, and symmetry from images [59], and to refine image
segmentation [83]. Researchers are working to understand
pricing models [144] and apply crowdsourcing to grasping
[143] (see Fig. 12). Knowledge-based solutions are being
explored for industrial automation as well [146].

Networked robotics has a long history of allowing robots to
be controlled over the web [61], and the expanded resources of
the Cloud enables new research into remote human operation
[100], [143], [163] (see Fig. 11).

VII. OPEN-SOURCE AND OPEN-ACCESS

The Cloud supports the evolution of Cloud Robotics and
Automation by facilitating human access to a) datasets, publi-
cations, models, benchmarks, and simulation tools, b) open
competitions for designs and systems, and c) open-source
software.

The success of open source software [41] [70] [121] is now
widely accepted in the robotics and automation community. A
primary example is ROS, the Robot Operating System, which
provides libraries and tools to help software developers create
robot applications [18] [129] [14]. ROS has also been ported
to Android devices [19]. ROS has become a standard akin
to Linux and is now used by almost all robot developers in



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 6

Fig. 12. Crowdsourcing object identification to facilitate robot grasping. Sorokin et al. developed a Cloud robot system that incorporates Amazon’s Mechanical
Turk to obtain semantic information about the world and subjective judgments [143]. This work uses the Human Computation aspect of Cloud Robotics and
Automation. (Image reproduced with permission from authors).

Fig. 13. The DARPA Robotics Challenge (DRC) used CloudSim, an open-
source cloud-based simulation platform for testing the performance of the
Atlas humanoid robot (shown) on a variety of disaster response tasks [5],
[7]. The Cloud permits running interactive, real-time simulation tasks in
parallel for purposes such as predicting and evaluating performance, validating
design decisions, optimizing designs, and training users. This competition also
resulted in enabling sharing of robotics research efforts. (Image reproduced
with permission).

research and many in industry, with the ROS Industrial project
created to support these users [17].

Additionally, many simulation libraries for robotics are now
open source, which allows students and researchers to rapidly
set up and adapt new systems and share the resulting software.
There are many open source simulation libraries, including
Bullet [4], a physics simulator originally used for video games,
OpenRAVE [15] and Gazebo [7], simulation environments
geared specifically towards robotics, OOPSMP, a motion-
planning library [125], and GraspIt!, a grasping simulator
[114]. The open source nature of these libraries allows them to
be modified to suit applications and they were not originally
designed for.

Another exciting trend is in open source hardware, where
CAD models and the technical details of construction of
devices are made freely available [46] [135]. The Arduino
project [3] is a widely-used open source microcontroller
platform with many different sensors and actuators available,
and has been used in many robotics projects. The Raven [69]

Fig. 14. Lollibot, designed by Tom Tilley of Thailand, won the Grand Prize
in the $10 Educational Robot Design Challenge organized by the African
Robotics Network. This design can be built from surplus parts for US $8.96.
[28]. (Image reproduced with permission).

is an open-architecture laparoscopic surgery robot developed
as a research platform an order of magnitude less expensive
than commercial surgical robots [23]. Recent advances in 3D
printing (also known as additive manufacturing) are poised to
have a major impact on many fields, including development
of open source hardware designs [80], [58], [105].

The Cloud facilitates open challenges and design competi-
tions that can draw on a diverse and geographically distributed
population of innovators.

The DARPA Robotics Challenge (DRC) is “a competition
of robot systems and software teams vying to develop robots
capable of assisting humans in responding to natural and
man-made disasters”, supported by NIST and the Southwest
Robotics Institute (SwRI) [24]. The DRC simulator is provided
to all contestants through CloudSim, an open-source cloud-
based simulation platform for testing the performance of the
Atlas humanoid robot (shown in Fig. 13) on a variety of
disaster response tasks [5], [7]. The Cloud permits running
interactive, real-time simulation tasks in parallel for purposes
such as predicting and evaluating performance, validating
design decisions, optimizing designs, and training users [29].

Another example of an open competition is the “Ultra-
Affordable Educational Robot Challenge” organized by the
African Robotics Network with support from the IEEE
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Robotics and Automation Society in the summer of 2012.
It attracted 28 designs from around the world including the
Grand Prize winning design shown in Fig. 14 where a modified
surplus Sony game controller uses the vibration motors to drive
wheels and lollipops as inertial counterweights for contact
sensing by the thumb switches. This robot can be built from
surplus parts for US $8.96 [28].

VIII. CHALLENGES AND FUTURE DIRECTIONS

Using the Cloud for robotics and automation systems in-
troduces many new challenges. The connectivity inherent in
the Cloud raises a range of privacy and security concerns
[131], [138]. These concerns include data generated by cloud-
connected robots and sensors, especially as they may include
images or video or data from private homes or corporate
trade secrets [160], [128]. Cloud Robotics and Automation
also introduces the potential of robots and systems to be
attacked remotely: a hacker could take over a robot and use
it to disrupt functionality or cause damage. For instance,
researchers at University of Texas at Austin demonstrated that
it is possible to hack into and remotely control UAV drones
via inexpensive GPS spoofing systems in an evaluation study
for the Department of Homeland Security (DHS) and the
Federal Aviation Administration (FAA) [75]. These concerns
raise new regulatory, accountability and legal issues related
to safety, control, and transparency [104], [128]. The “We
Robot” conference is an annual forum for ethical and policy
research [159].

On the technical front, new algorithms and methods are
needed to cope with time-varying network latency and Quality
of Service. Faster data connections, both wired internet con-
nections and wireless standards such as LTE [32], are reducing
latency, but algorithms must be designed to degrade gracefully
when the Cloud resources are very slow, noisy, or unavailable.
For example, “anytime” load balancing algorithms for speech
recognition on smart phones send the speech signal to the
Cloud for analysis and simultaneously process it internally
and then use the best results available after a reasonable delay.
Similar algorithms will be needed for robotics and automation
systems [35].

New algorithms are also needed that scale to the size of
Big Data, which often contain dirty data that requires new
approaches to clean or sample effectively [6], [157]. When the
Cloud is used for parallel-processing, it is vital that algorithms
oversample to take into account that some remote processors
may fail or experience long delays in returning results. When
human computation is used, algorithms are needed to filter
unreliable input and balance the costs of human intervention
with the cost of robot failure.

Moving robotics and automation algorithms into the Cloud
requires frameworks that facilitate this transition. The Cloud
provides three possible levels at which a framework could
be implemented [112]. The lowest level is Infrastructure as
a Service (IaaS), where bare operating systems are provided
on (possibly virtualized) machines in the Cloud. The second
level, Platform as a Service (PaaS), provides more structure,
including application frameworks and database access, while

restricting the choice of programming languages, system ar-
chitectures, and database models that can be used. Software as
a Service (SaaS), the highest level of structure, is exemplified
by the difference between Google Docs, a Cloud-based word
processor, and Microsoft Word, which must be downloaded
and installed locally.

The RoboEarth project includes a cloud computation plat-
form called Rapyuta [115], which is a Platform as a Service
(PaaS) framework for moving computation off of robots and
into the Cloud. It also connects to the RoboEarth knowledge
repository, integrating the Big Data aspect. We believe that
this PaaS approach can be extended to use the Software as
a Service (SaaS) paradigm, which offers many advantages
for robots and automation systems. With SaaS, an interface
allows data to be sent to a server that processes it and returns
outputs, which relieves users of the burden of maintaining data
and software and hardware and allows companies to control
proprietary software.

We call this approach Robotics and Automation as a Service
(RAaaS). To illustrate the concept, consider two scenarios for
a graduate student setting up a robot workcell. The workcell
contains a 7-DoF Fanuc industrial arm with parallel-jaw grip-
per and a Microsoft Kinect RGBD sensor. The purpose of the
workcell is to pick up and inspect parts as they come down
an assembly line, requiring object recognition and localization,
grasp planning, and motion planning.

In Scenario 1 (today with ROS), the software runs locally.
ROS (Robot Operating System), the well-known open-source
library of robotics software [129], provides access to over
2000 open-source ROS packages. Currently however, ROS is
only supported on the Ubuntu Linux operating system. While
Ubuntu is popular, the computers available to the graduate
student run OSX. Many stable ROS packages are provided
as packages, which simplifies installation, but some software
is only available as a source distribution, which requires
the download and installation of dependencies. The graduate
student must set up a new machine with Ubuntu and resolve all
library dependencies, including those that conflict with other
packages.

In contrast, Scenario 2 (in the future with RAaas), the
analysis and planning software runs in the Cloud. The graduate
student visits a website to input the robot, sensor, and gripper
models. She then selects her desired object recognition and
localization, motion planning, and grasping algorithms, and
uses a graphical interface to connect these algorithms into a
pipeline. Her robot begins sending up data in the form of
point clouds from the Kinect. The robot receives and executes
motion plans and grasps, reporting back outcomes to the
Cloud-based pipeline, which are combined with feedback from
other robots to improve the Cloud-based software parameters
over time. We are excited about the potential of such a
system and actively working with others on developing its
components.

This survey is based on research available in August 2014.
A repository for new developments and updates is available
at: http://goldberg.berkeley.edu/cloud-robotics/

http://goldberg.berkeley.edu/cloud-robotics/


IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 8

ACKNOWLEDGMENTS

This research was supported in part by funding from Google
and Cisco and by the U.S. National Science Foundation under
Award IIS-1227536: Multilateral Manipulation by Human-
Robot Collaborative Systems.

The authors thank Carlos Agero, Alper Aydemir, Alexandre
Bayen, George Bekey, Kostas Bekris, Dmitry Berenson, Gary
Bradski, Matei Ciocarlie, Javier Civera, Steve Cousins, David
Culler, Raffaello D’Andrea, Steven Gentner, Brian Gerkey,
Erico Guizzo, Timothy Hunter, M. Ani Hsieh, Volkan Isler,
Randy Katz, James Kuffner, Vijay Kumar, Jacek Malec, Matt
Mason, David Portugal, Ben Recht, Luis Riazuelo, Javier
Salmern-Garca, Sanjay Sarma, Ashutosh Saxena, Dezhen
Song, Carl Sutter, Richard Voyles, Alex Waibel, Lujia Wang,
and Jeff Wiegley for ongoing insights and advice on this topic.

REFERENCES

[1] “Amazon Elastic Cloud (EC2).” [Online]. Available: http://aws.
amazon.com/ec2/

[2] “Amazon Web Services.” [Online]. Available: http://aws.amazon.com
[3] “Arduino.” [Online]. Available: http://www.arduino.cc
[4] “Bullet Physics Library.” [Online]. Available: http://bulletphysics.org
[5] “CloudSim.” [Online]. Available: http://gazebosim.org/wiki/CloudSim/
[6] “For Big-Data Scientists, Janitor Work Is Key Hurdle to Insights.”

[Online]. Available: http://www.nytimes.com/2014/08/18/technology/
for-big-data-scientists-hurdle-to-insights-is-janitor-work.html

[7] “Gazebo.” [Online]. Available: http://gazebosim.org/
[8] “Google Compute Engine.” [Online]. Available: https://cloud.google.

com/products/compute-engine
[9] “Google Goggles.” [Online]. Available: http://www.google.com/

mobile/goggles/
[10] “IEEE Networked Robots Technical Committee.” [Online]. Available:

http://www-users.cs.umn.edu/∼isler/tc/
[11] “Industry 4.0.” [Online]. Available: http://www.bmbf.de/en/19955.php
[12] “Microsoft Azure.” [Online]. Available: http://www.windowsazure.com
[13] “MyRobots.com.” [Online]. Available: http://myrobots.com
[14] “Open Source Robotics Foundation.” [Online]. Available: http:

//www.osrfoundation.org
[15] “OpenRAVE.” [Online]. Available: http://openrave.org/
[16] “RoboBrain.” [Online]. Available: http://robobrain.me
[17] “ROS-Industrial.” [Online]. Available: http://rosindustrial.org
[18] “ROS (Robot Operating System).” [Online]. Available: http://ros.org
[19] “rosjava, an implementation of ROS in pure Java with Android

support.” [Online]. Available: http://cloudrobotics.com
[20] “TOP500.” [Online]. Available: http://www.top500.org/list/2012/06/

100
[21] “What is MyRobots?” [Online]. Available: http://myrobots.com/wiki/

About
[22] “What is RoboEarth?” [Online]. Available: http://www.roboearth.org/

what-is-roboearth
[23] “An Open-source Robo-surgeon,” 2012. [Online]. Available: http:

//www.economist.com/node/21548489
[24] “DARPA Selects Southwest Research Institute to Support DARPA

Robotics Challenge,” 2013.
[25] Accenture Inc, “A New Era for Energy Companies:

Cloud Computing Changes the Game.” [Online].
Available: http://www.accenture.com/SiteCollectionDocuments/PDF/
Accenture-New-Era-Energy-Companies-Cloud-Computing-changes-Game.
pdf

[26] B. Addad, S. Amari, and J.-J. Lesage, “Analytic Calculus of Response
Time in Networked Automation Systems,” IEEE Transactions on
Automation Science and Engineering (T-ASE), vol. 7, no. 4, pp. 858–
869, 2010.

[27] ——, “Client-Server Networked Automation Systems Reactivity: De-
terministic and Probabilistic Analysis,” IEEE Transactions on Automa-
tion Science and Engineering (T-ASE), vol. 8, no. 3, pp. 540–548,
2011.

[28] T. A. R. N. (AFRON), ““Ten Dollar Robot” Design Challenge
Winners.” [Online]. Available: http://robotics-africa.org/design
challenge.html

[29] C. Aguero, N. Koenig, I. Chen, H. Boyer, S. Peters, J. Hsu, B. Gerkey,
S. Paepcke, J. Rivero, J. Manzo, E. Krotkov, and G. Pratt, “Inside
the Virtual Robotics Challenge: Simulating Real-time Robotic Disaster
Response,” IEEE Transactions on Automation Science and Engineering
(T-ASE): Special Issue on Cloud Robotics and Automation, vol. 12,
no. 2, p. To appear, Apr. 2015.

[30] M. Armbrust, I. Stoica, M. Zaharia, A. Fox, R. Griffith, A. D. Joseph,
R. Katz, A. Konwinski, G. Lee, D. Patterson, and A. Rabkin, “A View
of Cloud Computing,” Communications of the ACM, vol. 53, no. 4,
p. 50, Apr. 2010.

[31] R. Arumugam, V. Enti, L. Bingbing, W. Xiaojun, K. Baskaran, F. Kong,
A. Kumar, K. Meng, and G. Kit, “DAvinCi: A Cloud Comput-
ing Framework for Service Robots,” in International Conference on
Robotics and Automation (ICRA), 2010, pp. 3084–3089.
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López, K. Häussermann, R. Janssen, J. Montiel, A. Perzylo,
B. Schieß le, M. Tenorth, O. Zweigle, and R. De Molengraft,
“RoboEarth,” IEEE Robotics & Automation Magazine, vol. 18, no. 2,
pp. 69–82, June 2011.

[156] H. Wang, Y. Ma, G. Pratx, and L. Xing, “Toward Real-time Monte
Carlo Simulation using a Commercial Cloud Computing Infrastruc-
ture.” Physics in Medicine and Biology, vol. 56, no. 17, pp. N175–81,
Sept. 2011.

[157] J. Wang, S. Krishnan, M. J. Franklin, K. Goldberg, T. Kraska, and
T. Milo, “A Sample-and-Clean Framework for Fast and Accurate Query
Processing on Dirty Data,” in ACM SIGMOD International Conference
on Management of Data, 2014.

[158] L. Wang, M. Liu, and M. Q.-H. Meng, “Real-time Multi-sensor
Data Retrieval for Cloud Robotic Systems,” IEEE Transactions on
Automation Science and Engineering (T-ASE): Special Issue on Cloud
Robotics and Automation, vol. 12, no. 2, p. To appear, Apr. 2015.

[159] We Robot, “We Robot Conference.” [Online]. Available: http:
//robots.law.miami.edu/

[160] R. H. Weber, “Internet of Things–New Security and Privacy Chal-
lenges,” Computer Law & Security Review, vol. 26, no. 1, pp. 23–30,
2010.

[161] J. Weisz and P. K. Allen, “Pose error robust grasping from contact
wrench space metrics,” in International Conference on Robotics and
Automation (ICRA). IEEE, May 2012, pp. 557–562.

[162] E. Wilhelm, J. Siegel, S. Mayer, J. Paefgen, M. Tiefenbeck, M. Bicker,
S. Ho, R. Dantu, and S. Sarma, “CloudThink: An Open Standard
for Projecting Objects into the Cloud,” 2013. [Online]. Available:
http://cloud-think.com/

[163] Willow Garage, “Personal Service Robotics with Tiered Human-in-the-
Loop Assistance,” 2013.

[164] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud Computing: State-of-
the-art and Research Challenges,” Journal of Internet Services and
Applications, vol. 1, no. 1, pp. 7–18, 2010.

Ben Kehoe received his B.A. in Physics and Mathe-
matics from Hamline University in 2006. He is now
a Ph.D. student in the ME department at Univer-
sity of California, Berkeley. His research interests
include cloud robotics, medical robotics, controls,
and grasping.

Sachin Patil received his B.Tech degree in Com-
puter Science and Engineering from the Indian Insti-
tute of Technology, Bombay, in 2006 and his Ph.D.
degree in Computer Science from the University
of North Carolina at Chapel Hill, NC in 2012.
He is now a postdoctoral researcher in the EECS
department at University of California, Berkeley. His
research interests include motion planning, cloud
robotics, and medical robotics.

Pieter Abbeel received a BS/MS in Electrical En-
gineering from KU Leuven (Belgium) and received
his Ph.D. degree in Computer Science from Stanford
University in 2008. He joined the faculty at UC
Berkeley in Fall 2008, with an appointment in the
Department of Electrical Engineering and Computer
Sciences. His current research focuses on robotics
and machine learning with a particular focus on
challenges in personal robotics, surgical robotics
and connectomics. He has won numerous awards,
including best paper awards at ICML and ICRA,

the Sloan Fellowship, the Air Force Office of Scientific Research Young
Investigator Program (AFOSR-YIP) award, the Office of Naval Research
Young Investigator Program (ONR-YIP) award, the Darpa Young Faculty
Award (Darpa-YFA), the Okawa Foundation award, the TR35, the IEEE
Robotics and Automation Society (RAS) Early Career Award, and the Dick
Volz Best U.S. Ph.D. Thesis in Robotics and Automation Award.

Ken Goldberg is Professor of Industrial Engineering
and Operations Research at UC Berkeley, with ap-
pointments in Electrical Engineering, Computer Sci-
ence, Art Practice, and the School of Information. He
was appointed Editor-in-Chief of the IEEE Transac-
tions on Automation Science and Engineering (T-
ASE) in 2011 and served two terms (2006–2009) as
Vice-President of Technical Activities for the IEEE
Robotics and Automation Society. Goldberg earned
his PhD in Computer Science from Carnegie Mellon
University in 1990. Goldberg is Founding Co-Chair

of the IEEE Technical Committee on Networked Robots and Founding
Chair of the (T-ASE) Advisory Board. Goldberg has published over 200
refereed papers and awarded eight US patents, the NSF Presidential Faculty
Fellowship (1995), the Joseph Engelberger Award (2000), the IEEE Major
Educational Innovation Award (2001) and in 2005 was named IEEE Fellow.

http://www.strategyand.pwc.com/media/file/UnleashingProductivity.pdf
http://www.strategyand.pwc.com/media/file/UnleashingProductivity.pdf
http://ijr.sagepub.com/content/32/5/566.short
http://ijr.sagepub.com/content/32/5/566.short
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6224812
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6224812
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6224812
http://ieeexplore.ieee.org/xpls/abs_all.jsp
http://ieeexplore.ieee.org/xpls/abs_all.jsp
http://dl.acm.org/citation.cfm?doid=2168697.2168701
http://dl.acm.org/citation.cfm?doid=2168697.2168701
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6567422
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6567422
http://ijr.sagepub.com/cgi/doi/10.1177/0278364911406562
http://ijr.sagepub.com/cgi/doi/10.1177/0278364911406562
http://ijr.sagepub.com/cgi/doi/10.1177/0278364911406562
http://reports-archive.adm.cs.cmu.edu/anon/anon/usr/ftp/home/ftp/2005/CMU-CS-05-193.pdf
http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/roboearth-a-world-wide-web-for-robots
http://www.ncbi.nlm.nih.gov/pubmed/21841211
http://www.ncbi.nlm.nih.gov/pubmed/21841211
http://www.ncbi.nlm.nih.gov/pubmed/21841211
https://amplab.cs.berkeley.edu/wp-content/uploads/2014/05/sampleclean-sigmod14.pdf
https://amplab.cs.berkeley.edu/wp-content/uploads/2014/05/sampleclean-sigmod14.pdf
http://robots.law.miami.edu/
http://robots.law.miami.edu/
http://www.sciencedirect.com/science/article/pii/S0267364909001939
http://www.sciencedirect.com/science/article/pii/S0267364909001939
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6224697
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6224697
http://cloud-think.com/?page_id=194&downid=OA==
http://cloud-think.com/?page_id=194&downid=OA==
http://cloud-think.com/
http://link.springer.com/article/10.1007/s13174-010-0007-6
http://link.springer.com/article/10.1007/s13174-010-0007-6

	Introduction
	A Brief History
	Big Data
	Cloud Computing
	Collective Robot Learning
	Human Computation: Crowdsourcing and Call Centers
	Open-Source and Open-Access
	Challenges and Future Directions
	References
	Biographies
	Ben Kehoe
	Sachin Patil
	Pieter Abbeel
	Ken Goldberg


