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Abstract— Learning from human demonstrations can facili-
tate automation but is risky because the execution of the learned
policy might lead to collisions and other failures. Adding explicit
constraints to avoid unsafe states is generally not possible when
the state representations are complex. Furthermore, enforcing
these constraints during execution of the learned policy can
be challenging in environments where dynamics are difficult to
model such as push mechanics in grasping. In this paper, we
propose a two-phase method for generating robust policies from
demonstrations in robotic manipulation tasks. In the first phase,
we use support estimation of supervisor demonstrations and
treat the support as implicit constraints on states in addition to
learning a policy directly from the observed controls. We also
propose a time-variant modification to the support estimation
problem allowing for accurate estimation on sequential tasks.
In the second phase, we use a switching policy to steer the
robot from leaving safe regions of the state space during run
time using the decision function of the estimated support. The
policy switches between the robot’s learned policy and a novel
recovery policy depending on the distance to the boundary of
the support. We present additional conditions, which linearly
bound the difference in state at each time step by the magnitude
of control, allowing us to prove that the robot will not violate
the constraints using the recovery policy. A simulated pushing
task suggests that support estimation and recovery control can
reduce collisions by 83%. On a physical line tracking task using
a da Vinci Surgical Robot, recovery control reduced collisions
by 84%.

I. INTRODUCTION

Robotic manipulation tasks are relevant in many industrial
applications such as warehouse order fulfillment and flexible
manufacturing where a robot must grasp or manipulate an
object in environments with little structure. A principal
method of approaching these problems is to construct an
analytic model; however, doing so can often be difficult due to
complex state spaces such as images, complicated mechanics
such as pushing, and uncertainties in parameters such as
friction. An alternative method is to leverage supervisor
demonstrations to guide the robot’s policy. With learning
from demonstration, a robot observes a supervisor policy
and learns a mapping from state to control via regression.
This approach has shown promise for various automation
and robotics tasks such as grasping in clutter [15] and robot-
assisted surgery [32].

Enforcing constraints on states, such as ensuring that a
robot does not tension bodily tissue above a certain level
of force during a surgical task, remains an open problem
in learning from demonstration. Even if the demonstrated
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Fig. 1: The da Vinci Surgical Robot tracking a line drawn on gauze as
the Stewart platform applies physical disturbances. The Baseline policy
is compared with the policy with Derivative-Free Recovery (DFR) on the
da Vinci line tracking task. Each horizontal bar depicts the fraction of
“Completed,” “Halted,” and “Collided” trajectories.

trajectories satisfy the constraints, there is often no guarantee
that the resulting learned policy will as well. For example,
the robot may take a series of slightly sub-optimal actions
due to approximation error of the learned policy and find
itself in states vastly different from those visited by the
supervisor. To ensure robust learning policies for industrial
tasks, which often demand reliability and efficiency, it is
necessary to ensure the robot does not enter constraint-
violating regions during execution. In this paper, we consider
this problem for robotic manipulation in quasi-static domains
where the system comes to rest at each time step. This problem
setting is inherent in many manipulation tasks in industrial
and surgical settings with position control and has become
increasingly important in automation as teleoperation and
other demonstration systems advance [7], [25], [20].

While techniques exist to enforce constraints on learned
policies, they are often limited to operate in domains with
known models [12], [22]. This can be challenging when
dealing with robotic manipulation where interactions between
objects can be fundamentally hard to model [30]. It can also
be challenging to explicitly specify constraints. In a surgical
task, objects such as tissue are often soft and deformable and
observations often come from images from an endoscope.
Additionally, specifying constraints such as the level of
tension allowed on certain piece of tissue may require hard-
coding rules that rely on complex models of these objects and
noisy observations. However, the supervisor’s demonstrated
data provide not only information about the desired policy,
but also information about the constraints. Intuitively, the
robot should only visit states that the supervisor knows are
safe to visit.



We propose leveraging the demonstration data to estimate
the support of the supervisor’s state distribution and treating
the estimated support as a set of implicit constraints. The
support is defined as the subset of the state space that the
supervisor has non-zero probability of visiting. This subset
is informative because it describes regions that must be safe
since the supervisor visits those states. The complement of the
support describes the region that may not be safe or include
constraint-violating states. In the aforementioned surgical
task, this would correspond to the robot recognizing that
observations of heavily tensioned tissue are uncommon or
nonexistant in the supervisor demonstrations and so it should
try to avoid these states.

Various methods exist for density estimation which may
be used to identify regions of support. In prior work, it was
shown that the One Class SVM can be used effectively to
estimate boundaries around the supervisor’s demonstrations
[18].

We use this support estimate to derive a switching policy
that employs the robot’s learned policy in safe states and
switches to a recovery policy if the robot drifts close to
the boundary of the estimated support. The recovery policy
is posed as a derivative-free optimization (DFO) of the
decision function of the support estimator, which provides a
signal towards estimated safe areas. Because traditional DFO
methods can be difficult to apply in dynamical systems, we
propose a method to find likely directions toward safety by
examining the outcome of applying small perturbations in
the control signal, which we assumed lead to small changes
in state. The recovery policy is designed to steer the robot
towards safer regions in the best case or come to a stop if it
cannot. We also present a condition, which bounds the change
in state with respect to the magnitude of control, under which
the robot will never enter the constraint-violating regions
using the recovery policy.

In simulated experiments on the Pusher task [13], [29],
shown in Fig. 1, we compared the proposed recovery
control to a naive baseline and found that recovery reduced
performance of the learned policy by 35% but also reduced
the rate of collisions by 83%.

We also deployed the recovery strategy on a da Vinci
Surgical Robot in a line tracking task under disturbances
from a Stewart platform shown in Fig. 1(b) and found that
performance increased from 24% to 52% and collisions
decreased from 76% to 12%.

This paper makes four contributions:
1) An implicit constraint inference method using support

estimation on demonstrated data.
2) A novel derivative-free method for recovery control

during execution of a learned policy.
3) Experimental results evaluating the proposed methods

in simulation and on a physical robot.
4) Conditions under which the robot will not violate the

constraints while using the recovery method.

II. RELATED WORK

Learning from Demonstration in Automation Tasks:
Learning from demonstration, sometimes also referred to as
imitation learning, describes a broad collection of methods for
learning to replicate sequential decision making. Specifically

in automation and robotics, learning from demonstration often
makes use of kinesthetic or teleoperated demonstrations of
control given by a human supervisor that is able to reason
about the task from a high level. The learning system takes
as input these demonstrations and outputs a policy mapping
states to actions.

Prior work in automation has explored learning from
demonstration for highly unstructured tasks such as grasping
in clutter, scooping, and pipetting [15], [17], [19]. Past work
has also addressed the specific problem of learning from
demonstration under constraints [4], [5], [8]. A popular
method for dealing with unknown constraints is to identify
essential components of multiple successful trajectories based
on variances in the corresponding states and then to produce
a learned policy that also exhibits those components [6].
Despite early empirical success, constraint satisfaction is not
guaranteed [22] and the machine learning model used to
learn the policy must often be compatible with the variance
estimator. We consider a method that is agnostic to the
machine learning model.

C-LEARN [22] successfully incorporated motion planning
with geometric constraints into keyframe-based learning from
demonstration for manipulation tasks, guaranteeing constraint
satisfaction. However, constraints must be inferred from
predetermined criteria, and an accurate model is required
in order to satisfy those constraints using a motion planner.

Recent work has also dealt with learning constraint sat-
isfaction policies from demonstrations when the constraints
are unknown but linear with respect to the controls [3], [14].

Lastly, significant literature exists on the topic of error
detection and recovery [9] with models. In this paper we
address this problem in the model-free domain.

Safe Reinforcement Learning (RL): Interest in control
theoretic approaches for RL under constraints has increased
as a result of recent advances in RL and policy search, which
have traditionally been studied without constraints due to
their exploratory nature [1]. These methods often assume that
the dynamics are known or well-approximated [12].

Gillula and Tomlin [12] applied reachability analysis to
handle bounded disturbances by computing a sub-region
within a predefined safe region where the robot will remain
safe under any disturbance for a finite horizon. This region is
referred to as the “discriminating kernel” by Akametalu et al.
[2] and Fisac et al. [10] who extended this theory to obtain
safe policies that are less conservative under uncertainty. In
their work, the relationship between disturbances and robot
controls is modeled as a differential game optimizing a signed
distance function to the boundary of the safe region. The
control that solves the game is applied only on the boundary
of the discriminating kernel while the robot’s control is freely
applied in the interior, resulting in a switching policy.

Although our objectives are similar to the safe RL literature,
there are several key differences in our assumptions. The first
is that we consider automation and industrial manipulation
tasks where state spaces may be high dimensional and the
system comes to rest at each time step. The second is that
we do not require the model or constraints to be specified
explicitly to the robot. Finally, safe reinforcement learning
aims to facilitate exploration for policy improvement while our
approach addresses safe execution of policies after learning.
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