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Abstract— Automation using deep learning from demonstra-
tions requires many training examples. Gathering this data is
time consuming and expensive, and human demonstrators are
prone to inconsistencies and errors that can delay or degrade
learning. This paper explores how characterizing supervisor
inconsistency and correcting for this noise can improve task
performance with a limited budget of data. We consider
a planar part extraction task (separating one part from a
group) where human operators provide demonstrations by
teleoperating a 2DOF robot. We analyze 30, 000 image-control
pairs from 480 trajectories. After error corrections, trained
CNN models show an improvement of 11.2% upon the baseline
in mean absolute success rate.

I. INTRODUCTION

Learning from Demonstrations (LfD) is a robot learning
setting where the robot learns to perform a task using
examples provided by a human supervisor [1]. By gathering
human directed controls associated with sensor inputs as
training data, one can fit a function to map sensor inputs to
controls. Learning from demonstrations has applications in
other domains, including navigation of unmanned vehicles
[31], car driving [12], cart-pole swing-up [33] and peg-in-
hole insertion [34].

One challenge for robotic leaning from demonstrations
is that human demonstrations may be error prone. The
literature has proposed several definitions for supervisor
inconsistency, such as errors arising from human limitations
or misinformed intent [4]. In this paper, we take supervisor
inconsistency to mean to human actions which do not
advance the agent towards completing the task, such as
overshooting, or do so ineffectively, such as back-and-forth
motion.

We study this challenge in a planar part extraction task.
Planar part extraction involves the separation of one part
from a group of parts, so that it can be individually identified
or grasped. In contrast with part extraction by grasping and
removing the individual part from within the group [27],
pushing and separating the part from the group is useful in
cases when grasp locations are difficult to determine, or the
robot has constrained dynamics.

In machine learning, when confronted with large, pos-
sibly noisy datasets, various techniques, known as “data
cleaning,” are used to enforce the consistency and quality
of the data. Algorithms such as ActiveClean [21] do this by

All authors are with the AUTOLAB at UC Berkeley
(automation.berkeley.edu). 1 EECS, 2 IEOR, UC, Berkeley, CA USA;
{calebchuck, mdlaskey, sanjaykrishnan, rjoshi,
royf, goldberg}@berkeley.edu

Baseline LCC JC Combined

S
u
c
c
e
s
s
 R

a
te

80

60

50

10

62.5%

70.3% 70.0%
73.7%

100

Fig. 1: Performance of the baseline, and the different data cleaning
treatments. In order to highlight the differences in performance, a
cut was made in the graph from 10%-50% on the Y axis. The
baseline has 62.5% success rate, while after cleaning the data
with the combined methods, the policy has a 73.7% success rate.
LCC = low-confidence correction procedure. JC = jitter correction
procedure.

iteratively locating outliers and providing corrections which
enforce semantic, logical or physical constraints.

In this paper, we study data cleaning techniques for
learning from demonstrations. We use a dataset of human
demonstrations of part extraction from part groups arranged
in controlled patterns in a laboratory environment [3]. We
propose data cleaning methods for two forms of inconsis-
tency. After applying both methods, policies trained with
the corrected data attain a 73.75% average success rate, an
11.2% absolute increase from the baseline of 62.5%.

II. RELATED WORK

Prior literature in robotic LfD has proposed a variety
of definitions of supervisor inconsistency. One work in
human demonstration of game playing used overall task
performance as a proxy for the inconsistency of human
demonstrators [35]. In a driving domain, supervisor incon-
sistency has been described in [36] as oversteering and
unstable steering motion. In the context of brain control
interfaces, supervisor inconsistency has been measured by
the delayed human response in a human-machine interface
[37]. Human demonstrators can exhibit behavior where
they misalign the robot effector with the task they are
performing, and perform self-corrections [38].

Maximum-entropy inverse reinforcement learning [7] is
a popular method for learning from demonstrations, which
regularizes the inferred human intentions, thereby reducing
overfitting to noise in human behavior. However, it requires
complete knowledge of the system dynamics. This paper



takes a Behavioral Cloning approach which does not as-
sume any knowledge of the dynamics. We do assume full
observability of the state, and use supervised learning on the
state-action pairs in the demonstrations to regress directly
from camera states to controls using a neural network.

Other methods for dealing with inconsistency include
manual cleaning, where a human looks over the dataset
and removes states that seem inconsistent [8], and real-time
corrections, where a human provides corrective feedback to
incorrect robot states so that the robot can learn from these
states as well [9]. Alternatively, it is possible to train a prob-
abilistic or predictive model of action confidence to identify
action choices of low confidence and provide corrections
[10], [12], or to smooth over multiple similar trajectories
using clustering and averaging to reduce inconsistencies
[13]. Another approach is to treat human demonstrations
as inherently suboptimal and build into the robot policy
cleaning heuristics that are resistant to this suboptimality
[11]. However, to our knowledge, these methods are limited
to low-dimensional inputs, and are not applicable to vision-
based control.

In robotics, data cleaning and statistical techniques typi-
cally correct for constraints based on the physical limits of
the robot, such as frequency response, voltage, and current
[14]. Similarly, by data cleaning systems reports, one might
reduce power usage by identifying and removing subsystem
redundancy [15], or input data might need to be cleaned
to use robotic sensors at a low level to perform better
controls [16]. While in these cases the source of error is
the sensing equipment, modeled as physical phenomena,
our approach to data cleaning addresses scenarios where
the human supervisor is the source of error.

In the field of data cleaning, several techniques con-
sider human supervisors. These methods iteratively extract
outliers, querying the human and learning a new model,
until desired performance is achieved [17]. This process
often involves outlier removal, state deduplication, and
conversion of raw or incorrect featured data. Outliers and
malformed data can be identified by pattern recognition and,
when ambiguous, displayed to a user for correction [18].
Alternatively, data can be queried based on the value of
information for correction [20], or sequentially by taking a
gradient on the clean data to determine improvements [21].
In addition, Kubica et. al. suggests using a generative model
to amend incorrect features [22].

In robotic LfD, many works reduce supervisor inconsis-
tency by having the human provide only a small number
(<10) demonstrations [39]. Other recent work has involved
estimation algorithms for supervisor inconsistency in eye
tracking [40] and pose estimation [41], where the sensing is
expected to be fairly noisy. We are not aware of any studies
that present data cleaning methods on sizable datasets.

III. PROBLEM FORMULATION

Data cleaning studies the problem of efficiently
identifying abnormal data, and when possible, automatically
generating a correction. [17]. In this study, we wish to

Initial State Extracted

Fig. 2: Left: One of the initial states, which vary in position, order
of parts, and pose. Right: the robot separates one part a significant
distance from the group, at least 13cm from the center of the
nearest part.

clean the dataset of human demonstrations to select actions
that are more consistent with the task of part extraction,
and we think of this consistency as the constraint to satisfy.

In our formulation of LfD, we want the robot to imitate
the supervisor’s control on the distribution over states
with which the supervisor visits them. We model the
system dynamics as Markovian, stochastic, and stationary.
Stationary dynamics occur when the probability of the
next state, given the current state and the control, does not
change over time.

For our planar part extraction task, we use 250× 250× 3
pixel RBG camera images as the states x ∈ X , where
X ⊆ Rdx is the set of possible such images, parametrized
as a vector of dimension dx = 2502. Neural networks
have been shown to successfully learn lower-dimensional
featurizations, even of high-dimensional inputs [30].

As the control space, we use robot pose deltas (intended
difference in pose): base rotation in the range [−1.5◦, 1.5◦],
and arm extension in the range [−1cm, 1cm]. We denote
these deltas by the control u ∈ U , and normalize it to
lie in the box U ⊆ [−1, 1]du , parametrized by a vector
of dimension du = 2. We use PID for pose control, after
computing the new pose after applying the delta. This
pose control is sufficient for pushing individual parts
without significant error with 0.03cm extension error and
0.02 degree rotation error. When pushing multiple parts
simultaneously, The force from the PID for a single time
step may not be sufficient, but added over a few time steps,
the robot can simultaneously push all four parts. The time
step between deltas is sufficiently large such that oscillation
due to the PID is negligible. A trajectory then consists of
a sequence of image-delta pairs: τi = {(xt, ut)}Tit=1, where
Ti is the duration of the trajectory. This duration is selected
by the demonstrator as the time of task completion, but
is capped at 100 time steps. A trajectory begins at some
initial state from the initial state distribution defined below,
and ends upon success in a state where a part is extracted.

Given this environment with fixed dynamics
p(xt+1|xt, ut), the dataset D of trajectories is collected
using the supervisor policy, which is a mapping from states
to actions: π̃ : X → U . The dataset used in this paper is
described in more detail in Section 4. The robot then fits
a policy πθ|D : X → U for the dataset. Here θ represents
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Fig. 3: Two categories of supervisor inconsistency. The goal is to move the bottom-right part to the right side of the workspace,
apart from the other parts. On the trajectories, the parts of the trajectory circled in blue represent parts of the trajectory which we
characterize as inconsistent. The left two images display examples of supervisor inconsistency from obstructive actions, while the right
image represents jitter. The black line represents the path of the demonstrated trajectory, with supervisor inconsistency. The states shown
are those with high cross validation error or jitter correction error, respectively. For cross-validation, notice that the first image contains
overshoot, where the demonstrator moves left excessively. At the state shown, the task could be completed more succinctly by simply
moving right. The other image contains self corrections, where the human moved for some time in one direction, but decided to backtrack
after finding that would not be likely to succeed. Notice that in these cases, some motions move the robot further from completing the
task. For the jitter correction case, the human makes multiple sudden changes resulting in an overly complex demonstration.

the weights of the neural network learned from the dataset
D. We use the squared L2 norm ‖uR − uH‖22 as the loss
of choosing control uR = πθ|D(x) when the demonstrator
chose uH = π̃(x).

The initial state distribution p(x0) is sampled by first
drawing the translation of the cluster of parts from a
Gaussian distribution centered 3 inches in front of the
robot, with variance 20cm2, then rotating it uniformly
from the range [−15◦, 15◦]. The relative positions of the
parts are arranged uniformly randomly. To guide a human
operator in placing parts in their correct pose, we used a
virtual overlay over a webcam image.

The distribution of trajectories induced by the robot
policy is p(τ |πθ|D), and distribution of actions given state
and policy is: p(ut|xt, πθ|D) = δut=πθ|D(xt). The transition
probability is: p(xt+1|xt, ut), that is, the probability of
getting to the following image given delta pose and current
image.

We formalize the behavioral cloning problem for part
singulation, starting with the probability of a trajectory
given a policy π:

p(τ |π) = p(x0)

T−1∏
t=0

p(xt+1|xt, ut)p(ut|xt, πθ|D)

We wish to minimize the expected loss under the robot’s
policy:

min
θ

Ep(τ |πθ|D)

T−1∑
t=0

‖π̃(xt)− πθ|D(xt)‖22. (1)

This minimization is difficult because the trajectory distribu-
tion is coupled with the loss through the robot’s policy, and
the two need to be estimated jointly. Instead, as a common
practice approximation [3], we can minimize the expected

loss under the supervisor’s policy:

min
θ

Ep(τ |π̃)

T−1∑
t=0

‖π̃(xt)− πθ,D(xt)‖22. (2)

When the supervisor’s control is inconsistent with the task,
optimization of Eq. III.2 becomes difficult [23], because
the occasional inconsistent actions are at odds with the
typically productive behavior towards the goal, providing
different controls for similar states. In following sections,
we characterize some of these inconsistencies that can be
found in teleoperation systems, and introduce two methods
for repairing them.

IV. ROBOTIC PLANAR PART EXTRACTION SYSTEM

We used the dataset of demonstrations described in [3].
These trajectories were performed via teleoperation by 8
different human supervisors, each completing 60 episodes
of planar part extraction.

We define success in the planar part extraction task as
the separation of one part from its neighbors by a distance
of at least 13cm between their centers, as illustrated in
Figure 2, described in prior work [3], with a video at
https://youtu.be/mMo4VSoM9S0. The human supervisors
were instructed to move the part toward the upper right of
the workspace, increasing the homogeneity of their behavior
and rendering it easier to learn.

We used a planar 2-DOF robot arm with rotational and ex-
tensional control. The human teleoperated the robot using an
xBox 360 controller, which applied end effector pose deltas
through the right analog stick. This setup is a simplification
of a factory environment, where planar part extraction might
be one of several sub-tasks in a larger object manipulation
task. Our robot was fitted with a 2-fingered gripper, that
could potentially be used for grasping after part extraction.

The state images were captured by an overhead Logitech
C270 camera, with sufficient field of view to observe the



parts and the robotic arm. The 4 parts were red extruded
polygons, made of Medium Density Fiberboard with an
average 4” diameter and 3” height. The trained policy was
a deep neural network with the same architecture as defined
in [3], [2]: a convolutional layer followed by two fully
connected layers, separated by rectified linear units. The
network was trained using TensorFlow [43].

We sampled 60 different initial states from the initial
state distribution defined in Section III. Each of the 8
demonstrators performed 60 episodes with these same initial
states. This data was repaired using the methods described
in Section VI below, and a neural network with the same
architecture as described before was trained on the repaired
data. After training the network, we evaluated the robot
policy performance on a fixed set of 30 initial states
sampled from the same distribution as the training initial
states. Execution performance was measured by rolling out
a trajectory controlled by the neural network policy. We
recorded the frequency of test episodes that terminated in
successful planar part extraction.

In the original dataset, execution performance on the test
states had a 62.5% success rate. Some common failure
modes involve minimal motion, where the sweeping mo-
tion occurred with the arm not extended far enough, and
exaggerated motion, where extension or approach overshot
the desired part, pushing multiple parts without separating
any one.

V. TWO ERROR MODE CATEGORIES

In the dataset of human trajectories, we categorize two
forms of supervisor inconsistency: obstructive actions and
jitter. These error modes were common and pervasive in
the dataset. They also relate to those observed in related
work, with delayed human response [37] and misalignment
[38] being related to obstructive actions, and unstable hand
movements and oversteering [36] being related to jitter.
Obstructive actions: When a human performs a large
number of demonstrations, occasionally his or her intended
control is misaligned with his or her intended goal, and
chooses actions that do not advance toward task completion
(i.e. successful planar part extraction). This is often the
case the human performs unproductive actions, such as
overshooting the preferred trajectory, or starting a behavior
too early, and is then forced to self-correct. If too many
such actions are used, the human will fail at the task.
Usually, however, the human will simply delay terminating
the trajectory and perform self-corrective actions, eventually
recording a successful demonstration. If the robot learns to
imitate incorrect components of such behavior, its own be-
havior can be unsuccessful. See Figure 3 for some examples.
Jitter Another form of supervisor inconsistency involves
human actions which are intended towards the goal, but are
misperformed, over-complicating the trajectory. In contrast
to obstructive actions, these inconsistencies involve shorter
behaviors that do not necessarily make it harder for the
human to complete the task, or extend the length of the
trajectory. Instead jitter describes high-frequency motions
that are harder to learn. Such actions often involve turns,

changes in direction, or back-and-forth motions, which are
overall aligned with the success of the policy, but contribute
toward it inefficiently. These behaviors include short se-
quences of control steps which differ greatly from other
controls demonstrated in similar state, which can impede
learning.

VI. DATA CLEANING

We introduce two algorithms for reducing overall noise,
in correspondence with the two types of inconsistencies
in Section V. Low-Confidence Correction aims to correct
parts of the demonstration where the human performed
obstructive actions, and Jitter correction attempts to reduce
jitter.

A. Low-Confidence Correction

We expect the human to be mostly consistent, and ob-
structive actions to be outliers and thus low-confidence.
However, not all low-confidence data points are due to
inconsistency. In low-confidence correction, we use cross-
validation to determine the confidence of the robot policy in
its output in any given state, and query a human expert to
determine corrections for low confidence states. We begin
by breaking the dataset into K + 1 subsets or “folds” of
equally sized partitions of the data. We reserve one fold as
the test set to evaluate overall performance. We then operate
on the remaining K training folds in a manner similar to
cross-validation [28]. We hold out each fold in turn, train
a regression model using the remaining K − 1 folds, and
evaluate this model on the holdout fold.

The evaluation is performed by using a regression model
to choose an action uR for each state in the held out
trajectories. These actions are compared to the demonstrated
control in these trajectories uH , computing their L2 loss
‖uR − uH‖22, which we call the cross-validation error.
This scheme allows us to identify states with high cross-
validation error. The controller trained in cross-validation
differs significantly from the demonstrator on these states,
which indicates lower confidence that the human demon-
strated consistent actions. Having identified these low-
confidence states, they are then displayed to the expert for
correction. The threshold error above which a query is made
trades off false negatives that leave the data inconsistent,
with false positives that burden the supervisor. In our
experiments, we selected the error threshold to consider
only 5% of the highest-error data for cleaning. As shown
in Figure 4, this data represents significant outliers in terms
of cross-validation error.

To clean a data point (a state’s demonstrated control), we
evaluate four different methods: 1) always remove the data
point, 2) remove the data point based on the supervisor’s
discretion, 3) have the supervisor provide a corrected control
4) use the control from the policy trained on the other
k-1 folds. Methods 1 and 2 are simple and effective in
preventing wrong data from affecting training. Method 3
can improve upon 1 and 2 by not missing the opportunity to



Algorithm 1: Low-Confidence Correction
Data: State-action pairs (x ∈ X , u ∈ U) of human

demonstrations D, number of folds K, threshold τ
Result: Equivalent dataset with selected corrections from the

human supervisor at low-confidence states
Separate D into K + 1 folds;
Designate (K + 1)th fold as test set;
Set S contains remaining K folds, where S(i) = i’th fold;
Initialize CONTROLS as empty set;
for i = 0 to K do

Separate TRAIN = S/{S(i)};
Train policy on TRAIN;
Evaluate policy on S(i) as NEW_CONTROLS;
Append NEW_CONTROLS to CONTROLS;

end
for l in S do

if ‖CONTROLS(l)−D(l)‖22 > τ then
Ask human for correction;
Replace D(l) with correction, if specified;

end
end

Algorithm 2: Jitter correction
Data: State action pairs (x ∈ X , u ∈ U) of human

demonstrations D, number of folds K, threshold τ
Result: Equivalent dataset with deltas filtered using

Butterworth Filter
Separate D into trajectories, T ;
for t ∈ T do

Extract ordered sequence of controls for t as Lt;
Filter L by 5th order Butterworth filter as NLt;
Replace controls for states in t with NLt;

end

demonstrate on low-confidence states. Method 4 has been
suggested in prior work as a way to reduce learning er-
ror [19]. We describe this correction method in Algorithm 1.

Corrections were provided by an expert familiar with the
operation of the robot and the algorithms being applied.
We chose to use 12 folds of 5 trajectories per fold, with
the 12th fold being used for test set assessment. We chose
0.65 normalized error as the threshold error value; error
values greater than 0.65 are displayed to the expert. We
assume that the expert can choose actions for individual
frames (time steps in a trajectory), particularly since the
time steps represent non-negligible time windows (0.35 sec).
The threshold was chosen at a point where the error begins
to increase drastically with the points’ error-based rank.
Figure 4 displays the choice of threshold compared to the
cumulative frequency of error values. We did not attempt
to optimize the threshold value beyond the observed cross-
validation errors in the training sets. We also did not attempt
to optimize the number of folds.

B. Jitter correction

For jitter correction, we apply a low-pass filter to the
control sequence of each trajectory. For the planar part
extraction task, we selected a Butterworth filter with filter
order 5. For policy training, we replace the demonstrated
controls with the output of the low-pass filter. We chose
not to burden an expert with correcting high-frequency

Jitter correction LCC Combined Baseline
Training Error 9.87% 18.92% 10.89% 20.31%
Standard Error 0.29 % 0.28% 0.42% 0.41%

TABLE I: Difference in supervised learning training error, av-
eraged over the 8 supervisors and the standard error for the
different treatments, with fixed training iterations. LCC stands for
low confidence correction. Jitter correction resulted in the largest
change in training error

inconsistency, because we expect most jitter noise to be
corrected by reduction to low-frequency terms, making a
low-pass filter more reliable than a human supervisor. This
algorithm is described in Alg. 2.

Our choice of filter, and of filter order, was done with-
out knowledge of full stack performance set. We choose
the Butterworth filter due to its flat bandpass response,
recognizing that we have no clear frequency above which
we can consider control noise. We chose the filter order
without optimization, using a value which was numerically
stable. We did not attempt to optimize the choice of filter,
because we can make only limited a-priori claims about
the frequency spectrum which the noise occupies, and the
Butterworth filter smooths out the data in a way appropriate
to our usage. The Butterworth filter has the frequency
response [24]:

|H(ejω)|2 =
G2

0√
1 +

(
jω
jωc

)2n ,
where n is the filter order, G0 is the DC gain, and ωc is
the cutoff frequency. We used a cutoff frequency of 0.2 Hz,
and a DC gain of 1.

C. Combination of Methods

We combined both low-confidence correction and jitter
correction to gauge how much overlap the two techniques
carried. To do this, we first applied low-confidence cor-
rection and then applied jitter correction. We chose this
order because smoothing might increase the complexity of
providing human corrections, since changes to state deltas
would make the trajectory harder to visualize, which is not
a problem for jitter correction. Nonetheless, we consider
changing the order in future work. After acquiring correc-
tions using low-confidence correction, we pass the corrected
controls through the low-pass filter as defined by the jitter
correction operation. This new dataset is used to train the
neural network to perform planar part extraction.

VII. EXPERIMENTS

We present the resulting end-to-end performances from
our treatments on the planar part extraction dataset, as well
as some additional supporting results which may clarify
possible forms of human inconsistency. In the planar part
extraction dataset, our operations achieve significant im-
provements, and the final performance suggests the effec-
tiveness of our treatments in this domain.



A. End-to-End Assessment of Cleaning Algorithms

Our primary assessment involved end-to-end testing of
the robot policy. We took the trained neural network, and
applied it to the set of 30 initial states defined in Section
4. The robot would perform the change in pose dictated by
the output of the neural network for each of the 100 time
steps. If the robot successfully extracted a part, then this
would be a success. Figure 1 contains the results of applying
treatments, as percentage change from the baseline, as well
as the standard error on the differences. Applying our
jitter correction and low-confidence correction techniques
together resulted in a 11.2% improvement on the test set
over the baseline performance of average 62.5% successful
extraction, with a 2% standard error. Notice that though
using both methods together does the best of all methods,
the average success rate of the data is still only 73.7%,
probably due to the small size of the training set.

Drawing from the results of Figure 1, notice that jitter
correction and low-confidence correction performed com-
parably. Jitter correction provided a 7.5% absolute im-
provement, with an average performance of about 70%
and standard error of 2%, a sizable improvement with
significant confidence over the mean. Applying the low-
confidence correction method resulted in a 7.8% absolute
improvement, with a standard error of 4%. While this
standard error is slightly higher than other methods, it still
implies a significant improvement. In addition, the low-
confidence correction end-to-end performance demonstrates
how a small number of changes, only about 5% of the
data, can result in significant improvements to the overall
planar part extraction policy. We suggest that this significant
change occurs due to the high error incurred by these
states, biasing the overall policy. This result also suggests
that obstructive actions tends to result in a relatively small
number of extremely high error states.

B. Noise Characterization

Observing Figure 3, notice that shown trajectories with
high jitter correction error also contain significant back-
and-forth motion. Intuitively, this redundant and non-
reproducible data, which adds unneeded complexity to the
trajectory, would be difficult to learn. This is supported in I,
which shows the training errors of the different treatments.
Jitter correction produces a 10% decrease in training loss for
the same number of iterations of training, with a standard
error of .4%.

Figure 3 also shows trajectories which contain significant
numbers of states with high cross-validation error. In the
figure, these states occur when the human performs a
motion in the trajectory which goes opposite or overshoots
the general rightward motion. This is consistent with our
description of obstructive actions. We only observe in I a
very slight decrease in training error. However, we suggest
this is because a much smaller subset of states is corrected in
the low-confidence correction, and corrections are intended
to make the true policy more representative, rather than just
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Fig. 4: Sorted normalized cross-valiation errors for all data points.
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for corrections.
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Fig. 5: Sorted normalized difference in control due to jitter
correction. Notice that jitter correction alters a significant number
of states, suggesting a good number of high frequency components.
However, its correction is generally not as high as the cross-
validation error.

improve learnability. We assess errors of this form by notic-
ing the qualitative nature of errors, as obstructive actions,
and the quantitative improvements to test set performance
after correcting such errors.

To continue highlighting the proposed forms of human
inconsistency, we demonstrate the cross-validation differ-
ences (as an estimate of prediction error). Figure 4 displays
this estimated prediction error. That is, the graph shows the
sorted L2 difference between the cross-validation control
and the original supervisor control, for all of the frames.

Figure 5 displays the amount of change to the control
produced by jitter correction, that is, the loss value when
comparing the control after jitter correction, with the control
prior to jitter correction. Notice that a significant portion of
states have greater than 0.5 normalized error, both for jitter
correction and for cross validation. For jitter correction,
this suggests human trajectories contain high frequency
motions, which when corrected improves learnability. For
cross-validation, this highlights high-error outliers that may
indicate supervisor inconsistency.

C. Alternative low-confidence correction methods

In the results described by Figure 6, we notice that
the alternative treatments for obstructive actions produce
no significant improvements, especially when compared
with the suggested low-confidence correction. Figure 6 also
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Fig. 6: Comparison of different procedures for correcting obstruc-
tive actions. In order to highlight the difference between low-
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data points to the ones determined by the robot policy; Correction:
sending data points to the human for correction, which is the
procedure we used for final analysis.

shows the difference between the suggested treatment, low-
confidence correction, and other treatments. Our results are
drawn by a smaller sample size and so this analysis only
forms a preliminary study. We explored three alternative
treatments: 1) Removing all states with low confidence that
would have been queried, 2) Altering all high error states
to the robot’s policy 3) Having the human select which
low-confidence states to remove. All three treatments had
negligible effect on the execution performance, with none
greater than 2% change from the baseline. The lack of
significant change compared to the baseline for removing or
altering the high error states to the robot’s policy suggests
that in fact high error states are not all misrepresented: some
states with high prediction error are naturally low-confidece,
and not due to human error, but simply because parts of the
state space have higher variance. On the other hand, the
fact that human-specified removal of certain states also had
limited effect suggests that it is not sufficient to remove
offending data to get significant improvements, as exhibited
by low-confidence correction.

D. Demonstrator Experience
We are also interested in finding if experience has a

significant effect on performance. To test this, we measured
cross-validation and jitter correction error as a function of
the number of demonstrations, to see if the human would
have more learnable data as they gained more experience.
The results demonstrated in 7 suggest that experience is not
a particularly powerful factor in the number of erroneous
actions, at least in our experiment. This is shown by the
near-zero slope of both correlations.

VIII. CONCLUSION

To enhance LfD, this paper introduces several charac-
terizations of supervisor inconsistency in a planar part
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Fig. 7: Performance over each of the 60 example rollouts. Notice
that there is almost zero correlation, which suggests that for
this experiment, experience was not a confounding variable in
performance measured with regards to jitter or obstructive actions.
The left plot represents low-confidence correction, while the right
plot represents jitter correction.

extraction task, as well as different techniques by which to
determine and provide corrections for inconsistent human
demonstrations. The dataset, coming from people inexperi-
enced with operating the particular robot platform we used,
certainly included many suboptimal cases, noticeable by
inspection.

This work only assesses the supervisor inconsistency in
planar part extraction. In future work, we will explore
more complex tasks, using the intuitions and ideas from
jitter correction and low-confidence correction. We hope
to explore extending data cleaning techniques to other
platforms and populations of robot trainers, at greater data
scale. Some recent work has taken the applied ideas of jitter
correction observed in this work, and applied them to train
ball-scooping from teleoperation of a YuMi system, with
significant success [42]. This suggests that these techniques
may generalize to other tasks. As LfD involves more data,
ensuring the integrity of this data will allow tasks to be
learned with higher success rates.
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