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Abstract— Accessing software resources via the Cloud has
become increasingly popular as a means to configure and man-
age automation systems with reduced infrastructure overhead.
Dex-Net as a Service (DNaaS) is a cloud-based grasp planning
system for parallel-jaw grippers that provides a graphical user
interface and API access to Dex-Net, a robust grasp planning
system based on wrench mechanics and stochastic sampling.
DNaaS allows anyone online to compute grasps on triangular
meshes using parametric parallel-jaw grippers and visualize the
results at http://automation.berkeley.edu/dex-net.

We analyze grasps planned by DNaaS for multiple parallel-
jaw grippers and adversarial object meshes, report system
timing benchmarks, and present failure modes encountered
during the development of DNaaS. Our experiments find that
DNaaS takes under 75 seconds to process grasp requests on
adversarial meshes using a parameterized gripper model.

I. INTRODUCTION

The ability to compute robust robot grasps remains a
grand challenge for robotics in manufacturing, agriculture,
and home care. Today, most robots and automation systems
operate independently using onboard computation and mem-
ory. The development of Cloud Robotics [30] highlights the
role that collective robot learning, Cloud Computing, and
open-source software can play in achieving robust robotic
manipulation of everyday objects [36]. Whether leveraging
analytic methods or learning based approaches to achieve
dextrous robotic manipulation, the increasing ubiquity of
Cloud resources suggests new approaches to robot grasping,
where processing is performed remotely with access to large
shared datasets, can increase the reliability, performance, and
cross-platform flexibility of robotic systems.

Robotics and Automation as a Service (RAaaS) [36] can
play an important role in a Cloud Robotics framework by
avoiding complex software installation and maintenance, al-
lowing remote robots to scale beyond their onboard hardware
limitations, and facilitating the sharing of robot trajectories
and outcomes. RAaaS benefits users building robotics ap-
plications by making state-of-the-art algorithms and training
datasets available without the need to perform data collection
or algorithm implementation themselves.

The Dexterity-Network 1.0 (Dex-Net) [43] is an algo-
rithm for robust grasp planning which relies on Unix-based
libraries and operating systems. We present Dex-Net as a
Service (DNaaS), an HTTP API which uses Dex-Net [43] to
compute and rank parallel-jaw grasps on triangular-faced, 3D
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Fig. 1: DNaaS grasp generation examples. Adversarial mesh objects (top)
and the corresponding grasps (bottom) generated by DNaaS for the pictured
parallel-jaw gripper. Candidate grasps are represented by oriented line
segments along the grasp axis, colored by their robustness (green more
robust, red less robust).

object meshes using parametric parallel-jaw grippers under
user-specified physics and robustness parameters. Grasps
generated by DNaaS can be viewed in a web browser where
users may choose their desired gripper parameters, explore
grasps on example watertight 3D object meshes, and upload
custom objects to evaluate DNaaS on their own meshes.
Users interact with mesh objects and candidate grasps in
a 3D scene with the ability to filter grasps to specific stable
poses. This allows industrial practitioners to easily access
Dex-Net through the Web.

This paper makes three contributions:

1) DNaaS, a RAaaS architecture for Dex-Net and public
HTTP API which takes as input a 3D object mesh
(in .obj format with triangular faces) and computes
stable poses, grasps, and robust grasp quality metrics
for parallel-jaw grippers under uncertainty in object
pose, gripper pose, and friction,

2) An implemented graphical interface where users up-
load object meshes and visualize the quality of can-
didate grasps to better understand or debug grasping
models, and

3) Experiments evaluating failure modes of the system,
the real-time performance of the DNaaS API across
multiple parallel-jaw grippers and adversarial meshes,
and the effect of gripper width on predicted grasp
quality.

http://automation.berkeley.edu/dex-net


Fig. 2: DNaaS user interface. Parametric gripper model is rendered along the z-axis. Candidate grasps (green more robust, red less robust) are super-imposed
on the target object. The gripper width can be adjusted manually (bottom left). Grasps may be filtered by their grasp quality (bottom right) or by their
feasibility for a given stable pose (top right).

II. RELATED WORK

Cloud robotics. The term “Cloud Robotics” was coined
in 2010 [37] to describe systems that allow robots to offload
compute and storage requirements from local hardware to
the Cloud [30]. Cloud Robotics, spurred on by the general
availability of Cloud Computing resources, has had an impact
on robotics efforts in industry [3], [8], [9], [15]. Though a
complete survey of Cloud Robotics is beyond the scope of
this paper, we direct interested readers to works which cover
the topic in more depth [26], [36].

Of particular interest are grasp planning and simulation
systems, such as GraspIt! [29] and OpenGRASP [41], which
allow users to interact with objects in a virtual world and
compute quantitative grasp quality metrics to evaluate candi-
date grasps. These simulators have collected novel datasets
[44] of thousands of distinct object models and associated
grasps to bootstrap the study of grasp planning at scale.
More recently, Dex-Net [42], [43] has addressed the issue
of robust grasp planning and dataset generation for learning-
based grasping algorithms.

Programs like GraspIt! may be downloaded and run by
end-users locally, or used with ROS [11], [18]. RAaaS [36]
introduces a layer of abstraction on top of systems like
ROS to isolate end-users from manual management of Cloud
Robotics software. RAaaS relies on software developers to
deploy their projects to the Cloud where they may be used
directly by end-users, each with possibly different robots and
applications, without knowing the details of a specific robotic
software package.

Brass [51] implements a RAaaS grasp-planning solution

similar to DNaaS. DNaaS accepts gripper-parameterized
grasp requests via a public HTTP REST API to enable the
computation of robust grasps over a wide variety of parallel-
jaw grippers. These grasps may then be visualized in a web
user interface. Our experiments examine candidate grasps
generated by DNaaS and provide univariate distributions of
our grasp quality metric for different parallel-jaw grippers.

Grasp Planning. Given an object, gripper parameters, and
reachability constraints due to the environment, grasp plan-
ning considers finding a gripper configuration that maximizes
a certain metric. Methods fall into one of two categories
based on success criteria: analytic methods [47], which
consider performance according to physical models such as
the ability to resist external wrenches [46], and empirical
(or data-driven) methods [20], which typically use human
labels [19] or the ability to lift the object in physical
trials [45].

Analytic Methods. Analytic approaches typically assume
that object and contact locations are known exactly and
consider either the ability to resist external wrenches [47]
or the ability to constrain the object’s motion [49]. To
execute grasps on a physical robot, one approach is to
precompute a database of known 3D objects labeled with
grasps and quality metrics using software like GraspIt! [29].
Precomputed grasps are indexed at execution time using
point cloud registration: matching point clouds to known
3D object models in the database using visual and geometric
similarity [20], [21], [22], [28], [31], [33], [35].

Robust grasp planning methods maximize grasp robust-
ness, or the expected value of an analytic metric under



Fig. 3: User specifiable parameters for parallel-jaw gripper in DNaaS.

uncertainty in sensing and control. This involves labeling
grasps on a database of 3D object models with robust metrics
such as the probability of force closure [35] or the pose
error robust metric [53]. Recent research has demonstrated
that the sampling complexity of robust grasp planning can
be improved using Multi-Armed Bandits [39] and datasets
of prior 3D objects and robust grasps, such as the Dexterity
Network (Dex-Net) 1.0 [43].

Empirical Methods. Empirical approaches typically use
machine learning to develop models that map from robotic
sensor readings directly to success labels from humans or
physical trials. Human labels may be expensive to acquire for
large datasets and irregular objects. Research in this area has
largely focused on associating human labels with graspable
regions in RGB-D images [40] or point clouds [23], [32],
[34]. Lenz et al. [40] created a dataset of over 1k RGB-
D images with human labels of successful and unsuccessful
grasping regions, which has been used to train fast CNN-
based detection models [24], [38], [48].

III. PROBLEM STATEMENT

The goal of Dex-Net as a Service (DNaaS) is to provide
a public API which computes a set of robust parallel-jaw
grasps for a given 3D object using a Cloud-based imple-
mentation of the Dex-Net grasp computation pipeline [43].
Specifically, DNaaS takes as input an object specified as 3D
triangular mesh and outputs a set of collision-free parallel-
jaw grasps ranked by their robustness to perturbations in
object pose, gripper pose, and the Coulomb friction coeffi-
cient. Optionally, users can set application-specific parame-
ters of the robust quasi-static analysis engine: the parallel-jaw
gripper geometry, the Coulomb friction coefficient, and the
grasp quality metric (either force closure [53] or the epsilon
metric [25]). DNaaS can also optionally compute the subsets
of grasps for the 3D object that have an axis parallel to the
table plane for each stable resting pose of the object on a
planar worksurface [27], which may be useful in industrial
applications.

A. Assumptions

The robust quasi-static grasp analysis engine of DNaaS
assumes quasi-static physics, a rigid object with uniform
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Fig. 4: DNaaS architecture. DNaaS consists of a front-end website, served
statically by an Apache web-server, and a backend Python Flask API which
communicates with a worker pool of Dex-Net processes to orchestrates
grasp generation.

mass density, and a known friction coefficient. We assume
that the parallel-jaw gripper geometry can be approximated
with four parameters: the gripper width, the length of the
fingers, and the cross-sectional dimensions of the fingertip,
(see Figure 3). DNaaS assumes that the input mesh has
triangular faces and fewer than 70k total faces to ensure grasp
computation latency remains under two-minutes.

IV. DEX-NET AS A SERVICE (DNAAS) ARCHITECTURE

Dex-Net as a Service (DNaaS) is comprised of multiple
distinct layers, depicted in Figure 4. The frontend of the sys-
tem is a web-based graphical user interface based on jQuery
[12], [13] that parses user mesh models and grasp compu-
tation requests from a web browser. The frontend uploads
mesh models and makes requests for grasp computations via
DNaaS’s public grasping API [5]. Requests are forwarded
to the robust grasp analysis backend using a Python-based
Flask API. The backend spawns worker processes which
analyze the input mesh model using the robust grasp analysis
engine from Dex-Net 1.0. Each worker process returns a set
of parallel-jaw grasps with robustness metrics. The grasps
are retrieved from the worker by a monitor process on the
server, which relays the JSON encoded grasps to the DNaaS
frontend via HTTP. Finally, the frontend renders the grasps
on the 3D object model in the browser. Readers interested in
using the DNaaS API may consult our Python example [6]
as a guide to computing candidate grasps and stable-poses
for object meshes.

A. Grasp Computation

The DNaaS backend uses an updated version of the robust
grasp analysis engine of Dex-Net 1.0 that represents the
object as an explicit surface (3D triangular mesh) rather than
an implicit surface (3D Signed Distance Function), as was
used in the original system [43]. When a user uploads a
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Fig. 5: Grasp quality and count for three gripper widths (2, 4, and 6 cm) generated by DNaaS on the spray bottle mesh object depicted in the bottom
series. The gripper width increases from left to right. The images of the grasps superimposed on the spray bottle are taken from the DNaaS web interface
directly. The dimensions of the spray bottle are 12.7cm tall, 3.1cm deep, and 5.0cm wide.

3D object mesh to DNaaS, the service first preprocesses the
mesh for grasp computation. We align the principal axes of
the object with the x, y, and z axes. We estimate the center
of mass for the object by assuming a uniform density when
the mesh is watertight and taking the centroid of the mesh
bounding box otherwise. Next, we compute the stable resting
poses of the object on a planar worksurface under quasi-static
physics and a uniform initial object orientation [27].

The second stage in our pipeline samples an initial set of
antipodal grasps using an implementation of the grasp sam-
pling algorithm of Dex-Net 1.0 that operates on triangular
meshes. First, we sample a set of candidate contact points
from the surface of the mesh that are approximately evenly
spaced using the trimesh library’s [17] implementation of
the triangle point picking algorithm [52]. For each candidate
contact point, we search for a second contact point to form an
antipodal pair by sampling a direction uniformly at random
from the friction cone around the contact normal (inward-
pointing surface normal) and tracing a ray along the sampled
direction to find the most distant point of intersection with
the mesh surface that is within the maximum opening width
of the gripper. If no such intersection point exists, the candi-
date contact point is discarded. If one exists, we compute the
surface normal and friction cone at the point of intersection
and determine whether the candidate contact point and point
of intersection form an antipodal pair. If the pair is antipodal,
we construct a candidate grasp with center at the midpoint
between the pair of contact points and grasp axis along the

line between the contacts and add the candidate grasp to the
set.

The set of antipodal contact points is then pruned by
checking for collision-free configurations of the gripper
relative to the object that reach the contact points. We search
over all rotations of the gripper about the grasp axis (line
between the contact points). For each grasp and stable resting
pose, we also check whether or not the grasp axis is parallel
to the planar worksurface to mark valid crane grasps.

Finally, we compute grasp robustness for the set of can-
didate grasps using Monte-Carlo sampling. For each grasp
we iteratively sample an object pose, a gripper pose, and
a friction coefficient from Gaussian distributions using the
graphical model of [50]. We then compute the contact points
for the perturbed grasp and evaluate the grasp quality metric.
The backend implements force closure using a soft finger
contact model by computing the angle between the line
between the contacts and the friction cone, and it also
implements the epsilon metric by Ferrari and Canny [25]
using a Python implementation based on pyhull [14]. We
estimate the mean and standard deviation of the quality
metric over all samples. We stop sampling when either (a)
the 95% upper confidence bound on the quality metric is less
than a threshold value or (b) a maximum number of samples
have been reached. The final set of grasps and metrics are
JSON-encoded and returned to the end user when queried.
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Fig. 6: Time analysis. Measuring the elapsed time of the major stages in the grasp generation pipeline, segmented by mesh, and colored by the processing
stage. Timing measurements are given for three adversarial object meshes: a bar clamp, an endstop holder, and a spray bottle. Note: x-scale is log-
transformed.

B. HTTP API

The full API specification implemented by DNaaS is
available online [5] with an accompanying example of how
to query DNaaS for grasp candidates [6].

Each request to process a mesh is associated with a
globally unique identifier. Once computation is complete,
any future calls to the grasps endpoint associated with this
identifier bypass the computational pipeline and immediately
return the previously computed grasps, allowing for efficient
reuse of prior computation.

C. Web Interface

Figure 2 shows the DNaaS web user interface. When users
visit the site, they can explore the grasps DNaaS predicts on a
example set of 3D object meshes from the Dex-Net database.
The quality of different grasps is visually distinguished on
a spectrum from green (more robust) to red (less robust)
by using the grasp quality metrics DNaaS computes. The
interface allows users to cycle through an object’s stable
poses and filter grasps based on their robustness or feasibility
for a given pose. Users may also compute and visualize
grasps on objects they upload themselves and, for any object,
the mesh and the candidate grasps are downloadable through
the website.

The client-side user interface and server-side Flask API
run, alongside Dex-Net itself, on a quad-core Intel(R)
Xeon(R) CPU E3-1220 v3 with a clockrate of 3.10GHz
and 16GB of RAM. The website is written using HTML,
JavaScript, and CSS served statically by an Apache web
server [1]. We use three.js [16] to render a 360◦ 3D scene
in the browser where candidate grasps are super-imposed on
the target object mesh. The page is designed using a flexible
box layout [10] for easy accessibility across modern web-
browsers (Chrome, Safari, Firefox) and on mobile devices.
The website uses the latest version of jQuery [12] for DOM
[7] manipulation, event handling, and Promise-based [2]
asynchronous HTTP requests. The graphical user interface
combines elements from jQuery UI [13], Bootstrap [4], and
custom CSS.

V. EXPERIMENTS

We present grasp examples generated by DNaaS for mul-
tiple parallel-jaw grippers and adversarial object meshes. We
report detailed system timing measurements and present fail-
ure modes encountered during the development of DNaaS.

A. Grasp Quality and Gripper Width

DNaaS’s ability to process grasp requests using parametric
parallel-jaw grippers allows us to describe the differences
between sets of grasps generated for different gripper pa-
rameterizations.

We measure the distribution of DNaaS’s grasp quality
metric (the epsilon metric under uncertainty in object pose,
gripper pose, and friction coefficients) for gripper models
with different widths (see Figure 5). Intuitively, as the width
of the gripper increases from 0 to the longest dimension of
the target object’s bounding box, we expect the distribution
of the grasp quality metric to shift from a point mass at
grasp quality 0 out to the right tail. The positive relationship
between parallel-jaw width and grasp quality should hold
up to the point when the width of the parallel-jaw gripper
reaches the longest dimension of the target object’s bounding
box. Beyond that, any additional width of the parallel-
jaws does not enable additional grasps that were previously
infeasible.

Concretely, we can see these three phases in Figure 5
where we generate grasps on a spray bottle object using
parallel-jaw grippers of different widths. On the far left we
begin with a gripper too narrow to grasp the spray bottle
robustly. As the width is increased from 2cm to 4cm, the
parallel-jaw gripper begins to fit around parts of the bottle
that allow for more robust grasps. The maximum width of
the bottle is approximately 5cm, so although the increase in
width from 4cm to 6cm does continue to shift the distribution
of grasp quality out to the tail, it does not have the same
magnitude of effect as the jump from 2cm to 4cm does.

B. Processing Time Analysis

We gather system timing measurements to evaluate the
performance of DNaaS as a software system and benchmark
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Fig. 7: Measuring the elapsed time of the major stages in the grasp
generation pipeline, segmented by mesh. Timing measurements are again
given for three adversarial object meshes: a bar clamp, an endstop holder,
and a spray bottle.

the speed of our gasping service. A single trial measures the
time from the initial incoming request for grasps on a given
mesh until DNaaS has completed all stages of the the grasp
generation pipeline and is ready to return a set of candidate
grasps to the user. When measuring the performance of
DNaaS, we consider two criteria: overall timing and timing
of the individual steps in the grasp generation pipeline. We
conduct 25 trials across 4 objects whose triangular faces
are subdivided to simulate increased mesh complexity. The
resulting meshes ranged from 284 to 72704 triangular faces.
We find that on average DNaaS takes under 75 seconds
to process grasp requests on adversarial meshes using a
parameterized gripper model.

The individual steps of the DNaaS grasp generation
pipeline are dependent on both object geometry and mesh
complexity (measured by the number of triangular faces in a
mesh). Figure 7 depicts the difference in timing across object
geometries by splitting out the distributions of processing
time across three example meshes. Figure 6 shows the
positive relationship between the number of triangular faces
in the target object’s mesh and grasp generation runtime.

Although there is an upfront cost in the initial grasp
computation step, the grasps computed by DNaaS are cached
on the server and can be queried quickly thereafter. This
suggests that DNaaS could be a feasible solution to grasping
scenarios where the target objects are known in advance so
grasps can be pre-computed and cached for faster on-the-fly
access.

C. Failure Modes

We present a series of failure modes encountered during
the development of DNaaS in hopes of galvanizing users to
further test the system’s capabilities.

Perturbation During metric robustness computation, we
perturb candidate grasps with random noise. For parallel-jaw
grippers with small widths, the contact points of the grasp
can be close to the surface of the object. When we attempt
to perturb such grasps, sometimes the contact point is moved
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Fig. 8: Timing measurements for a spherical mesh, which has many equally
likely stable poses. This leads to a peak in the time it takes to collision
check around 100 triangular faces.

inside the object mesh, resulting in an infeasible grasp whose
metric score should be zero. However, as collision checking
each perturbation would take a prohibitive amount of time,
these grasps receive non-zero scores. This means that even
though this type of grasp is not robust, they can potentially
receive relatively high metric scores.

Stable Poses During our performance testing, we noticed
an anomalous result on a spherical adversarial object. For
low face-count spherical meshes, one stable pose exists for
every face. This results in a large number of symmetric
stable poses. Due to collision checking being run for each
stable pose, this causes low triangle count spheres to have
significantly longer runtimes when compared to other meshes
with a similar number of triangular faces. As the number of
faces increases and the mesh more closely approximates a
true sphere, the faces become smaller and the probabilities
of the associated stable poses decrease. Once this probability
becomes small enough, the poses associated with each face
are no longer considered stable, and the object has zero
stable poses. This means that once the spherical mesh has
enough faces, its collision checking runtime drops instead of
increasing. Figure 8 depicts this effect.

Uniform Density Center of Mass When computing the
center of mass (COM) for an object mesh, we assume
uniform density. This can lead to counter-intuitive grasps,
for example the ones in Figure 5, where the most robust
grasps are around the uniform-density COM. Humans may
see the spray bottle and infer that there is likely liquid inside
which leads to a lower COM and an entirely different set
of robust grasps. Thus, DNaaS may counter-intuitively rank
certain grasps as robust when given objects of non-uniform
density.

VI. CONCLUSION AND FUTURE WORK

We present DNaaS, a RAaaS architecture, which combines
a public HTTP API and graphical web user interface to
provide programmatic and GUI access to Dex-Net. We
examine grasps generated by DNaaS across three parallel-jaw
gripper hardware configurations and four adversarial objects.
The distribution of grasp quality presented for the experi-
mental hardware configurations allow us to make qualitative



observations about the space of grasp-enabling parallel-jaw
grippers.

System timing measurements suggest that DNaaS could
be used in industrial settings such as multi-item, single-line
production lines where the up-front cost of grasp compu-
tation for objects can be pushed to the change-over times
between items and subsequent computations can make use
of DNaaS’s grasp caching.

By making the Dex-Net algorithm widely accessible,
we invite research and industrial users to experiment with
the system, evaluate performance, and identify new failure
modes. DNaaS hopes to motivate future data-driven grasping
algorithms by including objects submitted to DNaaS in the
growing collection of 10,000 unique 3D objects models and
2.5 million associated parallel-jaw grasps in the Dex-Net
database. In future works we will extend DNaaS to DexNet
2.0 [42], which uses Grasp Quality Convolutional Neural
Networks (GQ-CNNs) to predict successful grasps.
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