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Abstract. Caging grasps restrict object motion without requiring com-
plete immobilization, providing a practical alternative to force- and form-
closure grasps. In [24], we introduced “energy-bounded caging”, an ex-
tension that relaxes the requirement of complete caging in the presence of
gravity and presented EBCA-2D, an algorithm for analyzing a proposed
grasp using ↵-shapes to lower-bound the escape energy. In this paper,
we address the problem of synthesizing energy-bounded cages by identi-
fying optimal gripper and force-direction configurations that require the
largest increases in potential energy for the object to escape. We present
Energy-Bounded-Cage-Synthesis-2D (EBCS-2D), a sampling-based al-
gorithm that uses persistent homology, a recently-developed multiscale
approach for topological analysis, to e�ciently compute candidate rigid
configurations of obstacles that form energy-bounded cages of an object
from an ↵-shape approximation to the configuration space. EBCS-2D
runs in a worst-case O(s3 + sn2) time where s is the number of samples,
and n is the total number of object and obstacle vertices, where typically
n << s, and in practice we observe runtimes closer toO(s) for fixed n. We
also show that constant velocity pushing in the horizontal plane generates
an energy field analogous to gravity in the vertical plane that can be an-
alyzed with our approach. We implement EBCS-2D using the Persistent
Homology Algorithms Toolbox (PHAT) and study performance on a set
of seven planar objects and four gripper types. Experiments suggest that
EBCS-2D takes 2-3 minutes on a 6 core processor with 200,000 pose sam-
ples. We also find that an RRT* motion planner is unable to find escape
paths with lower energy. Physical experiments suggest that EBCS-2D
push grasps are robust to perturbations. Additional proofs, data, and
code are available at http://berkeleyautomation.github.io/caging/.

1 Introduction

In manufacturing and logistics, there are many applications where parts must
be reliably grasped and moved without precise constaints on object pose (as
required for example in assembly). Caging configurations, in which an object’s
mobility is bounded by a set of obstacles such as a gripper and / or an energy



field such as gravity, are a promising alternative to form- and force-closure as
they provide robustness to perturbations in object pose.

The standard model of caging (complete caging) considers whether a set of
obstacles can be placed in a configuration such that the object cannot escape
because its mobility is restricted to a bounded set in the free configuration space
F [35, 42] as illustrated in the left part of Fig. 1. When an energy-potential
U : C ⇥ C ! R specifying an energy field such as gravity is defined on the
configuration space C, the notion of caging can be generalized to energy-bounded
caging [24], where the object is constrained to a bounded path-component of the
subset of the free configuration space F with energy less than some threshold u.
This concept naturally occurs, for example when a constant force-field is acting
on the object as illustrated in the middle and left of the figure, where gravity
acts in the downward direction and the object can only escape the cage if it
is lifted to a configuration with higher energy than the initial configuration q0.
Energy bounded cages also occur in the context of planar pushing.

Complete Cage Energy-Bounded Cages

Fig. 1: Complete and energy-bounded cages. Left: a complete cage. The blue object
is constrained to a bounded component of the free configuration space by the rigid
arrangement of the two gripper fingers (black). Middle and right figure: Two energy-
bounded cages with respect to a downward vertical gravity force direction f . The blue
object can only escape from its initial configuration when lifted against the gravity
field. Note that the rightmost configuration requires more energy to escape.

This paper presents Energy-Bounded-Cage-Synthesis-2D (EBCS-2D), a sampling-
based algorithm for synthesis of energy-bounded cages given a polygonal object
and a rigid configuration of polygonal obstacles under a convex energy field
defined over object translations. EBCS-2D synthesizes an ordered list of energy-
bounded cages with minimum escape energy above a threshold using persistent
homology, a tool from computational topology that e�ciently computes repre-
sentatives for bounded components of the free configuration over varying escape
energy threshold. EBCS-2D constructs a weighted ↵-shape from samples of ob-
ject poses and a conservative estimate of their penetration depth [24], finds a set
of candidate energy bounded cages using persistence, and prunes the candidates
based on collisions and energy level. The escape energies returned by EBCS-2D
provably lower bound the true minimum escape energy for each returned cage.
If the returned escape energy is infinite then the object is completely caged.
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We implement EBCS-2D using the Persistent Homology Algorithms Toolbox
(PHAT) [3] to e�ciently identify the most robust energy bounded cages. We
evaluate EBCS-2D on a set of seven polygonal parts with parallel-jaw grippers
using a push energy field and use it to synthesize optimal push directions. In
each case, RRT* optimal path planning was unable to find an escape path with
lower energy than the estimated lower bound within 120 seconds. We also apply
EBCS-2D to the problem of planar pushing on a Zymark Zymate robot and
find that configurations synthesized by EBCS-2D successfully push objects on a
planar worksurface.

2 Related Work

Complete caging vs energy-bounded caging: The standard concept of caging was
introduced by Kuperberg [19] in 1990 and extended by Rimon and Blake [34],
which we refer to as “complete” caging. Caging forms an alternative approach
to manipulation, distinct from the literature on complete immobilization of an
object by means of a form or force closure grasp [29]. Unlike approaches that
depend on the local contact geometry, a complete cage of an object causes the
object to be constrained to a bounded subset of its free configuration space and
requires reasoning about global properties of the configuration space.

Early research on caging studied the caging condition for n points in the plane
caging a planar object [19, 35]. Rimon and Blake [34] described the space of cages
for a two-finger gripper with one degree of freedom. Sudsang and Ponce [39, 40]
proposed caging-based methods for manipulating polygonal objects by means of
disc-shaped robots in the plane. Recently, Allen, Burdick and Rimon [2] proposed
an algorithm to find all two-finger cage formations of planar polygonal objects
by two point-fingers. Vahedi and van der Stappen [42] studied the computation
of two and three-finger cages on polygons and used a classification into squeezing
and stretching cages. Rodriguez and Mason [37] established and studied caging
as a pre-stage to force-closure grasping. Diankov et al. [9] demonstrated that
caging grasps can o↵er beneficial properties for manipulating articulated objects
such as door handles.

Recent research has focused on computing cages for specific object families
or approximate algorithms due to the di�culty of computing the configura-
tion space for complex gripper and object geometries. These lines of research
have primarily focused on synthesizing caging grasps from features in the ob-
ject surface [33, 20] (e.g. handles) using features of the object surface to rank
potential caging hand configurations [25]. Other research has focused on cell-
based approximations of the configuration space based on sampling [43]. Mahler
et al. [24] defined energy-bounded caging and presented EBCA-2D, an analysis
algorithm that can provably lower bound the minimum escape energy to verify
energy-bounded cages for a fixed object and obstacle configuration. This paper
proposes a synthesis algorithm, Energy-Bounded-Cage-Synthesis-2D (EBCS-2D)
and considers energy-bounded cages in the context of planar pushing.

Pushing for manipulation: Constant-velocity quasi-static planar pushing in the
horizontal plane can be modelled by an energy potential. Mason introduced
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the study of planar pushing to robotics [27] and studied mechanics and plan-
ning problems for pushing operations [26]. Peshkin and Sanderson [30] gave a
method to find the locus of the centers of rotation of a planar object for all possi-
ble pressure distributions of the object on a planar worksurface. Planar pushing
can reduce grasp uncertainty using mechanical compliance and can be used to
orient parts [1]. Goldberg [17] gave the first complete algorithm for synthesizing
a sequence of pushes to orient polygonal parts without sensory feedback. Lynch
and Mason investigated controllability of planar pushing, to determine whether
an object can be moved between two configurations purely by pushing actions
using point and line contacts [23]. Dogar et al. [10] used a physics-based analy-
sis of two-dimensional contact wrenches to compute push-grasps in clutter and
proposed a combinatorial search method to plan push-grasps in [11]. Koval et
al. [18] decomposed grasping policies into a pre- and post-contact strategy to
reduce uncertainty during pushing actions preceding a grasp using a POMDP
planner.

Representations and algorithmic approach: We utilize sampling and a discrete
representation of the collision space using alpha shapes to reason about cages,
building on previous work on motion planning and computational topology.
Semi-algebraic functions can be used to prove path non-existence [22], but in
practice can be prohibitively expensive to compute. Zhang et al. [45] utilized
a rectangular cell-decomposition of the configuration space to prove path non-
existence for motion planning by assigning cells to the collision space based
on penetration depth. McCarthy et al. [28] use (weighted) ↵-shapes, a simpli-
cial complex construction defined by Edelsbrunner [13], to represent the colli-
sion space from pose samples, and present an algorithm that can prove path
non-existence. We build on our previous work [24], which showed that an ↵-
shape-based approximation to the configuration space could be used to analyze
a given object and obstacle configuration to check it it is a complete or energy-
bounded cage. The present paper also builds on recent advances in topological
data analysis [7] and the concept of persistent homology [12] to identify “voids”
corresponding to cages. Other applications of persistent homology in robotics
include methods for clustering trajectories [31] and for motion planning [32, 4].

3 Definitions and Problem Statement

We consider the problem of maximizing the minimum energy required for a rigid
polygonal object to escape from a rigid configuration of obstacles on a planar
worksurface under a nominal wrench such as pushing or gravity.

Complete Caging and Energy-Bounded Caging

We consider a planar configuration space C ✓ SE(2) of a compact polygonal
planar object O ⇢ R2 placed in a planar workspace with obstacles defined by
fixed positions of a set of k polygons G = P1 [ . . .[Pk ⇢ R2, such as the jaws of
a robotic gripper. We denote the object polygon in pose q = (x, y, ✓) 2 SE(2) =
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R2 ⇥ S1 relative to a reference pose q0 by O(q). We define the collision space
of O relative to G by Z = {q 2 SE(2) : int(O(q)) \ G 6= ;} and denote by
F = SE(2)� Z the free configuration space.

We measure the energy required to move the object between poses by an
energy function U : SE(2) ⇥ SE(2) ! R satisfying U(q,q) = 0, 8q 2 SE(2).
This is consistent with [24], in which the reference pose was implicit in the energy
function. For a fixed threshold u 2 R and reference q0 2 SE(2) define the u-
energy forbidden space by Zu(q0) = Z[{q 2 C : U(q,q0) > u} and the u-energy
admissible space Fu(q0) = SE(2) � Zu(q0). In this work we use the following
definitions of caging as in [24] (see Fig. 2):

Definition 1 (Complete and Energy-bounded caging). A configuration
q0 2 F is completely caged if q0 lies in a compact path-component of F . We
call q0 a u-energy-bounded cage of O with respect to U if q0 lies in a compact
path-component of Fu(q0). Furthermore, the minimum escape energy, u⇤, for
an object O and obstacle configuration G, is the infimum over values of u such
that q is not a u-energy-bounded cage of O, if a finite such u⇤ exists. Otherwise,
we say u⇤ = 1.

u⇤

u⇤

Complete Cage Energy-bounded Cages

Workspace

Configuration
Space

q0 q0q0

UU

Fig. 2: The top row depicts gripper jaws G (in black) and an object O (in blue) in
three configurations. The bottom row illustrates conceptually the corresponding point
q0 2 SE(2) in configuration space. While a complete cage corresponds to an initial
pose q0 completely enclosed by forbidden space Z, the energy-bounded cage on the
right instead correpsonds to a case where q0 is enclosed by Zu = Z [ U(q0, u) where
U(q0, u) = {q 2 C : U(q,q0) > u} for U that is strictly increasing with increasing
vertical coordinate. The smallest value of u such that q0 is not enclosed is called the
minimum escape energy, u⇤.

While energy-bounded cages can be defined for any energy function U , find-
ing bounded components of C for all possible pairs of poses in the energy function
may be computationally expensive. Thus, for synthesis, we require that the en-
ergy function can be derived from a univariate potential function P : SE(2) ! R:
U(qi,qj) = P (qi) � P (qj). In this work, we further assume that P depends
only on the translation component R2 of SE(2) and that P is convex. Given
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such an energy field U , our objective is to synthesize all energy-bounded cages
qi 2 SE(2) for an object such that u⇤

i > ut for a given threshold energy ut.

Energy Functions

We now derive energy functions for gravity in the vertical plane and constant
force pushing in the horizontal plane. We develop such functions based on the
energy (mechanical work) that wrenches must exert to transport the object
between two poses under a nominal wrench resulting from pushing or gravity.

Gravity in the Vertical Plane. Let m denote the mass of the object.
Then the energy required to move the object from a reference configuration
qi to configuration qj is U(qj ,qi) = mg(yj � yi), where g = 9.81m/s2 is the
acceleration due to gravity in the y-direction [16, 24]. This corresponds to the
potential P (q) = mgy.

Constant-Velocity Linear Pushing in the Horizonal Plane. Consider
an object being pushed along a fixed direction v̂ by a gripper with a constant
velocity on a horizonal worksurface under quasi-static conditions and Coloumb
friction with uniform coe�cient of friction µ [27, 26, 30]. Then energy function
U(qj ,qi) = Fp(O,G, µ)v̂ · (xj � xi, yj � yi) � (O,G, µ) is a lower bound on
the energy required to move the object from pose qi to qj relative to G, where
Fp(O,G, µ) 2 R is a bound on the possible resultant force due to contact between
the object and gripper and (O,G, µ) 2 R is a bound on the possible contact
torques and frictional wrenches. A proof is given in the supplemental file at http:
//berkeleyautomation.github.io/caging/. Therefore we propose to use the
linear potential P (q) = Fpv̂ ·(x, y) to lower bound the minimum energy required
for the object to escape under the nominal push wrench.

Configuration Spaces and ↵-Complexes

As in [24], we utilize a family of simplicial complexes called ↵-complexes [13]
to approximate the collision space Z and u-energy forbidden space. For this
purpose, we first uniformly sample a collection of s poses Q = {q1, . . . ,qs},
qi = (xi, yi, ✓i) in Z and determine the radius r(qi) > 0 for each qi, such that
the metric ball B(qi) = {q 2 SE(2) : d(q,qi) 6 r(qi)} is completely contained
in Z. These radii are computed using a conservative penetration depth solver
and the standard metric d on SE(2); details can be found in [24]. The union of
these balls B(Q) = [s

i=1B(qi) forms a subset of the collision space that provides
a conservative approximation of Z. See the left part of Fig. 3 for a conceptual
illustration.

Since reasoning about subsets of R3 instead of SE(2) is advantageous com-
putationally, we follow the approach of [24] to lift the configuration space to
R3. For this purpose, let ⇢ denote the maximum moment arm of O and let
⇡ : R3 ! SE(2) be defined by ⇡(x, y, z) = (x, y, (z/⇢) mod 2⇡). We invert this
mapping by ⇡�1

n (x, y, ✓) = (x, y, ⇢(✓+2⇡n)) for n 2 Z (see [24]). The samples Q
are then mapped to X = {q̂i,n = ⇡�1

n (qi) : qi 2 Q,n 2 {�R, . . . , 0, . . . , R}} for
a chosen integer R > 1. We utilize a simplicial complex representation of B(X)
known as an ↵-shape [13, 14] to approximate B(X) since its shape is di�cult

6



Fig. 3: (Left) An approximation of the forbidden space Z ⇢ SE(2) from Fig. 2 by
unions of balls around sampled pointsQ results in (right) an ↵-shape simplicial complex
(gray) that is a subset of the weighted Delaunay triangulation of the sampled points
when lifted from SE(2) to R3. The free space is colored in red.

to analyze computationally. A geometric k-simplex � = [v0, . . . ,vk] in Rd is a
convex hull of k + 1 ordered a�nely independent elements v0, . . . ,vk 2 Rd and
a convex hull of an ordered subset of these elements is called a face ⌧ of �, in-
dicated by ⌧ 6 �. A finite simplicial complex K is a non-empty set of simplices
such that if � 2 K and ⌧ 6 �, then ⌧ 2 K and if �,�0 2 K then � \ �0 is
empty or an element of K. In dimension 3, a simplicial complex K is a union
of points, line-segments, triangles and tetrahedra whose intersections are either
empty or another simplex in K, thus generalizing the idea of both a graph and
a triangulation in R3. The ↵-shape simplicial complex A(X) corresponding to
B(X) lies strictly inside B(X) and is homotopy-equivalent to B(X), meaning
that topological properties of B(X) can be computed directly from A(X) [13].
Additionally, all simplices in A(X) are contained in the weighted Delaunay tri-
angulation of X which triangulates the convex hull of X and which has to be
computed during the construction of A(X). Fig. 3 provides a conceptual illustra-
tion where simplices in A(X) are shown in gray and simplices in D(X)�A(X)
in red.

Persistent Second Homology

Persistent Homology [12] studies the topological features (e.g. holes, voids) that
are created and destroyed over a one parameter family of simplicial complexes
called filtrations. Fig. Fig. 4 provide a conceptual visualization of 2D slices of
“voids” found by persistence for a 3D filtration and a qualitative persistence
diagram. A simplex-wise filtration of a simplicial complex K = [n

i=1�i is a
collection of simplicial complexes Ki such that Ki = [i

i=1�i, so that Ki+1 is the
result of adding a single simplex �i+1 to Ki. We call i the filtration index. Such
a filtration can arise naturally when a function f : K ! R is defined on the set
simplices of K and simplices are ordered in decreasing values of f : f(�i) > f(�j)
for all i 6 j. Thus persistence finds the topological features that emerge as the
simplices are added in order of decreasing f . Here, f(�i) is called the filtration
value corresponding to filtration index i. The j-th persistence diagram measures
the dimension of the j-th homology group Hj(Ki) that corresponds to a vector
space (with finite field coe�cients). The dimension of each of these spaces is
a topological invariant that does not vary under continuous deformations of
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the underlying simplicial complex H(Ki). In this work, we are interested in sub-
complexesKi of the weighted Delaunay triangulationD(X) ⇢ R3 and the second
homology group H2(Ki). Intuitively, the dimension of the second homology group
corresponds to “voids” in Ki which are completely enclosed by the complex
Ki. These voids in Ki can appear as we add new simplices with increasing
i, or they can disappear as voids are filled in. The second persistence diagram
enables us to visualize these topological changes. Each point (x, y) in the diagram
corresponds to a pair of filtration indices (i, j) recording the fact that a void has
“appeared” at index i and disappeared at index j. For a geometric simplicial
complex, these index pairs (i, j) correspond to simplices (�i,�j) where �j is a
tetrahedron (a 3-simplex) which destroys or “fills in” a void, while �i corresponds
to a triangle (2-simplex) that corresponds to the last complex needed to first
create a fully enclosed void. The set of (i, j) pairs can be displayed in the (index)-
persistence diagram, or alternatively, when the filtration arises from a function
f , we may display the set of points (f(�i), f(�j)). By considering the vertical
distance f(�i) � f(�j) from the diagonal, we can read o↵ the parameter range
of f during which a void exists in the evolution of the filtration.

4 The EBCS-2D Algorithm

EBCS-2D (Algorithm 1) takes as input a polygonal object O, obstacle config-
uration G, potential function P , and energy threshold ut, and outputs a set of
energy-bounded cages that require at least ut energy to escape.

Using uniform sampling, the algorithm first generates s object poses in
collision Q = {q1, ...,qs} and their corresponding penetration depths R =
{r1, ..., rs}. We lift the poses to R3 and construct an ↵-shape approximation
to the configuration space as described in Section 3. Next, we construct a filtra-
tion by sorting all simplices in the free space in order of decreasing energy level
and use persistent homology to identify path components fully surrounded by
u-energy forbidden space for all u thresholds. Finally, we examine the simplices
within each bounded component in order of increasing energy to check for a
collision-free object pose, and return the poses extracted from each component.
Fig. 4 illustrates the use of persistence in our algorithm.

Filtrations and Persistence from Energy Functions: In order to synthesize
energy-bounded cages with persistence, we first order the simplices of the ↵-
shape approximation by decreasing energy level. We assumed that the potential
P : SE(2) ! R3 depends only on the translational component R2 of SE(2) and
is convex on that space. In this case, for any k-simplex � = Conv(v0, . . . ,vk) 2
D(X)�A(X) we have:

min
x2�

P (⇡(x)) = min{P (⇡(v0)), . . . , P (⇡(vk))}.
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where ⇡ : R3 ! SE(2) denotes the projection to SE(2). Using this fact, we
construct a function D(X) ! R:

f(�) =

⇢
min

x2� P (⇡(x)) � 2 D(X)�A(X)
1 � 2 A(X)

This gives rise to a filtration K = K(X,U) : ; = K0 ⇢ K1 ⇢ . . . ⇢ Kn ⇢ D(X)
of simplices in D(X) with respect to P as described in Section 3.

EBCS-2D uses persistent homology to find pairs of simplices �i,�j corre-
sponding to the birth and death, respectively, of a bounded path component
C(X) ⇢ D(X) in the free configuration space. Using the centroid of simplices as
candidate energy bounded cages, we then search for the lowest energy collision-
free simplex � 2 C(X). The algorithm runs in O(s3 + sn2) time where s is the
number of samples and n is the total number of object and obstacle vertices.
This is because ↵-shape construction is O(s2 + sn2) [24, 28] and the boundary
matrix reduction used in persistent homology is O(s3) in the worst case [8].

1 Input: Polygonal robot gripper G, Polygonal object O, Potential function P ,
Number of pose samples s, Number of rotations R for SE(2) lifting, Energy
threshold ut

Result: Q̂, set of energy-bounded cages with estimated escape energies
// Sample poses in collision

2 Q = ?, R = ?, ` = diam(G) + diam(O);
3 W = [�`, `]⇥ [�`, `]⇥ [0, 2⇡);
4 for i 2 {1, ..., s} do

5 qi = RejectionSample(W);
6 ri = LowerBoundPenDepth(qi,O,G);
7 if ri > 0 then

8 Q = Q [ {qi}, R = R [ {ri};
9 end

10 X =
�
⇡�1
n (qi) | qi 2 Q, n 2 {�Nr, ..., Nr}

 
;

// Create alpha shape

11 D(X,R) = WeightedDelaunayTriangulation(X,R);
12 A(X,R) = WeightedAlphaShape(D(X,R),↵ = 0);

// Run Persistent Homology

13 K = Filtration(D(X,R), A(X,R));
14 � = ComputeSecondHomologyPersistencePairs(K);

// Find Energy-Bounded Cages

15 for (i, j) 2 � do

16 C(Ki,�j) = PathComponent(�j , Ki);
17 for � 2Sorted(C(Ki,�j)), P ) do

18 q =Centroid(�);
19 u = P (�i)� P (q);
20 if CollisionFree(q) and u > ut then

21 Q̂ = Q̂ [ {(q, u)};
22 end

23 end

24 end

25 return Q̂;
Algorithm 1: Energy-Bounded-Cage-Synthesis-2D

Correctness: EBCS-2D returns energy-bounded cages with a provable lower
bound on the minimum escape energy:

Theorem 1. Let Q̂ = {(q̂1, û1), ...(q̂n, ûn)} denote the energy bounded cages
returned by EBCS-2D. For each (q̂i, ûi) 2 Q̂, q̂ is a û-energy bounded cage of O
with respect to U .
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Fig. 4: Persistence diagram for ranking energy-bounded cages. Left: polygonal part and
gripper polygons serve as input. We sample object poses X in collision and generate
an alpha-shape representation (shown in gray in the three middle figures). Given an
energy potential, we insert simplices in D(X) � A(X) in decreasing order of energy
potential, creating a filtration of simplicial complexes. Voids (yellow and orange) are
born with the addition of edges �i and �j (red) at threshold potential levels pi and pj
respectively, and die with the additions of the last triangle in each void at potential pk
(red). The associated second persistence diagram (right figure) reveals voids with large
persistence corresponding to energy-bounded cages with energy equal to the di↵erence
in potentials: u1 = pk�pi and u2 = pk�pj . In particular, configuration q1 is identified
as more persistent (and therefore with higher escape energy) than configuration q2.

See the supplemental file at http://berkeleyautomation.github.io/caging/
for a proof.

Extension to Pushing EBCS-2D can be applied to push grasping in the
horizontal plane. We use it to find push directions that yield robust energy-
bounded cages by running EBCS-2D for a set of sampled push directions using
the constant velocity linear push energy of Section 3. The extension runs EBCS-
2D using P push angles uniformly sampled from [⇡2 � ', ⇡

2 + '] and returns a
ranked list of push directions and energy-bounded cages that can be reached by
a linear, collision-free path along the push direction. While the potential changes
for each such push direction, the simplices only need to be re-sorted and therefore
the sampling and ↵-complex construction only need to be performed once.

5 Experiments

We implemented EBCS-2D in C++ and evaluated its performance on a set
of polygonal objects under both gravitational and pushing energy fields. We
used CGAL [41] to compute ↵-shapes, the GJK-EPA algorithm of libccd [15] to
compute penetration depth, and the twist reduction algorithm implemented in
PHAT [3] to compute the second persistence diagram. Our dataset consisted of
seven polygonal parts created by triangulating the projections of models from
YCB [6] and 3DNet [44] onto a plane. All experiments ran on an Intel Core
i7-4770K 350GHz processor with 6 cores.

Energy Bounded Cages Under Linear Push Energy We consider a linear
push energy field with a push force bound of Fp = 1.0 for the set of parts with
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four grippers: rectangular parallel jaws, an overhead projection of a Zymark
Zymate gripper with parallel jaws [21], an overhead projection of a Barrett hand
with a pregrasping shape inspired by [11], and a four finger disc gripper inspired
by [38]. We ran the pushing extension to EBCS-2D for the rectangular parallel
jaws, Zymark gripper, and Barrett hand with s = 200, 000 samples, an energy
lower bound of ut = 0.5, an angle limit of ' = ⇡

4 , and P = 5 push directions to
sweep from �⇡

4 to ⇡
4 in intervals of ⇡

8 . For the four finger gripper, we ran EBCS-
2D with a fixed vertical push direction to illustrate the ability of our algorithm
to prove complete cages EBCS-2D took approximately 170 seconds to run on
average for a single push direction. Fig. 5 illustrates configurations synthesized
by EBCS-2D with the estimated normalized minimum escape energy ûn = û/FP ,
or distance against the linear push energy that the object must travel to escape.
To evaluate the lower bound of Theorem 1, we also used RRT* to attempt to
plan an object escape path over the set of collision-free poses with energy less
than û, which was not able to find an escape path with energy less than û in
120 seconds of planning [24].

Sample and Time Complexity We also studied the sensitivity of the esti-
mated escape energy for the highest energy configurations synthesized by EBCS-
2D for a fixed push direction and the algorithm runtime to the number of pose
samples s. The left panel of Fig. 6 shows the ratio of û for s 2 {12.5, 25, 50,
100, 200, 400} ⇥103 pose samples to û at s = 400, 000 pose samples for each of
the displayed objects and parallel jaw griipers configurations. We averaged the
ratios over 5 independent trials per value of s. Object A is only within 80% of
the value at s = 400, 000 after s = 200, 000 samples, possibly because of the
long thin portion of the configuration space as observed in [24]. Objects B and
C both converge to within 95% after about s = 200, 000 samples. This is compa-
rable to the sample complexity for analysis of a single, fixed configuration with
EBCA-2D. The right panel of Fig. 6 shows the relationship between the runtime
of EBCS-2D in seconds versus the number of pose samples s over 5 independent
runs of the algorithm for the same objects. We broke down the run time by the
section of the algorithm: sampling poses, constructing the ↵-shape to aproximate
C, sorting the simplices for the filtration, and computing and pruning candidate
energy bounded cages with persistence. The runtime is approximately linear in
the number of pose samples, and the largest portion of runtime is the time to
sample poses and compute penetration depth. This suggests that the runtime is
considerably below the worst case s3 scaling in practice. The persistence diagram
computation in particular has been observed to commonly exhibit sub-quadratic
runtime [8] despite its worst-case cubic complexity.

Physical Experiments We evaluated the pushes synthesized by EBCS-2D for
the three object configurations with the Zymark gripper illustrated in Fig. 5 on a
set of extruded fiberboard polygonal parts [21] using a Zymark Zymate robot to
push the objects at a constant velocity on a planar worksurface. Fig. 7 illustrates
our experiments. For each configuration, the object was placed in the center of
a turntable, rotated to align the push direction with the arm’s major axis, and
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Fig. 5: Illustration of highest energy configurations and push directions synthesized
using EBCS-2D ranked from left to right for seven example polygonal objects (blue)
and grippers (black) under a linear planar pushing energy field with a push force bound
of Fp = 1.0. Displayed are three objects for each of the following grippers: (left-to-right,
top-to-bottom) parallel-jaw grippers with rectangular jaws, a Barrett hand with fixed
preshape, a Zymark Zymate gripper with fixed opening width, and a four finger disc
gripper. Below each object is the distance the object would have to travel against
the pushing direction, ûn = û/Fp, estimated by EBCS-2D using s = 200, 000 pose
samples, and to the right is the synthesized push energy direction f . For each test case
we searched over 5 energy directions from �⇡

4 to ⇡
4 and checked push reachability as

described in Section 4 except for the four finger gripper, for which we ran only EBCS-
2D to illustrate complete cages. The energy of the synthesized configurations is not
always directly related to the depth of the part within the object, such as the first
row of results for the parallel jaw and Zymark gripper configurations. EBCA-2D also
synthesizes several complete cages for the four finger gripper.
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Fig. 6: (Middle) The sample complexity of EBCS-2D. Plotted is the ratio of the highest
minimum escape energy out of the energy-bounded cages synthesized by EBCS-2D, û⇤,
for the number of pose samples s = {12.5, 25, 50, 100, 200, 400}⇥103 on the object and
parallel-jaw displayed on the left. (Right) The mean runtime of EBCS-2D in seconds
is broken down by component of the algorithm for varying numbers of pose samples
s = {12.5, 25, 50, 100, 200, 400}⇥103. Each datapoint is averaged over five independent
runs for each of the object and gripper configurations on the left. Despite the theoretical
worst case s3 runtime, the algorithm runtime is approximately linear in s, and is
dominated by sampling time.

pushed forward while the turntable oscillated with an amplitude of ±0.1 radians
to simulate external wrenches on the object. To test robustness we added zero-
mean Gaussian noise with standard deviation of 5mm to the gripper translation
and 0.04 radians to the gripper rotation in the plane. We then evaluated whether
or not the object was captured and remained within the gripper jaws after being
pushed 150mm. Pushes planned by EBCS-2D had a success rate of 100% versus
41% for a baseline of pushes planned by choosing gripper poses uniformly at
random from (x, y) in the object bounding box and ✓ in [0, 2⇡).

6 Discussion and Future Work

We present EBCS-2D, an algorithm to synthesize energy-bounded cages for
polygonal objects and rigid configurations of objects under a 2D energy field.
We also extend EBCS-2D to synthesize push directions under a linear constant
velocity push energy field. In future work, we will perform additional experi-
ments and model caging as a pre-stage to force-closure grasping and stretching
cages [37, 42]. We also plan to study additional energy-functions to model task-
specific caging, and to explore extensions of our algorithms to caging in 3D.
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