
Design of Parallel-Jaw Gripper Tip Surfaces for Robust Grasping

Menglong Guo1, David V. Gealy1, Jacky Liang2, Jeffrey Mahler2,
Aimee Goncalves1, Stephen McKinley1, Ken Goldberg3

Abstract— Parallel-jaw robot grippers can grasp almost any
object and are ubiquitous in industry. Although the shape,
texture, and compliance of gripper jaw surfaces affect grasp
robustness, almost all commercially available grippers provide
a pair of rectangular, planar, rigid jaw surfaces. Practitioners
often modify these surfaces with a variety of ad-hoc methods
such as adding rubber caps and/or wrapping with textured
tape. This paper explores a design space based on shape,
texture, and compliance for gripper jaw surfaces. Over 37 jaw
surface design variations were created using 3D printed casting
molds and silicon rubber and tested with 1377 physical grasp
experiments with a 4-axis robot (with automated reset). These
tests evaluate grasp robustness as the probability that the jaws
will acquire, lift, and hold a test set of objects at nominal
grasp configurations computed by Dex-Net 1.0. Results suggest
that a grid pattern with 0.03 inch void depth and 0.0375 inch
void width on a silicone polymer with durometer of A30 yields
grasp robustness that is 56% better than that of planar, rigid
jaw surfaces [17, 29].

I. INTRODUCTION

Robots operating in unstructured environments such as
homes and warehouse order fulfillment centers may benefit
from compliant end-effectors that are designed to success-
fully manipulate a wide variety of shapes and textures and
resist torques due to contact and gravity [11]. Parallel-jaw
grippers are widely used in the current generation of human-
compliant robots, such as Sawyer from Rethink Robotics
[31] or the YuMi from ABB [8], due to their low complexity,
long lifetime, and ability to precisely manipulate objects [3].
Despite the intention that these robots be used in unstructured
environments, most parallel-jaw grippers conform to the
industrial paradigm of planar, rigid jaws [2].

One possible solution is to equip rigid parallel-jaw grip-
pers with compliant or high-friction finger pads. A vari-
ety of designs have been proposed such as gecko-inspired
microstructures [12], polymer pancakes [7], and human-
inspired skin, bone, and nail structures [17, 29]. The design
process for these compliant fingers has been largely guided
by human intuition and optimization in simulation [4], and
often only one or a small number of designs have been
physically realized due to the time and material cost of
manufacturing. However, the gripper/object surface interac-
tion is difficult to model and predict in simulation; thus,
a design method involving physical robot testing and rapid
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Fig. 1: Above: Probability of success for gripper surfaces was
empirically studied on the Zymark Robot with 4 degrees of freedom
plus a binary gripper and rotating turntable. The test objects were
identified by a PrimeSense Camera and rotated into position for
gripping. A reset mechanism lifts and replaces each object to the
center of the table after each grasp trial. Below: Gripper surface
millistructures were cast in silicone polymer using a 3D printed
mold.

prototyping is advantageous for developing a more successful
gripper.

Inspired by recent advances in 3D printing and rapid
prototyping, we explored the possibility of guiding the design
process empirically, evaluating success on a physical system
for a large number of prototype fingertip designs. Our pri-
mary contribution is an evaluation of gripper surface texture
and stiffness for compliant robotic fingers (as shown in dark
blue in Figure 1) across 37 iterations of individual conceptual
surface features (as shown in Figure 5). Each design was
parametrized and prototyped using 3D printing and molded
silicone. Inspired by zooming optimization methods [21] we
iteratively evaluated the probability of grasp success for our
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design set and expanded our design set around the most
promising design from the previous evaluations. We collected
between 21 and 35 grasp trials for each design across three
3D printed objects on a Zymark Zymate robot for a total of
1377 total evaluations. The resulting design’s probability of
success improved by 56% compared to that of the original
planar rigid jaw surface gripper.
Initial Assumptions: The Series Type A Pro 3D printers
extrude Polylactic Acid (PLA). Platinum-cure silicon rubber
was used for a compliant material because it is robust,
easy to manufacture and can be washed. Grasps were tested
with a Zymark Zymate 2 laboratory robot with positional
uncertainty of up to 5mm and a pointcloud-based vision
system with positional error of up to 1mm. Known objects
from the Dex-Net 1.0 dataset [25] were used to test grasps
on a parallel-jaw laboratory robot [25].

II. RELATED WORK

A. Related work in gripper design

An important tool for design inspiration is the idea of
utilizing nature as a model; this holds true for robotic gripper
design. Two specific areas this design concept has been
applied to are structural and surface features.

Structurally, a typical robotic finger consists of a single,
uniform, rigid material throughout, regardless of its shape.
However, anthropomorphic observations reveal that human
fingers consist of several layers: bone, soft tissue, skin, and
nails, where each of these characteristics provide a unique
function for human grasping. To increase the ability of a
robotic hand, Murakami et al. [29] explored adding a hard
nail with a strain gauge to a fingertip covered by soft elastic.
Hosoda et al. explored these characteristics as well by using
a metal bar and two types of silicone rubber to replicate the
bone-body-skin structure [17]. Randomly embedded strain
gauges were added into the silicone to replicate sense of
touch. To study the benefits of compliance on surface contact
gripping, Berselli et al. designed and tested soft fingertip
covers with four varied internal geometric structures. Rapid
prototyping was utilized for inexpensive fingertip production
[1]. These designs revealed the effectiveness of utilizing
multiple materials for manipulation.

Numerous nature-inspired surface features have been in-
vestigated for their various attractive properties. Initially mo-
tivated by the fingerprint surfaces on human hands, Cutkosky
et al. found that textured and compliant gripper surfaces
improved object handling [9]. Several materials were tested
under dry, clean conditions and wet, dirty conditions to
test their adhesive and friction properties. Expanding on
their study of bio-inspired adhesive materials, Cutosky et
al. analyzed the pads on gecko toes for load sharing [12].
Their study found non-uniform stress distribution over gecko
lamellae, suggesting uneven load-sharing over gecko toe
pads.

Gecko-inspired adhesives have been developed to replicate
the strong adhesion geckos possess, both as sheets and
as gripper surfaces. Hawkes et al. developed grippers that

use shear adhesion of gecko inspired fibrillar film micro-
structures to grasp curved objects [15]. Similar structures
have been used for adhesion on treaded robots [28]. While
efficacy of these structures diminishes at greater payload
because required density of micro-structures increases with
payload (ie: geckos are 100g and need 10000 hairs per mm
squared), these bio-inspired surfaces have proven effective
on small payloads [13].

In addition to material selection, it has been suggested
that interface geometry is important for adhesion. To try
and provide insight on adhesion mechanisms like that of the
gecko, uniform surface patterns were explored by Crosby
et al. [7]. Described as polymer ’pancakes’, tests were
run for surfaces with a range of cylindrical posts with
varying heights, diameters, and grid-spacing. These patterned
dimensions were linked to material properties which increase
grip force for sliding contact; from this, adhesion effect
relationships were extracted between surface dimensions and
material properties. This conceptual surface feature inspired
initial design concepts in Section III.

Fig. 2: The design space for fingertip surfaces was explored over
37 different physical iterations using methods inspired by machine
learning optimization techniques. Here are all of the molds (white
objects) fingertips produced during design exploration.

B. Optimization Methods

This work is also closely related to work on optimization
methods for gripper design. While much research has relied
on intuition and exact parametric models to guide gripper
design, recent research has considered convex optimization
of gripper parameters when such a parametrization is avail-
able. Ciocarlie et al. [4] formulated the optimization of
actuation mechanisms for an under-actuated hand as a convex
quadratic program. Dollar and Howe [10] optimized the joint
coupling parameters of an under-actuated hand by solving a
system of equations.

However, many design problems have more than one
locally optimal solution. Methods for non-convex optimiza-
tion are difficult to apply in design because of the limited
opportunity to iterate on physical prototypes. A common
technique in robotics is simulated annealing [19], which
has been used extensively in grasp planning [6]. Shalaby et
al. [34] used simulated annealing to optimize the topology
of a compliant gripper. Ciocarlie et al. [5] used a modified



Fig. 3: The grasping dataset was chosen from available models created by users of the online part database ’Thingiverse’. These seven
grasps were chosen to highlight the success of a gripper in an unstructured environment. The ‘Pipe Connector’ and ‘End Stop Holder’
were chosen to specifically investigate resistance to torque over curved and flat surfaces. The ‘Vase’ object was chosen because of its
convex and concave surfaces.

form of gradient descent to optimize the kinetic behavior
of a two-finger gripper. Similar methods include nonlinear
programming for parallel jaw gripper design [36], evolution-
ary algorithms [32], and sequential convex programming for
kinematic design of two finger grippers [24].

Our approach to exploring a design space is inspired
by these optimization techniques. However, we considered
using success on a physical instantiation of grasping to
guide the design process rather than using a parametric
approximation (see 3). This was done to avoid accumulating
errors in design due to errors in modeling and simulation.
However, uncertainty in physical trials could introduce noise
into successful evaluations, requiring multiple samples.

Past research on this topic in robotics has focused on
optimizing a sampled estimate of the objective, for example
in policy gradients for locomotion [33] or sampling for
robust grasp planning [18, 20]. However, this may require
many samples to converge for each prototype. Methods
to minimize iterations during optimization include Multi-
Armed Bandits (MABs) [23, 25] and Bayesian Optimization
(BO) [16, 26, 27, 35], which allocate fewer samples to
regions with a high likelihood of being suboptimal based
on samples collected.

Standard realizations of MAB and BO methods would
require a predefined set of designs to optimize. However,
we desired to allocate manufacturing effort only to more
promising designs with higher success rates. Thus, our
method was inspired by zooming methods [22], where the
optimization approach iteratively resampled the space at finer
resolution in more promising regions. Recently, Kleinberg et
al. [21] developed a zooming algorithm for solving the MAB
problem over L-Lipschitz metric spaces. In comparison, we
iteratively evaluated the success for a fixed set of designs
using a uniform allocation strategy on a physical robot. Then
we resampled the design set around the design with the
highest sample mean for the next round of evaluation as
discussed in Section IV.

III. PROBLEM FORMULATION

We consider the problem of finding a parallel-jaw fingertip
design that maximizes the likelihood that a grasp is success-
ful on a physical system. We assume that the probability of
success for a particular design and grasp is stationary; e.g.
the robot’s control and perception calibration is constant over
time.

Our design problem had the following attributes: probabil-
ity of success could be determined quickly through experi-
mental trials, fabrication could be iterated quickly using rapid
prototyping, and the space of parameters was relatively small.
We note that our empirical design approach can only be
expected to work in design problems with similar complexity
to that of the fingertip design discussed in this paper, limited
by the size of the design space as well as time for fabrication
and testing.

Our objective was to maximize the mean likelihood of
success for grasps in our test set over a space of possible
designs, which we formalize below for concreteness.

A. Design Space

Let D be the design space, a set of parameters specifying
all possible designs. For example, D ⊂ Z×R could represent
the width of dots and depth of the fingertip surface structures.
We assumed the design space is bounded and fixed. We
called an element d ∈ D a design.

B. Object and Parallel-Jaw Grasping Model

Let O be an object to grasp with center of mass z ∈ R3.
For clarity, we assumed the vertices of the mesh are specified
with respect to a reference frame TO = (RO, tO) ∈ SE(3)
centered on z and oriented along the principal axes of the
object [25].

We parametrized parallel-jaw grasps as g = (x,v, θ)
where x ∈ R3 is the grasp center, v ∈ S2 is the grasp axis,
and θ ∈ S is the approach angle. We assumed randomness
in executing a particular grasp on a given object, which may
occur due to imprecision in sensing and actuation.

Let Γ = {(g1,O1), ..., (gn,On)} be a given set of test
grasps and objects. For example Γ could contain grasps
sampled from the handles on a set of industrial parts.

C. Design Objective

Let Si(d) be a binary random variable measuring the
success of using design d to execute grasp gi on Oi. Our goal
was to find the design that maximizes the mean likelihood
of success for grasps in our test set (shown in Figure 3):

d∗ = argmax
d∈D

1

n

n∑
i=1

P (Si(d) = 1) (1)

which is the expected number of successes for a uniform
distribution over the dataset Γ.



Fig. 4: Initial explorations for gripper surfaces were made for each conceptual design based on related work and the manufacturing limits
of the 3D printers. Initial designs were compared against default rigid grippers and grippers covered in adhesive tape (as shown in orange
at right).

D. Methodology

Solving Equation 1 may be very difficult in practice due
to the large number of possible designs, grasps, and objects.
Our approach to this problem was inspired by zooming
methods in optimization [21, 22]. We first formed an initial
discrete set of designs sampled from a number of concepts,
such as different surface features and fingertip geometries.
We then evaluated the probability of success for all designs
on all grasps and objects in our test set by sampling. Specif-
ically, we estimated the probability of success by taking the
percentage of successes over m total trials

PS(d,gi,Oi) =
1

m

m∑
j=1

1(Ŝi,j(d) = 1)

where Ŝi,j(d) is the j-th sample of Si(d) and 1(·) is
the indicator function. We then expanded our design set
by sampling a grid of design parameters around the best
performing design from the initial set. Finally, we repeatedly
evaluated and resampled for k rounds, choosing the design
with the highest sample mean as d̂∗ at termination. We used
k = 3 and m = 3 in our experiments based on the amount
of time to run each trial and round of evaluations.

IV. EXPERIMENTAL EVALUATION

A. Fabrication of Gripper Surfaces

Molds were created with Series 1 Pro Type A 3D printers
from Polylactic acid (PLA) filament. This manufacturing step
limited the resolution of surface textures to 0.1 mm. On the
parallel jaws of the robot, 3D printed mounts allowed for
quick swapping of grippers for testing and minimized the
development cost per iteration. Each gripper had an identical
base printed from PLA filament to index into the mount. The
base served as a hard plastic structure for the soft silicone
rubber tips to be cast around. The unique texture surface was

Fig. 5: Fingertips were cast around a PLA ’bone’ structure at the
center of each finger. Mold components were 3D printed from PLA.
TABLE I: Silicone Rubber Properties (Manufactured by Smooth-
On)

Silicone Rubber Softness
(Durometer)

Stiffness
(Elongation at Break %)

Mold Star 30 30A 339%
Dragon Skin 30 30A 364%
Dragon Skin 10 10A 1000%
Eco Flex 00-20 00-20 845%

created by casting the base in 3D printed molds shown in
Figure 5.

B. Dataset

Our design test set Γ consisted of seven total grasps across
three objects, illustrated in Fig. 3. The dataset was selected to
test (a) resistance to torques about the principle grasp axis,
which are difficult to resist with two fingers [2], and (b)
adaptivity to varying geometric features such as concavities,
convexities, and ridges.



The two grasps on the end stop holder and pipe connector
were chosen to test (a) torque resistance and the five grasps
on the vase were chosen to test (b) geometric adaptivity.
Each object was also labeled with a single stable pose on the
table chosen for reachability with our 4 degree of freedom
arm. All grasps were hand-selected from a set of contact
points generated using the antipodal grasp sampling of Dex-
Net 1.0 [25], and the approach axis was constrained to be
parallel to the table for the given stable pose.

C. Experimental Platform
Grasping trials were run on a Zymark Zymate 2 robot with

4 degrees of freedom plus gripper control and a rotating
turntable for 5 total controllable degrees of freedom (as
shown in Figure 1). To begin an experiment, a test object
was placed onto the workspace table in a pre-defined stable
pose and attached to a reset mechanism. For each grasp
trial, a PrimeSense Carmine 1.09 depth sensor was used to
register the pose of the object. After registration, the robot
proceeded to perform a chosen grasp by planning a straight
line trajectory to the desired grasp pose, moving to the pose,
and closing its jaws. The robot then attempted to raise the
object by 17.5mm, at which point the PrimeSense camera
took a color picture for labeling. This concluded a single
trial. To begin the next trial, the reset mechanism then raised
and lowered the test object back to the known stable pose
on the work table.

Registration was performed using convolutional neural
networks for a coarse pose estimate [14] and Iterated Closest
Point matching with a weighted point-to-plane objective [30]
for fine pose estimation in the plane of the table. The regis-
tration system had a mean X translational error of 4.2mm, a
mean Y translational error of 1.0 mm, and a mean angular
error of 5.1◦ in the plane. The standard deviations were
3.1mm, 3.3mm, and 8.6◦ for X translation, Y translation,
and rotation in the plane, respectively.

Fig. 6: Success and failures were hand labeled and fell into several
categories. A drop failure occurred when the gripper failed to
hold the object. A slip occurred when the gripper could not resist
gravitational torque and rotated 10 degrees below horizontal. A
cage failure occurred when the lift was successful despite positional
errors.

D. Grasp Success Criteria
Each grasp was considered a success or failure based

on the criteria illustrated in Fig. 6. We considered a grasp
attempt a failure if it fell into one of three modes:

1) Drop: The gripper failed to lift the object.
2) Slip: The gripper lifted the object but the object rotated

by more than 10 degrees about the principle grasp axis.
3) Cage: The gripper lifted the object upright but leveraged

a part of the gripper other than the fingertip surface.

Therefore a grasp was considered successful if it lifted the
object in an upright position using only the fingertips.

To provide labels for each grasp, we collected a single
image of the grasp after the arm had attempted to lift the
object for each grasp trial. Then, a single human labeler was
shown the image of each grasp and asked to label the grasp
as a success or failure based on the above criteria or reject the
datapoint. Datapoints were rejected if the robot pushed the
object out of the way and thus failure could not be attributed
to the fingertips themselves.

V. DESIGN EVALUATION

The study included k = 3 rounds of design evaluation. Our
design space D consisted of the following parameters: cur-
vature of the fingertip, angular resolution of spoke webbing
patterns, radial resolution of concentric patterns, fingertip
softness, and depth, shape, and width of gridded fingertip
indentations. The cross-sectional dimensions of the fingertip
were modeled after the dimensions of the human thumb
(width = 0.8in, height = 1.1in, and depth = 0.35in).

A. Initial Design Concepts

Initial design concepts were chosen to reflect a study of
related works (Section II). Designs were intended to max-
imally resist torque around the fingertip surface. Concepts
1 through 7 (as shown in Figure 4) were parametrized by
radius of surface curvature (radius = 0.93, 1.36, 2.68, flat,
-2.68, -1.36, -0.93 in). Concepts 8 through 16 (as shown
in Figure 4) are parametrized by width of surface features,
distance between features, and depth of the surface features.
For each design, we evaluated each of the 7 grasps in Fig. 3
for m = 3 for a total of 21 binary success trials per design.
As a baseline, standard rigid flat grippers and flat grippers
with silicone tape underwent the same evaluation (Fig. 4).
Design 12, which had a grid of square surface indentations
reminiscent of a waffle, had an 86% probability of success
and was chosen for expansion.

B. First Parametrized Expansion

In the second round, a 3x3x3 grid-search was employed to
explore the parametric design space near initial design 12.
These 27 design permutations investigated the relationship
between gripper stiffness (elongation at 100% strain), void
depth, and void width.

Parameters Explored:
Materials: Dragon Skin 30 (DS30), Mold Star 30 (MS30),
and a 50:50 mixture between DS30 and MS30.
Void Width: 0.03 0.0375 0.045 in.
Void Depth: 0.03, 0.05, 0.07 in.

Again, for each design we evaluated each of the 7 grasps
in Fig. 3 for m = 3 samples. The results of the second
round are illustrated in Fig. 7. The results suggest that lower
stiffness materials and shallower indentation depth performed
better. The best performing design had the same indentation
depth and width as design 12 with lower stiffness, which had
a 90% probability of success.



Fig. 7: The first round of parametric expansion investigates the
effect of material stiffness, void depth, and void width on the most
successful design from the initial set (shown in Figure 4) through
a 3x3x3 cube of possibilities. Success was found to be linked to
lower stiffness and diminished void width.

C. Second Parametrized Expansion

In the second expansion, we investigated the square in-
dented gripper with further exploration of void depth. We
also explored material softness.

Parameters Explored:
Materials: Dragon Skin 30, Dragon Skin 10, Eco-Flex 00-20.
Void Depth: 0.02, 0.03 in.

We were forced to use a backup Zymark robot in our
design evaluations because the robot we tested on in the
first two rounds malfunctioned. Thus, we ran the same 7
grasps but with m = 5 samples each instead of 3 because
we found that the backup robot was noisier and we needed
to reject more samples for each design. The results are
illustrated in Fig.8. We found that further softening the
material and reducing the depth of the indentations decreased
the probability of success. Furthermore, all designs had a
lower probability of success on the backup robot.

The most successful design d̂∗ was the winner of round
two, which had an void depth of 0.03in, an void width of
0.0375in, and a durometer of A30.

Fig. 8: A second round of parametric expansion further explored
the effect of smaller void depth and material softness on grasping
success. The most successful design was fabricated four more
times and tested on the same conditions to verify manufacturing
repeatability (shown at right in dark blue).

D. Manufacturing Repeatability

We made 4 additional copies of d̂∗ and evaluated the
probability of success for each independently in order to
measure the repeatability of our manufacturing process. The
results are illustrated in the right panel of Fig. 8. We found
that the designs have different success probabilities ranging
from 47% to 65% with a mean of 55% and a standard
deviation of approximately 7%. This suggests that variability
in our manufacturing process affects the success of the
design. However, even in the worst case the design had a
higher estimated success probability than the other designs
in second round.

E. Manufacturing and Evaluation Time

The whole process to create 16 unique grippers in round
one took approximately 11.5 hours. Printing the base took 1.5
hours, printing the 2 molds for each gripper took 4 hours,
casting silicone took 4 hours to solidify, and setup of the
printing process took 1 hour. We parallelized printing over
several printers in order to reduce the total manufacturing
time. Each grasp took approximately 1.5 minutes to execute.
With 1377 total grasps, the total time was 31 hours. While
the total time to evaluate 35 grasps was approximately 50
minutes, the reset mechanism allowed us to run the tests
autonomously and the human only needed to intervene to
change the fingertips and objects. Thus, the operator only
needed to perform approximately 2 hours of actual work
across the experiments for all rounds.

VI. DISCUSSION AND FUTURE WORK

We evaluated gripper surface texture and stiffness for
compliant robotic fingertips across 37 iterations of individual
conceptual surface features and 1377 grasping evaluations to
determine the surface feature with the highest probability of
success compared to standard planar, rigid jaw surfaces.

We do not claim to have found the optimal gripper in
this space; however, our process systematically searches the



design space for more successful instantiations. Our initial
baselines were a flat gripper and a flat gripper wrapped
with silicone tape (an industry standard). After testing these
baselines through our grasp dataset (shown in Fig. 3), the
probability of success was 37% and 40% respectively (as
shown in Fig. 4). At the end of the process, the best gripper
yielded 67% (see Fig. 8).

Exploiting this design approach, we want to combine these
grippers with embedded force sensors and explore various
fingertip surface textures and their effects on the sensing
system’s sensitivity to shear forces.

In the future, we want to test this process and these gripper
designs on robots with more degrees of freedom to optimize
for previously unreachable grasps and objects. We also plan
on implementing multi-armed bandits on the process to
reduce the number of iterations it takes to determine the
most successful gripper.
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