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Exact Algorithms for Single Frame
Selection on Multiaxis Satellites
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Abstract—New multi-axis satellites allow camera imaging
parameters to be set during each time slot based on competing
demand for images, specified as rectangular requested viewing
zones over the camera’s reachable field of view. The single frame
selection (SFS) problem is to find the camera frame parameters
that maximize reward during each time window. We formalize
the SFS problem based on a new reward metric that takes into
account area coverage and image resolution. For a set of client
requests and a satellite with discrete resolution levels, we give
an algorithm that solves the SFS problem in time ( 2 ). For
satellites with continuously variable resolution ( = ), we
give an algorithm that runs in time ( 3). We have implemented
all algorithms and verify performance using random inputs.

Note to Practitioners—This paper is motivated by recent inno-
vations in earth imaging by commercial satellites. In contrast
to previous methods that required waits of up to 21 days for
desired earth-satellite alignment, new satellites have onboard
pan-tilt-zoom cameras that can be remotely directed to provide
near real-time response to requests for images of specific areas
on the earth’s surface. We consider the problem of resolving
competing requests for images: Given client demand as a set of
rectangles on the earth surface, compute camera settings that
optimize the tradeoff between pan, tilt, and zoom parameters to
maximize camera revenue during each time slot. We define a new
quality metric and algorithms for solving the problem for the cases
of discrete and continuous zoom values. These results are a step
toward multiple frame selection which will be addressed in future
research. The metric and algorithms presented in this paper may
also be applied to collaborative teleoperation of ground-based
robot cameras for inspection and videoconferencing and for
scheduling astronomic telescopes.

Index Terms—Camera, ground imaging, multi-axis, satellite,
teleoperation, telerobotics.

I. INTRODUCTION

ATRADITIONAL imaging satellite, such as Spot 5 [2], can
only passively scan a narrow land belt that is directly un-

derneath its orbit like a one-dimensional (1-D) scanner. The time
between consecutive visits over the same area of the earth varies
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Fig. 1. SFS problem: Each time slot defines the camera’s reachable field of
view where client requests for images are shown with dashed rectangles. Given a
set of requests, the problem is to compute a camera frame that optimizes reward.
The solution in this case is illustrated with a solid rectangle.

from 16 to 44 days depending on the orbit parameters. This in-
tervisit delay makes it difficult to respond to time critical tasks.
However, a new generation of commercial satellites can perform
pitch and roll operations, allowing their imaging sensors to ac-
cess larger regions of the earth [14]. Such satellites, known as
agile, or multi-axis satellites, selectively view regions of interest
and increase response time. For example, the French PLEIADES
satellite can visit the same area of the earth twice per day to
produce near-real-time (NRT) images, suitable for time-critical
applications, such as urban disaster response and search and
rescue. The exact algorithm presented here is particularly useful
for imaging specific zones such as buildings and streets.

In addition, advances in camera and imaging technology allow
sensors to change imaging resolution. Whereas traditional satel-
lites are similar to fixed 1-D scanners, new satellites are similar
to robotic pan-tilt-zoom cameras. In this paper, we use the term
“camera” to refer to onboard imaging sensors and use the terms
“pan, tilt, and zoom” to describe satellite axis settings.

Multiaxis variable resolution satellites present new chal-
lenges for automation. In this paper, we study the frame
selection problem for a single time slot, where the camera’s
field of view is restricted to a rectangular zone on the Earth’s
surface. During each time slot, a number of client requests for
images are pending: Only one image can be captured. The com-
mercial price charged for images depends on image resolution
and coverage. We consider the problem of computing pan, tilt,
and zoom parameters that will maximize reward.

The single frame selection (SFS) problem is illustrated in
Fig. 1. Input is a set of iso-oriented-requested rectangular
regions. The camera image frame is a rectangle with a fixed
aspect ratio. We propose a reward metric based on how closely
a requested viewing zone compares with a candidate satellite
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image frame. The metric is proportional to the intersection of the
candidate frameand the requestedviewingzoneand to the ratioof
the resolution of the candidate and the request. SFS is a nonlinear
optimization problem; we exploit the structure of the problem
to develop polynomial time algorithms that compute the exact
solution for cameras with discrete and continuous resolution
levels.

II. RELATED WORK

SFS is related to problems in job scheduling, facility location,
spatial databases, videoconferencing, and teleoperation.

In the satellite space mission problem [15], the goal is to op-
timally schedule a set of jobs on a satellite. Each candidate job
has fixed duration, an available time window, and weight. The
goal is to select a feasible sequence of jobs maximizing the sum
of weights. This combinatorial optimization problem is known
to be NP-hard. Recent research [2], [8], [18], [33] on the satel-
lite space mission problem and its variations focuses on devel-
oping exact and approximate methods using numerical methods,
such as column generation, Tabu search, and genetic algorithms
(GAs).

Lemaitre et al. [21] studied a related problem for the earth
observing satellite (EOS), which has a three-axis robotic camera
that can be steered during each time window. Given a set of re-
quested zones, they consider the problem of finding a trajectory
for the camera that will maximally cover the requested zones
(they do not consider variations in zoom/resolution). Their cov-
erage problem is analogous to planning optimal routes for lawn
mowers and vacuum cleaners [9]. Researchers have proposed
greedy algorithms, dynamic programming algorithms, and
methods based on constraint programming and local search. In
our model, the time window is shorter and the objective is to
servo the camera to a single optimal position with an optimal
zoom/resolution setting.

The structure of the multiple frame selection problem is
related to the planar -center problem, which Megiddo and
Supowit [25] showed to be NP complete. Given a set of point
demand centers on the plane, the goal is to optimally locate
service centers that will minimize the worst-case travel distance
between client and server. Using a geometric approach, Epp-
stein [7] found an algorithm for the planar 2-center problem
in . Halperin et al. [16] gave an algorithm for the
2-center problem with obstacles that runs in randomized
expected time .

The SFS problem is also related to “box aggregation”
querying in spatial database research [35]. The spatial objects
could be points, intervals, or rectangles. Aggregation over
points is a special case of the orthogonal range search queries
from computational geometry. Agarwal and Erickson [1] pro-
vide a review of geometric range searching and related topics.
Grossi and Italiano [12], [13] proposed the cross-tree data
structure, a generalized version of a balanced tree, to speed up
range search queries in high-dimensional space. The continuity
of the solution space of our problem makes it impossible to
simply evaluate a fixed set of candidate frames through queries.

In the multimedia literature, Liu, Kimber, Foote, and Liao
combine a fixed panoramic camera with a robotic pan-tilt-zoom
camera for collaborative videoconferencing [23]. They [22]

Fig. 2. Multiaxis satellite over an accessible viewing region.

address a frame selection problem by partitioning the solution
space into small nonoverlapping regions. They estimate the
probability that each small region will be viewed based on the
frequency that this region intersects with user requests. Based on
the probability distribution, they choose the optimum frame by
minimizing discrepancy in probability-based estimation. Their
approach is approximative and relies on how the nonoverlapping
small regions are defined. This approach is promising but may be
difficult to compute efficiently. One advantage of their approach
is a Bayesian model for estimating user zone requests based
on past data when explicit requests are unavailable. This is an
interesting and important variant on the problem we address
in our paper, where regions of interest are specified with exact
rectangular frames, which is especially appropriate to imaging
of urban areas where specific buildings or blocks are requested.

The Alpha Lab at Berkeley is studying collaborative teleoper-
ation systems where many users share control of a single physical
resource. Inputs from each user must be combined to generate
a single control stream for the robot. In the taxonomy proposed
by Chong et al. [6], these are multiple operator single robot
(MOSR) systems. An Internet-based MOSR system is described
by McDonald, Cannon, and colleagues [5], [24]. In their work,
several users assist in waste cleanup using point-and-direct
(PAD) commands. Users point to cleanup locations in a shared
image and a robot excavates each location in turn. Recent
developments on MOSR systems can be found in [10] and [11].

The SFS problem is closely related to controlling a shared
robotic webcam. We introduced the frame selection problem for
robotic webcams in a series of conference papers: Exact solu-
tion with discrete zoom [30], approximation solution with con-
tinuous zoom [28], [29], and approximate solution with fixed
zoom [17]. This journal paper collects and expands our results
on exact solutions [31]. It also introduces a new reward metric
and extends the problem formulation to requested viewing rect-
angles of arbitrary aspect ratio.

III. PROBLEM DEFINITION

In this section, we review satellite terminology and formalize
the SFS problem based on the new reward metric.

A. Inputs and Assumptions

1) Multiaxis Satellites: As illustrated in Fig. 2, the camera
on a typical satellite orbits the Earth at a speed of more than
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Fig. 3. Reachable field of view for different satellite models. (a) A zero-axis
satellite can only scan a narrow land belt underneath its orbit. (b) A single axis
satellite with roll motion can scan along a predefined trajectory. (c) A two-axis
satellite with pitch and roll capability can view regions of interest. (d) A satellite
with pitch, roll, and variable resolution can view regions of interest at different
resolutions.

7 kilometers per second. A multi-axis satellite platform usually
has a reflection mirror that moves under pitch and roll control,
which directs a rectangular region of the earth into the camera’s
field of view. The roll motion acts like the pan motion of a
robotic pan-tilt-zoom camera. The pitch motion acts similar to
the tilt motion of the robotic pan-tilt-zoom camera.

The platform and sensor technologies determine the variables
in selecting zones for satellite imaging. Fig. 3 illustrates the dif-
ferent capabilities for four different types of satellites, further
illustrated in Table I. Our frame selection algorithm applies to
the multi-axis satellites in Fig. 3(c) and (d).

2) Definition of a Satellite Frame: Since current satellites
cannot perform yaw rotations, we assume the satellite image
frame is aligned with its motion direction and consider only
iso-oriented satellite image frames. We define a satellite image
frame to be a rectangle: where
specifies the center point of the frame with respect to an acces-
sible region and specifies the resolution of the frame. The
pair determines the pitch and roll angles. Setting m
means a pixel in the image is equivalent to area of 10 10 m .
A bigger -value means lower image resolution but larger cov-
erage. The attainable resolution set is , so .

3) Imaging Sensor Types: As shown in Fig. 2, the swath
width and the scan length of the frame determine the size
of the frame. They are functions of resolution for a given time
window and , which depends on the type
of imaging sensors.

• Push broom sensor: The 1-D camera scans parallel to the
satellite’s orbit. In this case, swath width ,
where and are constant factors. For a 1-D camera
with fixed swath width, . The scanning length
satisfies , where is the scanning speed,

which is also a linear function of ; this means that we
can scan faster when the required image resolution is low.
If the scanning speed cannot be adjusted, then
is a constant for the fixed .

• Whisk broom sensor: The 1-D camera scans orthogonal to
orbit. In this case, we can simply switch the and
functions defined for push broom sensors.

• Frame camera: This is a two-dimensional (2-D) nonscan-
ning camera; for example, the TK-350 camera on Russian
KOSMOS. Let and be constants. In this case,

for variable resolution or for
fixed resolution, which is the same as the in the push
broom sensor. The or shares the
same format but with different constants.

The definitions of and show how we have to balance
the area of coverage and resolution because the satellite can only
process a limited amount of information in the given fixed time
window. We can see that the and of the
frame camera with variable resolution is a generic formulation
that includes all other settings as special cases. If we can solve
the problem for the frame camera with variable resolution, other
cases can also be solved with appropriate simplifications. In the
rest of this paper, we will focus on this generic formulation.
The camera frame is reduced to a triple

. For example, if a frame has 1333 and 1000,
then the area of the frame is 1000 1333 .

4) Requested Viewing Zones: For a given time window, we
consider requested viewing zones. The th request
is a rectangle , where
specifies the center point with respect to the accessible region,

are the width and the length of the requested rectangle,
is the desired resolution, and is the utility for the request,

which describes how much the client is willing to pay for the re-
quested view zone. This is also the maximum reward associated
with this request. We assume that all requested viewing zones
(not necessarily with a 4:3 aspect ratio) have a pair of edges par-
allel to orbit. Therefore, they are iso-oriented with the satellite
frame.

5) Solution Space and Image Distortion: Given a set of
requested viewing zones, the objective is to compute a single
frame that yields maximum total reward. The solution space
is

We consider two cases: 1) is a finite discrete set; 2) is a con-
tinuous set. However, set may not be uniform across due
to image distortion. As shown in Fig. 2, the distance between a
satellite and ground is the shortest when the imaging zone is di-
rectly underneath the satellite, known as the nadir, which yields
the best resolution. When the satellite is off-nadir, the resolution
decreases. For example, for the Quickbird 2 satellite, its nadir
resolution is 2.5 m and its 30 off-nadir resolution is 2.9 m [19].

B. Reward Metric

We want to measure how well a candidate satellite frame
satisfies a user’s request. In this section, we define the ”cov-
erage-resolution ratio” (CRR) as follows. For a given candidate
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TABLE I
SCHEDULING METHODS FOR DIFFERENT SATELLITES

Fig. 4. Resolution discount function. (a) A general f function. (b) An f
function takes the form of (3).

satellite frame, its reward is related to how much it overlaps
with a user request and how good its resolution is. We can think
of the former as coverage discount and the latter as resolution
discount:

1) Coverage Discount: Recall that is the th requested
viewing zone. The corresponding client has a utility for this
region. Define as the reward from the th request. Let

be a candidate camera frame. If is fully covered by
(i.e., ) and the desired resolution is obtained (i.e., ),
then . If the resolution requirement is satisfied but the
coverage is partial, then the reward is discounted by coverage
ratio

Area
Area

2) Resolution Discount: Define resolution ratio
. If (the resolution requirement is not satisfied),

then the reward should be discounted by a resolution discount
factor . Hence

Area
Area

(1)

As illustrated in Fig. 4(a), the resolution discount function
has to satisfy the following conditions:

when

when

(2)

It is an increasing function of because an image has more
value as resolution increases. This parameterized definition of
the CRR includes a large family of metrics.

3) Sample CRR Metrics: In Section III-A-V, we state that
we solve the SFS problem for two cases: 1) is a finite discrete
set and 2) is a continuous set. For case 1), the resolution func-
tion does not need to be a continuous function. It could be a
table corresponding to a small set of resolution levels. Table II
gives a sample function.

For case 2), we assume is a continuous function. In the rest
of the paper, we use the in (3) to walk through the algorithm

TABLE II
SAMPLE RESOLUTION DISCOUNT FUNCTION f FOR DISCRETE z. DATA

ARE BASED ON PRICING DATA FROM RADARSAT 1 SATELLITE ON

DECEMBER 18, 2003 [20] AND z = 8m

development. Readers can expand the algorithm to fit different
functions as long as is composed of elementary functions

(3)

Now the CRR becomes

Area
Area

(4)

The exponential discount factor determines how resolution
affects reward. Fig. 4(b) shows two cases and .
The case is and corresponds to a scenario in which
users will not accept any image with a resolution that is lower
than requested. We use the case as a default setting for
numerical examples in the rest of the paper.

Given requests, the total reward is the sum of individual
rewards

(5)

Our objective is to find , the frame that max-
imizes total reward.

C. Properties of the CRR Reward Metric

In this section, we explore the properties of the CRR metric,
which can help us to develop algorithms later. The CRR metric

is nonsmooth and piecewise linear in both and . For con-
venience, we use instead of with .

1) Separability: According to (1), we know that the choice
of does not affect value of resolution discount function

. This property allows us to reduce the problem from a single
high-dimensional problem to multiple 1-D problems.

2) Nonsmoothness: Recall that Area . To study
the properties of the reward function, we first treat as a con-
stant: Area is a function of . The ob-
jective function defined by (1) becomes a function of the center
point of the candidate frame

(6)
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Fig. 5. CRR reward function for a single requested viewing zone. Consider
the requested frame centered at x ; y as shown in (a). Consider a small
candidate frame (shown in gray). As we move the candidate frame, (c)
illustrates the resulting CCR function. As illustrated in (b), (c), (d), and (e), the
function is plateau-like with a maximum height of u Area(c \ r )=Area(r ).
The function consists of five planar and four quadratic surfaces at the corners.
(a) The ith requested viewing zone r , (b) top view of s (x; y), and (c) 3-D
shape of s (x; y). (d) Front view of s (x; y). (e) Side view of s (x; y).

where

(7)

is a constant for each user. We know that is the area of
the intersection of the th requested viewing zone and the candi-
date frame . Therefore, the maximum value of
is Area Area . This property determines that the
shape of user ’s satisfaction function is plateau-like. Since
is fixed, the objective function becomes a function of the
center point of the candidate frame . Fig. 5 shows the
shape of given and candidate frame smaller
than . Note that is nondifferentiable with respect to and
so we cannot use derivative-based approaches to find optima.

3) Piecewise Linearity in and : Since all requested
viewing zones and the candidate frame are iso-oriented rect-
angles, the shape of any intersection between them is also a
rectangle with its edges parallel to either -axis or -axis. Thus,
the term in (6) is either 0 or the area of the rectangle
formed by an intersection between and . This
yields a nice property: the is piecewise linear with
respect to if we fix , and piecewise linear with respect to
if we fix . Since the total reward function is a linear
combination of , it has the same property.
Fig. 6 shows an example for a case with two requested viewing
zones.

D. Other Reward Metrics

Symmetric difference (SD) and intersection over union (IOU)
are standard “similarity metrics” used in pattern recognition as

Fig. 6. Combined CCR function for two users. Ordered sets f~y g and
f~x g; k = 1; . . . ; 8 correspond to horizontal and vertical edges of plateaus.
Note that ~y and ~y overlap in this case and s = s + s . (a) Top view of S
and S . (b) Piecewise linear objective function at x = ~X and (c) 3-D view of
objective functions.

a measure of how similar two shapes are [4], [3], [34], [36]. In
our case, for a requested viewing zone and a candidate frame
, the SD metric would be

Area Area
Area

The IOU metric would be

Area
Area

Compared with IOU, our CRR metric has similar properties:

• IOU and CRR attain their minimum value of 0 if and only
if ;

• both attain their maximum value if and only if ;
• both are proportional to the area of ;
• both depend—albeit differently—on the sizes of and .

The key differences between CRR and these metrics are the
following:

• SD and IOU metrics are not piecewise linear in or ;
• SD and IOU metrics do not take resolution into account.

IV. ALGORITHMS

In this section, we start with the definition of two geometric
classes of critical points: “base vertices” (BVs) and “plateau
vertices.” These critical points allow us to specify efficient al-
gorithms for the SFS problem. Section IV-B describes an algo-
rithm when the resolution is restricted to a set of discrete values.
Section IV-C describes the extension to the case where resolu-
tion varies continuously.
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A. Plateau and Base Vertices

1) Plateau Vertices: Plateau vertices depend on a particular
candidate frame resolution level. Recall that the objective
function for a given resolution and one requested viewing
zone is a plateau-like function as shown in Fig. 5(c).
The function consists of nine facets: one top plane, four side
planes, and four quadratic surfaces at the corners. There are
two vertical boundaries and two horizontal boundaries at the
bottom (bounding the entire plateau), the same numbers of
similar edges at the top (bounding the plateau’s flat top), and
eight boundaries separating side planes and corner quadratic
surfaces [Fig. 7(a)]. The requested viewing zone has four
vertical plateau boundaries at and
four horizontal plateau boundaries at .
Recall that and are the
width and length of the candidate satellite frame, respectively,
and , and are left, right, bottom, and top
extended edge of the requested zone, respectively. As shown in
Fig. 5(b):

• the four vertical plateau boundaries satisfy

(8)

• four horizontal plateau boundaries satisfy

(9)

For a given frame resolution and requested viewing zones,
there are plateaus. Computing the plateau boundaries for all
requested viewing zones, we obtain a set of vertical boundaries

, and a set of horizontal
boundaries .

We define a plateau vertex as an intersection between any two
boundaries, which includes both intersections of facet bound-
aries induced by a single plateau or by two distinct plateaus.
Note that plateau vertices occur at the intersections between
the actual boundaries of plateaus rather than between extended
boundaries. Since all plateaus are iso-oriented, one of the in-
tersecting boundaries is horizontal and the other is vertical. A
plateau vertex can be represented by a three-dimensional (3-D)
vector , and . For requested viewing
zones and fixed resolutions, there are plateau ver-
tices. Fig. 7(a) shows an example of plateau vertices for two
requested viewing zones.

2) Base Vertices: We define BVs to be independent of image
resolution. As illustrated in Fig. 7(b), a BV occurs at the inter-
section of the extended edges of requested viewing rectangles.

As shown in Fig. 5(a), a requested zone has:

• two vertical extended edges at

(10)

• and two horizontal extended edges at

(11)

Fig. 7. Illustration of the relationship between plateau vertices and BVs for
two requested viewing zones and a candidate frame with a given resolution.
A plateau vertex corresponds to a candidate frame with one of its corners
coincident with a BV. (a) Plateau vertices. (b) BVs.

So for requested viewing zones, there are BVs. Each
BV is represented by a 2-D vector in the plane.

3) Relationship Between Plateau and Base Ver-
tices: Equations (8)–(11) and Fig. 7 show the relationship
between plateau vertices and BVs, which is also described by
Lemma 1.

Lemma 1 (Plateau/Base Vertex Invariant): Any candidate
frame that corresponds to a plateau vertex must have one corner
coincident with a BV.

Although we can find a corresponding BV for each plateau
vertex, they are not equivalent. There are three reasons.

• The notion of plateau vertex is only applicable to cases
where the resolution of the candidate frame is discrete and
finite; the notion of BV applies to cases where the resolu-
tion is either discrete or continuous.

• Not all BVs have corresponding plateau vertices. For ex-
ample, the top left BV in Fig. 7(b) does not have a corre-
sponding plateau vertex. In fact, a BV that does not lay on a
real (as opposed to extended) edge of a requested viewing
zone does not have a corresponding plateau vertex.

• For discrete resolutions, a BV has corresponding
plateau vertices. A BV has, at most, four corresponding
plateau vertices for a fixed resolution. The position of the
BV is invariant to resolution by definition.

4) Optimality Conditions: Plateau vertices and BVs can
help us to find the optimal solution for the optimization problem
defined in (5) for the discrete resolution case and the continuous
resolution case, respectively.

Lemma 2 (Base Vertex Optimality Condition): At least one
optimal frame has one corner coincident with a BV.

Proof: Let be an optimal solution. If we
fix , we get as a summation of plateaus. As dis-
cussed earlier, for a fixed and , the objective function
is piecewise linear. So the optimum must be at a vertex
such that . We also know that the
line in the plane is one of the horizontal facet
boundaries of the plateaus. Similarly, we can find another op-
timal frame , where line is one of the vertical
facet boundaries of the plateaus. Therefore, the optimal frame

is centered at a plateau vertex for a fixed reso-
lution . Applying Lemma 1, we know that the optimal
frame must have one corner at one of the BVs.
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Using the BV optimality condition (BVOC), we consider
only frames where one corner is coincident with a BV, thereby
reducing the dimensionality of the problem. The BVOC is
true no matter whether the resolution variable is discrete or
continuous. However, it is more convenient to use plateau
vertices when the resolution variable is discrete. The BVOC
can be transformed to the following plateau vertex optimality
condition.

Lemma 3 (Plateau Vertex Optimality Condition): When the
resolution variable is discrete, at least one optimal frame has a
corner coincident with a plateau vertex.

Proof: From the proof the Lemma 2, we know that we can
find an equivalent optimal solution from a given op-
timal solution . We also know that is the
intersection of two facet boundaries. For the discrete resolution
case, has to be one of the discrete resolutions in the solution
space. Then, the point is one of the plateau vertices.

B. Algorithms for Discrete Resolution

For satellites with a discrete set of resolution levels, we
present algorithms to find the optimal image position and reso-
lution parameters.

1) Brute Force Approach: Based on the Lemma 3, we can
solve the optimization problem by simply checking all combi-
nations of resolution levels and corresponding plateau vertices.
We evaluate the objective function for each of the plateau
vertices and repeat this for each of the resolution levels. It
takes time to evaluate a candidate frame . Therefore, the
brute force algorithm runs in .

2) Efficient Traversal of Plateau Vertices: For requested
viewing zones, we have horizontal plateau facet boundaries

and vertical plateau facet boundaries
. The plateau vertex traversal (PVT) al-

gorithm is summarized below. It reduces the computation
complexity from to .

In step iii) of the PVT algorithm, we traverse the vertical facet
boundaries of the plateaus one by one. Fig. 8 illustrates how it
works using the example of two requested viewing zones. For
each vertical edge, we find the maximum. Using Lemma 2, we
know that this procedure will find an optimal solution. It remains
to be shown how much time is required to solve the resulting
problem of finding

for given and . This special optimization problem can be
solved in with a sorted sequence . The
objective function is a “summation” of plateaus, which is
shown in Fig. 6. For fixed and , this piecewise linear func-
tion only changes slope at . For each vertex

, we know how much the slope will change after crossing the
vertex. We can find the maximum objective value by walking
over all ordered vertices from the one side to the other side
on the line . This process only takes . Therefore,
step iii) of the algorithm will take , proving the following
theorem.

Theorem 1: We can solve the SFS problem in time
for users and resolution levels.

Fig. 8. Illustration of the PVT algorithm using the example in Fig. 6.
(a) Shows how we sweep along the x-axis to dissect the 2-D optimization
problem into O(n) 1-D optimization problems. (b) Shows how we solve the
1-D optimization problem by traversal over the ordered vertices for x = ~x .
(a) Sweeping along the x-axis. (b) Sweeping along the y-axis.

C. Algorithms for Continuous Resolution

If a satellite camera has a variable and continuous resolu-
tion, there are infinitely many “plateau vertices.” Instead, we can
use the BV optimality condition to reduce the 3-D optimization
problem to 1-D optimization problems with respect to
variable . We then show that each 1-D optimization problem
can be dissected into piecewise polynomial functions; for
each, we can find an optimum in time . Using incremental
computation and a diagonal sweep, we show how to improve
the running time to .

1) Base Vertex Algorithm (BV): For requested viewing
zones, there are BVs. The BV optimality condition
(Lemma 2) allows us to find the optimal frame by checking the
candidate frames that have one of their corners coincident with
one of the BVs. This means that we can reduce the original 3-D
optimization problem in (5) to 1-D optimization prob-
lems. Defining ,
the 1-D optimization problem is to find

(12)

subject to the constraint that a corner of the candidate frame
is coincident with a BV.
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Fig. 9. Example of the 1-D optimization problem with respect to z. In this
example, we assume l(z) = 4z; w(z) = 3z; b = 1, and u = 1 for i =
1; . . . ; n.

Fig. 10. Reward function for the example in Fig. 9 as a function of image
resolution.

To study the 1-D maximization problem in (5), consider a BV.
For simplicity, we assume that the BV is at the origin. Moreover,
we assume that the BV is coincident with the lower left corner
of the candidate frame. (The BV in Fig. 9 is the intersection of
the extensions of the left edge of and the bottom edge of .)
Placements in which one of the other three corners of the candi-
date frame are coincident with the BV are handled in a similar
fashion. We may be able to eliminate some of the placements
beforehand, but it reduces the computation by only a constant
factor. Now, we gradually increase and observe the value of

. Fig. 10 shows the function for the example in Fig. 9.
a) Critical Values and Intersection Topologies: The

function is a piecewise smooth function (Fig. 10), so
derivative-based approaches cannot be used directly. We refer
to a maximal -interval on which is smooth as a seg-
ment. We consider four questions that form the basis for our
algorithms.

1) Can we give a geometric characterization of the endpoints
of the segments?

2) How many segments are there?
3) What is the closed-form description of within a

single segment, and how complex is the computation of
the maximum of on that segment?

4) How different are the closed-form descriptions of on
two adjacent segments?

The first three questions lead to an algorithm; the
fourth question results in an improvement to .

We start with question 1).

Fig. 11. Examples for “fundamental rectangles.” In this figure, r and r are
type (a) rectangles, r is a type (b) rectangle, and r is a type (o) rectangle.

Definition 1: A critical value is a value at which
changes its closed-form representation, which is caused either
by intersection topology changes or crossing one of the

when the candidate frame changes its size.
Let be the set of critical values for BV

. From (4), we see that the nonsmoothness comes
from the nonsmoothness of either or .
The critical values that come from the former type,
form a subset ; those of the latter type, form a
subset . The former type is easy to deal with
because it occurs at . Therefore,

, so .
Note that is the same for all BVs , so

.
Obtaining is less straightforward. Depending

upon the intersection topology, the intersection area of
a rectangle with an expanding candidate frame is one of
the following four types: it is of type 0 if equals zero,
of type 1 if equals a positive constant , of type 2 if

is described by a first-degree polynomial , and
of type 3 if is described by a second-degree polynomial

, where and are coefficients. We
are interested in how the type changes as gradually increases
from to .

To further simplify this problem, we consider “fundamental
rectangles” from three classes.

• Class (o): a rectangle that does not intersect quadrant I.
• Class (a): a rectangle that is fully contained in quadrant I

and does not intersect the extended diagonal of the candi-
date frame.

• Class (b): a rectangle that is fully contained in the quad-
rant I and that has a diagonal that overlaps the extended
diagonal of the candidate frame.

Fig. 11 gives examples of these three classes of fundamental
rectangles.

As shown in Fig. 12, as increases:

• for a class (o) rectangle always remains type 0;
• for a class (a) rectangle starts from type 0, changes to

type 2 when its intersection with the expanding candidate
frame begins, then changes to type 1 when it becomes fully
contained;
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Fig. 12. Change ofp (z) for the three classes of requested viewing zones when
z gradually increases from 0 to +1.

Fig. 13. Examples of four requested viewing zone decomposition cases.

• for a class (b) rectangle can start either from type 3
or type 0 depending on whether the bottom left corner of
the rectangle is coincident with the origin or not. It also
changes to type 1 once it becomes fully contained.

The transitions correspond to critical values.
We can ignore class (o) fundamental rectangles because they

do not contribute to our objective function. A requested viewing
zone that is a fundamental rectangle from class (a) or (b) gener-
ates at most two critical values. Many of the requested viewing
zones though will not be fundamental rectangles. We resolve
this by decomposing those requests.

b) Requested Viewing Zone Decomposition: A requested
viewing zone that is not a fundamental rectangle intersects at
least one of following: the positive -axis, the positive -axis,
and the extended diagonal of the expanding candidate frame. We
treat the different intersection patterns and show that, in each
case, the requested viewing zone can be decomposed into, at
most, four fundamental rectangles (Fig. 13).

• If the requested viewing zone intersects only the diag-
onal—as in Fig. 13(a)—then it can be decomposed into
two class (a) rectangles and one class (b) rectangle.

• If the requested viewing zone intersects the diag-
onal and exactly one positive coordinate axis—as in
Fig. 13(b)—then it can be decomposed into two class
(a) rectangles, one class (b) rectangle, and one class (o)
rectangle.

• If the requested viewing zone intersects the diagonal and
both positive coordinate axes—as in Fig. 13(c)—then it

can be decomposed into one class (a) rectangle, one class
(b) rectangle, and two class (o) rectangles.

• If the requested viewing zone intersects only one positive
coordinate axis—as in Fig. 13(b)—then it can be decom-
posed into a class (a) rectangle and a class (o) rectangle.

As we can see from Fig. 13, a decomposed requested viewing
zone can yield, at most, three fundamental rectangles that are
either class (a) or class (b). Every fundamental rectangle inherits
the value of the original request.

In summary, we claim that the requested viewing zones can
be classified and/or decomposed into fundamental rectan-
gles that are either class (a) or class (b). Since each rectangle in
class (a) or (b) generates (at most) two critical values, we find
that . Combining this with the bound on
the size of yields that . Since
the critical values partition the axis into segments, on
each of which is a smooth function, the following lemma
is true.

Lemma 4: For each BV, the -axis can be partitioned into
segments, on which is smooth.

Lemma 4 answers our question 2) from the previous section.
c) Optimization Problem on a Segment: With the knowl-

edge of questions 1) and 2), we are ready to attack question 3):
derive a closed-form representation of on a segment and
solve the constrained optimization problem. We have the fol-
lowing lemma. (The order of the resulting polynomial depends
on the resolution discount factor ).

Lemma 5: For each segment, is a polynomial function
with six coefficients , and

(13)

Proof: For a BV , let us assume the segment is
defined by , where are two adja-
cent critical values. The requested viewing zones have been
classified and decomposed into class (a) or (b) rect-
angles. We denote those rectangles as . Let us
define set and set . From
the definition of critical value, we know that for

so that and .
Therefore, (12) becomes

(14)

We also define to be the set of rectangles with type in-
tersection areas when , for , respectively.
Recall that is a constant; we have
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We can perform a similar transform for the second term of (14)

Combining them, we get (13).
The Proof of Lemma 5 shows that (12) can be converted into

(13) in time. The maximum of (13) can be found in con-
stant time because it does not depend on . Combining Lemma
4 and Lemma 5 yields the BV algorithm.

Theorem 2: The BV solves the SFS problem in time.
Lemma 5 is only applicable to the CRR metric defined in (4).

For general CRR metrics that consist of continuous elementary
functions, (13) remains a continuous elementary function so that
the complexity of computing the optimal will not go higher.

2) BV With Incremental Computing (BV-IC): The inner loop
in the BV algorithm takes , which is the product of two
factors segments and time to compute polynomial
coefficients. One observation is that we do not need to recom-
pute the coefficients entirely if we solve the subproblems
in an ordered manner. Comparing the polynomial coefficients
of two adjacent segments, we find that the difference is caused
by the critical that separates the two segments. The critical
value belongs to some rectangle. Therefore, we only need to do
a coefficient update on one polynomial to get another one. This
update only takes constant time. To exploit this coherence, we
must sort the elements of in the inner loop to be able
to consider the segments in order; this takes time.
We replace the inner loop in BV by the following subroutine.

The BV-IC algorithm improves the running time.
Theorem 3: The BV with incremental computing (BV-IC)

algorithm solves the SFS problem in .
3) BV With Incremental Computing and Diagonal Sweeping

(BV-IC-DS): In the outer loop of the BV-IC algorithm, the
sorting of for each BV is the dominating factor.
Is it necessary to sort critical values repeatedly for each
BV? Recall that is the union of a set and a set

.
Each critical value in uniquely defines the po-

sition of the upper right corner of the candidate frame on its
extended diagonal, which we call a critical point in Fig. 14(a).
Each critical point corresponds to the point that the candidate
frame begins to intersect a requested viewing zone or when the
intersection between the candidate frame and some requested
viewing zone ends. This is a geometric interpretation for critical

values. Fig. 14(a) shows a case with two requested viewing
zones and five critical values.

Let be the set of the corresponding values of the
intersections between the extended diagonal and the extended

Fig. 14. (a) Z (x ; y ) for a case with two requested viewing zones.
(b) Z (x ; y ) is a set of intersection points between the extended diagonal
of the candidate frame and the extended edges. (c) Two intersection points
switch order only at a BV formulated by the intersection of the two extended
edges that generate the two intersection points. (d) Sorting BVs in this order
can reduce the sorting cost of the algorithm.

edges, which is illustrated in Fig. 14(b). also de-
pends on BV . As shown in Fig. 14(a) and (b)

If we have a sorted sequence , we can get a sorted se-
quence by checking whether a point in
belongs to . This takes time because there are

points in .
Fig. 14(c) illustrates a nice property of the sorted sequence of

points in . In this figure, we have an ordered sequence
of intersected points at the extended diagonal that starts from the
origin . Let the point closest to the origin be point 1 and the next
closest be point 2. As we gradually move the extended diagonal
downward and observe what happens to the sorted sequence, we
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find that the order of the sorted sequence does not change until the
diagonal line hits an intersection between two extended edges,
which is a BV by definition. Let us define this BV to be the adja-
cent BV to the BV at the origin. Point 1 and point 2 switch their
order at the adjacent BV [i.e., the gray rectangle in Fig. 14(c)].
This phenomenon shows that if we have a sorted sequence of
the intersection points at a BV, we can get the sorted sequence
at an “adjacent base vertex” in constant time.

This reduces the sorting cost from to if we
handle the BVs in a diagonal order: imagine there is a sweep line
that has the same slope as the extended diagonal and an inter-
cept at ; we decrease the intercept and stop at each BV. As
shown in Fig. 14(d), we solve the subproblem for the BV when
the sweeping line stops. This yields the following BV-IC-DS
algorithm.

Theorem 4: The BV with an incremental computing and di-
agonal sweeping (BV-IC-DS) approach solves the SFS problem
in time.

V. SIMULATION RESULTS

We have implemented all algorithms. The discrete resolution
algorithms were implemented on a PC with a 950-MHz AMD
Athlon central processing unit (CPU) and 1-GB random-access
memory (RAM). The machine runs under Redhat Linux 7.1 and
the algorithms are programmed in Java. The algorithms for vari-
able and continuous resolutions were implemented using Mi-
crosoft Visual C on a PC laptop with 1.6-GHz Pentium-M
and 512-MB RAM.

Fig. 15 shows the results for four different sets of inputs.
As we can see from Fig. 15(a) and (b), the optimal frame does
not necessarily have one corner coincident with a corner of a
requested viewing zone. However, one corner of the optimal
frame does coincide with one of the BVs. Fig. 15(b) has three
requested viewing zones that are exactly the same as those in (a)
and one more big requested viewing zone. It is interesting to see
how the optimal frame changes after the big requested viewing
zone joined in the system. Fig. 15(c) shows that if all input
rectangles fall far away from each other, the algorithm functions
as a chooser and selects one input rectangle with the highest
utility value as the output. Fig. 15(d) shows that a large requested
viewing zone does not necessarily yield a large optimal frame.
Note that the results can depend on the utility , or weight
assigned to each requested viewing zone. Our examples illustrate
cases where utility is constant across requested viewing zones.

We use random inputs for testing. The random inputs are
generated in two steps. First, we generate four random points,
which are uniformly distributed in . The four points repre-
sent locations of interest, which are referred as seeds. For each
seed, we use a random number to generate a radius of interest.
Then, we generate requested viewing zones. To generate a re-
quested viewing zone, we create six random numbers. One of
them is used to determine which seed the request will be asso-
ciated with. Two of them are used to generate the location of
the center point of the request, which is located within the cor-
responding radius of the associated seed. The remaining three
random numbers are used to generate width, length, and resolu-

Fig. 15. Examples of computed optimal frames (shown in gray). We set b = 1
and u = 1 for all requests and use the PVT algorithm from Section IV-B. We
have ten different resolution levels and set l(z) = 4z and w(z) = 3z. We put
the optimal reward S in the caption of subfigures.

Fig. 16. Speed comparison for the two algorithms from Section IV-B. Curve
B refers to the brute-force algorithm, and curve V refers to the PVT algorithm.
Each data point is based on the average of ten runs with random inputs.

tion of the request. Each data point in Fig. 16 is the average of
ten runs.

Fig. 16 compares the computation speed of the two algo-
rithms presented in Subsection IV-B for a fixed resolution level

. The results clearly confirm the theoretical analysis.
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Fig. 17. Computation speed comparison for random inputs. Each data point in
Fig. 17 is an average of ten trials with different random inputs, where the same
random inputs are used to test all three algorithms.

Fig. 17 illustrates the speed difference between BV, BV-IC,
and BV-IC-DS algorithms. These timing results are also consis-
tent with the theoretical analysis.

VI. CONCLUSIONS AND FUTURE WORK

To automate satellite camera control, this paper introduces the
SFS problem: find the satellite camera frame parameters that
maximize reward during each time window. We formalize the
SFS problem based on a new reward metric that incorporates
both image resolution and coverage. For a set of client requests
and a satellite with discrete resolution levels, we give an SFS
algorithm that computes optimal frame parameters in .
For satellites with continuously variable resolution ,
we give an SFS algorithm that computes optimal frame param-
eters in . We have implemented all algorithms and com-
pared computation speeds on randomized input sets.

In future work, we will consider approximation algorithms
for the SFS problem and generalizations where the satellite
has a third axis to permit yaw motion. In this case, the optimal
frame is not necessarily aligned with the requested viewing
zones. We are interested in generalizing the SFS problem to
cases where requested viewing zones are nonrectangular; for
example, convex or concave polygons. There are also a number
of multiple-frame extensions to the problem: in one case,
cameras are available to servo simultaneously, which is related
to the -center facility location problem. As another extension,
we are interested in finding, for a given set or sequence of
frame requests, the optimal sequence of camera frames.
This is a variant of the Traveling Salesperson’s problem, even
when reward is related to latency, and may be amenable to
approximation techniques.
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