
Serverless Multi-Query Motion Planning for Fog Robotics

Raghav Anand, Jeffrey Ichnowski, Chenggang Wu, Joseph M. Hellerstein, Joseph E. Gonzalez, Ken Goldberg

Abstract— Robots in semi-structured environments such as
homes and warehouses, sporadically require computation of
high-dimensional motion plans. Cloud and fog-based paral-
lelization of motion planning can speed up planning, but allocat-
ing always-on high-end computers for sporadic computations
can be less efficient than a new class of “serverless” computing
that can be allocated on-demand. This paper proposed paral-
lelizing the computation of sampling-based multi-query graph-
based motion planner based on asymptotically-optimal Proba-
bilistic Road Maps (PRM*) using the simultaneous execution
of 100s of cloud-based serverless functions. We explore how to
overcome inherent limitations of serverless computing related
to communication and bandwidth limitations using different
work sharing techniques and provide proofs of probabilistic
completeness and asymptotic optimality. In experiments on
synthetic benchmarks and on a physical Fetch robot performing
a sequence of decluttering motions, we observe up to a 50x
speedup relative to a 4 core setup with only a marginally higher
cost. Additional results and videos can be viewed at https://sites.
google.com/berkeley.edu/graph-based-serverless-mp/home.

I. INTRODUCTION

Many robotics applications, from home automation to
warehouse order fulfillment, benefit from access to a fast
motion planner that allows the robot to interact in a phys-
ical space. For robots in cluttered environments that have
many degrees of freedom, planning can be computationally
challenging [1] and, depending on the complexity of the
robot and scenarios, these compute times can be highly
varied. Having an always-on high-end computer, whether
on-premises or in the cloud, can be an inefficient use of
resources [2]. Consider a robot tasked with cleaning desks in
an office space (see Fig. 1). Due to the variability of obstacles
in an office scenario, the robot is required to replan motions
for each desk. When decluttering a single desk, instead of
replanning for every pick and place operation, it should reuse
computations. Moreover, mobile manipulators like the Fetch
often need to recompute motion plans even in the same
environment due to variations in positioning of the frame
of the manipulator arm based on inaccurate driving wheels
or obstacles blocking navigation. In this example, compute
demands vary dramatically between the navigation to a desk
and the decluttering of a desk. Computing motion plans to
move between rooms is relatively inexpensive as finding
paths in a 3-dimensional space for the robot to track is
cheap, whereas, planning manipulator arm motions to grasp
objects requires solving 6-dimensional or higher problems
that require exponentially more computation. Similarly in a
warehouse or a factory, robots have to plan manipulator arm
trajectories for many motions in a single work cell.

University of California, Berkeley. {raghav98, jeffi, cgwu,
hellerstein, jegonzal, goldberg}@berkeley.edu

Fig. 1. A mobile manipulator robot organizes and declutters a desk with
a sequence of motions computed through on-demand parallel computation
with serverless fog robotics. In this scenario, after the robot approaches
the desk, it picks and places the objects shown in red. Every decluttering
sequence, even for the same desk, requires a new motion plan computation
due to changes in the obstacle environment, either due to changes of objects
that will be left alone, or due to inaccuracy or blocked approaches to the
desk. To quickly start the sequence of tasks, the robot computes a single
graph (shown in blue) of obstacle-free motions using 100s motion-planning
serverless functions (aka lambdas λ) for a short duration. Once computed,
the robot follows motions between points on the graph. Since serverless
computing is billed in 100 ms units, the proposed approach costs the same
whether using 1 serverless computer for 500 seconds, or 500 serverless
computers for 1 seconds.

To get cost effective computation we propose using
serverless cloud-based computing which allows developers
to register functions in the cloud (that take in arbitrary
input and return arbitrary output) without having to man-
age the infrastructure associated with executing these func-
tions [3]. As serverless computing is focused on single-
function execution, it is often called Function-as-a-Service
(FaaS). Functions run on-demand on various cloud, fog,
and edge systems, and are billed in small time units (e.g.,
100 ms [4]). Demanding computational workloads in motion
planning for home, office, and warehouse scenarios is often
intermittent due to time spent in low-dimensional navigation
problems, performing actual motions, or being offline. As
such, the computational requirements match well with the
serverless paradigm of elastically scaling compute resources
to minimize cost and meet demand. Although each compute
unit in a serverless scenario is limited in its computational
capabilities, we propose an efficient parallel algorithm that
can take advantage of the simultaneous availability of a 100s
of compute units to achieve large speedups. We refer to a
single execution of a serverless function as a lambda.

Serverless computing does comes with its limitations,
including: inability to directly communicate with other com-
puters, no direct permanent storage between executions, and

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1591 submitted to 2021 IEEE International Conference
on Robotics and Automation (ICRA). Received October 31, 2020.

unpredictable delays in execution [5]. In the proposed
method, we overcome some of these limitations, but note
that future serverless computing offerings may relax these
restrictions or provide systems that facilitate the computation
model proposed here [6], [7]. As such, the proposed method
may scale better and become more cost-effective in the
future, with no change the to algorithm.

This paper proposes a method that leverages the elastic-
ity of serverless computing to parallelize computations on-
demand of complex multi-query motion plans. We show that
one can flexibly allocate computational parallelism to each
problem, allowing one, with marginal increase in cost, to
allocate more parallelism to compute motion plans faster.
We experiment with the Amazon Lambda FaaS solution.
To overcome the inability of lambdas to communicate with
each other, we set up a small coordinating server to which
the lambdas connect. We show that the proposed method
scales well upto 128 concurrent lambdas which suggests that
serverless computing can be cost-effective for motion plan
computation. The main limit to cost-effective scaling beyond
128 lambdas are startup delays of functions. To test the
potential for further scaling with shorter startup delays, we
control for delays in startup, and scale up to 512 concurrent
lambdas with up to a 52x speedup compared to a 4-core local
baseline for a Fetch robot [8] decluttering scenario and up to
a 100x speedup on synthetic motion planning benchmarks.

This paper makes the following contributions:
1) a distributed parallel algorithm for computing Proba-

balistic Road Maps “Star” (PRM*), probabilistically-
complete and asymptotically-optimal motion planner,
using serverless computing

2) an implemented system of the proposed algorithm on
Amazon Web Services FaaS “Lambda” environment

3) time and cost bounded allocation of resources for
motion-planning for generating graphs of a given size

4) experiments in simulation and on a physical Fetch mo-
bile manipulator robot that suggested that the proposed
algorithm provides significant speedups against local
baselines

II. RELATED WORK

In this section, we provide background on sampling based
motion planners and prior work on parallelizing them. We
also describe serverless computing and fog robotics.

A. Sampling Based Motion Planners

Sampling-based motion planners solve motion-
planning [9] problems by generating random robot
configurations and connecting them into a graph of feasible
motions. Planners such as PRM [10] and RRT [11] are
probabilistically complete, meaning that with enough time,
they will find a solution with probability 1. With attention
to sampling and connection strategy, these planners can be
asymptotically-optimal (e.g., PRM* and RRT* [12] and
SST [13]), meaning that with enough time, they will find
an optimal solution with probability 1. In some scenarios,
finding a single solution to a motion planning problem or

single-query is sufficient, while in other scenarios it can be
beneficial to precompute a multi-query graph or road map
of motions that can later be quickly search with different
start and goal configurations.

Amato et al. [14] showed that sampling-based motion
planners are well-suited for parallel computation. Prior work
on parallelizing these motion planners explored building a
single graph in shared memory with locks [15] and without
locks [16], in distributed memory [17], [18], [19], and more.

B. Serverless Computing and Fog Robotics

Serverless computing has gained wide attention in recent
years in both academia and industry for a wide variety
of workloads [20], [21], [22]. Compared to server-based
computing, where users provision and compute with virtual
machines (VM) serverless computing has two key advan-
tages. First, it abstracts away the notion of servers; users
register functions with the system and define when to trigger
function execution. This simplifies the deployment process
as users no longer need to manually provision VMs and
find the VM with the optimal CPU, memory, and network
resources. Second, serverless platforms automatically adapt
to workload changes; and users only pay for the compute
allocated during the function execution [3]. In our setting, a
robot’s computing requirements sporadically spike, making
serverless computing an attractive option.

Cloud-based computation for robotics shows promise in
offloading compute-intensive processes from a robot’s on-
board computer [23] to the public cloud or servers on the
Edge, allowing robots to have low-power CPUs and light-
weight batteries to power them. Motion planning can be com-
putationally challenging [1], and thus is a good candidate for
cloud-based computation [24]. In prior work, Ichnowski et
al. [2] showed that serverless computing of tree-based single-
query motion planners has the potential to dramatically speed
up motion plan computation. Tree-based planners need to
replan from scratch with every new problem, even if the robot
is operating in the same environment. Using a graph-based
planner allows exploration from a previous motion plan to
be reused to greatly reduce the amount of time required to
move each object.

III. PROBLEM STATEMENT

In this paper we parallelize the computation of a multi-
query motion planning using cloud-based serverless comput-
ing.

A. Multi-query Motion Planning Problem

Let q ∈ C be the complete specification of a robot’s
degrees of freedom (e.g., joint angles, position and orien-
tation in space), where C is the configuration space, the
set of all possible configurations. Let Cobstacle ⊂ C be the
configurations that are in obstacle or otherwise violate task-
specific constraints, and the remaining configurations Cfree =
C \ Cobstacle is the free space. Given a start configuration
qstart ∈ Cfree and a goal configuration qgoal, the objective of
motion planning is to find a sequence τ = (q0,q1, . . . ,qn)

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1591 submitted to 2021 IEEE International Conference
on Robotics and Automation (ICRA). Received October 31, 2020.

such that q0 = qstart, qn = qgoal, and paths between all
consecutive pairs of points in τ are collision free.

The objective of multi-query motion planning is to pre-
compute a data structure that allows for the efficient compu-
tation of τ given changing qstart and qgoal.

Given a cost function d : C × C → R+, let c(τ) =∑n−1
i=0 d(qi,qi+1). The objective of optimal motion planning

is to compute a τ that minimizes c(τ).

B. Serverless Computing Environment

The robot has an onboard computer and networked access
to a cloud-based serverless computing service. The serverless
computing service allows for an unbounded number of
concurrent executions of single functions, with the limitation
that they cannot store state between executions, cannot accept
inbound network connections, and have bounded runtime.
The goal of serverless multi-query motion planning is to
perform parallel precomputation step of multi-query motion
planning, allowing for faster computation at the expense of
more parallelism.

IV. METHOD

We propose a parallel serverless sampling-based motion
planner. We start with background on PRM and PRM*
algorithms, followed by a discussion of the challenges that
arise from parallelizing PRM* using serverless computing.
We then describe the algorithm we propose.

A. Probabilistic Road Maps (PRM) and PRM* Background

The Probabilistic Road Maps (PRM) [10] motion planner
randomly samples configurations to build a graph of the
connectivity of the environment. This graph is subsequently
searched to find paths between any two points. PRM samples
n configurations in Cfree and attempts to connect kprm pairs of
configurations provided there is a collision-free path between
them using to a local planner. In the query phase, a shortest-
path search (e.g., Djikstra’s) computes a path connecting start
and goal configurations. PRM is probablistically complete.
Karaman et al. [12] propose PRM*, with kprm ≥ k∗prm, where
k∗prm = e(1+ 1

d) log n, and d is the dimension of the planning
problem, PRM is asymptotically-optimal.

B. Parallelizing PRM* using Serverless Compute

Parallelizing PRM* over a serverless environment presents
additional challenges compared to local methods of paral-
lelizing PRM* [9] due to network overhead that makes it
expensive to share information between lambdas. Sharing
data structures [25] and nearest neighbor queries between
lambdas is infeasible due to this lack of shared state.

To work around the limits of serverless computing, specif-
ically statelessness and only allowing outbound network con-
nections, a coordinator algorithm is defined. This coordinator
runs on a separate computer that allows inbound connections
and can keep state. If the robot has a public IP address, it
can run the coordinator algorithm and bypass the provisioned
server. However, the coordinator algorithm has low CPU
and memory requirements, so it can be a lightweight cloud

Algorithm 1 Coordinator Algorithm: A packet in the work
queue is a group of vertices to be connected to the graph

1: G = (V = ∅, E = ∅)
2: work queue = initWorkQueue(packet size)
3: for lambda id in num lambdas do
4: work = work queue.pop()
5: initializeLambda(lambda id, work, seed)
6: while not done do
7: for lambda in lambdas do
8: Receive new edges El from lambda
9: E = E

⋃
El

10: Send next work packet to lambda
11: if work queue empty then
12: Send done to all lambdas and return graph to robot

Algorithm 2 Lambda Algorithm
1: i = 0
2: (start index, end index) = work
3: nn = nearest neighbor structure
4: rng = random state generator(seed)
5: while not done do
6: while i < end index do
7: qrand ← rng.sample()
8: if qrand ∈ Cfree then
9: i = i+ 1

10: if i > start index then
11: Update kprm
12: for qnear in nn.near(qrand, kprm) do
13: El = connect(qrand, qnear)
14: nn.add(qrand)
15: Send El to coordinator
16: work ← poll coordinator

instance with a far lower cost than the compute intensive
resources required for motion planning.

C. Serverless Algorithm

To parallelize the computation of the PRM and minimize
communication costs, Alg. 1 exploits the determinism of
pseudo-random number generators to create a deterministic
sequences of points when provided with a particular seed.
As long as all lambdas are initialized with the same random
seed, they will sample the same set of points. The sampling
stage of the PRM* algorithm is orders of magnitude faster
than the nearest neighbor queries and the connection of
edges. For instance sampling and validating 1000 points
for an 8 dimensional space took 0.063 seconds, whereas
connecting the edges for the above samples took 6.194
seconds. The key trade-off in this algorithm is to perform
repeated fast sampling instead of slow communication of
samples. As size of the graph increases, and the amount
of serial sampling work decreases as a proportion of the
total work, Amdahl’s law [26] tells us that the theoretical
maximum parallel efficiency goes up.

In Alg. 2 all the lambdas perform the sampling step for the

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1591 submitted to 2021 IEEE International Conference
on Robotics and Automation (ICRA). Received October 31, 2020.

Fig. 2. A central coordinator handles initializing lambdas and maintains open connections to them to allow communication between lambdas. Note that
the coordinator need not be a very large instance as it performs a network bound task. Multiple robots can also reuse a single coordinator for maximum
efficiency. Each of the 6 lambdas in the center connect a subset of the edges in the sampled vertices. These edges are sent to the coordinator which
combines them into the complete graph on the right.

required graph size. Vertices get unique IDs using a counter.
These IDs are shared between the coordinator and lambdas
implicitly through the common seed in the sampling process.
This allows lambdas to send edges to the coordinator using
vertex IDs instead of d-dimensional state, resulting in lower
bandwidth communication.

Vertex IDs are divided into work packets using different
work sharing methods (Sec. IV-D). A work packet has start
and end vertex IDs that indicate the range of vertices to be
connected to the rest of the graph. Each lambda in Alg. 2 is
initialized with its first work packet and immediately begins
vertex sampling and edge connection. Once the vertices have
been connected, any new edges are sent to the coordinator
(Alg. 1) which responds with either another work packet or
a termination message.

The algorithm maintains the probabilistic completeness
and asymptotic optimality of PRM*. The common random
seed ensures that all lambdas generate the same sequence
of vertices (v1, . . . vn). Similarly, the sequence of edges
(e1, . . . en) is identical to the serial version of PRM* as each
lambda generates the same edge-set for its vertices. Since the
same vertices and edges are present in the graph as in the
serial algorithm, Alg. 1 inherits probabilistc completeness
and asymptotic optimality from PRM*.

D. Work Sharing

We define 5 work sharing methods:

No Work Sharing Each lambda uses a packet size of
num vertices
num lambdas . This requires no communication with the coor-
dinator and lambdas will terminate after processing the first
work packet and sending edges to the coordinator.
Cyclic Work Sharing Each lambda processes vertices that
have the property that vertex id mod num lambdas =
lambda id. This requires all lambdas to sample nearly all
vertices, but distributes work more evenly.
Synchronous Work Sharing After sending edges to the
coordinator the lambda blocks communication until a new

work packet is received. This can result in idle time between
two work packets but ensures that work is distributed evenly.
Asynchronous Work Sharing Lambdas poll the coordina-
tor for a work packet shortly before processing the current
work packet. This reduces network overhead and lambda idle
time as packets are readily available in the network queue
of the lambdas, but comes with the tradeoff of less even
distribution of work than the synchronous method.
Equal Work Amount Per Packet The cost to add a new
vertex to the PRM graph goes up with the number of
vertices since k∗prm grows. Small packet sizes in previously
discussed work sharing methods make the distribution of
work between lambdas more even, however, this leads to
additional communication costs. Packets that have an equal
amount of work instead of an equal vertex count can result
in good work distribution without additional communication.

To find the optimal packet sizes to send to each lambda the
work per vertex was estimated. The time spent connecting
edges for each vertex is proportional to the number of edges
that have to be checked for collision which is determined by
k∗prm. Since k∗prm is proportional to log n, the work to connect
each vertex should grow as log n. To test this hypothesis, the
connection time was measured (in Fig. 3), and the resulting
graph roughly matched a log-distribution.

0 100 200 300 400 500

Vertex Num

0

20

40

60

T
im

e
(m

ill
is

ec
on

d
s)

Connect time

Sample time

Fig. 3. The blue line refers to the edge connection time for the
vertex and the orange line refers to the sampling time for the same
vertex. The sampling time is much lower than the edge connection
time. The edge connection time roughly follows a log function

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1591 submitted to 2021 IEEE International Conference
on Robotics and Automation (ICRA). Received October 31, 2020.

This log-like work distribution is leveraged by creating
variable size packets with the property that the log-sum of
the vertex IDs in them are equal. Under the assumption that
the relative time to connect each vertex is approximately pro-
portional to the log of its vertex ID, this creates packets that
have the same approximate amount of work. This method
does not require any communication with the coordinator.

V. EXPERIMENTS AND RESULTS

We experiment with the proposed system on SE(3) syn-
thetic benchmarks from OMPL [27] and physical Fetch
decluttering tasks, running on the Amazon AWS Lambda
serverless computing environment. The coordinating server
runs on a c5.xlarge instance (two 64-bit Intel Xeon cores)
in the same region as the lambda processes. All experiments
are run for 11 trials while varying the random seed.

A. Work sharing comparison

To compare the different work sharing methods discussed,
we generate a graph of 17000 vertices and approximately
700000 edges with each work-sharing method while varying
the number of lambdas and number of packets sent. We
compare all methods across two metrics: total cost of the
serverless execution and the termination time of the algo-
rithm. The first row of graphs on Fig. 4 show the results for
all scenarios.

Comparing the relative performance of asynchronous and
synchronous methods across different scenarios, we observe
from Fig. 4 that asynchronous work sharing outperforms
synchronous work sharing in both cost and end time for
nearly all packet sizes due to the lower communication over-
head. This supports the hypothesis that communication costs
exceed repeated sampling costs in a serverless environment.

Comparing the performance of different packet sizes
within the asynchronous method, we observe that a moderate
packet size performs the best in terms of end time—too small
of a packet size results in high communication costs on the
coordinator, while too large of a packet size results in uneven
work distribution that causes some lambdas to straggle.
However, the cost of execution monotonically decreases
with increasing packet size. This is because the slowest-to-
complete lambda determines the end time of the algorithm,
while the aggregate execution time determines the cost. A
large packet size results in fewer packets that allows a greater
proportion of lambdas to finish early due to the low work
allocated to them which brings down the overall cost.

No-work-sharing outperforms asynchronous and syn-
chronous methods on cost for various packet sizes, however
the cheapest asynchronous method is usually cheaper to
run. The reason is that no work sharing can be reframed
as synchronous work sharing with a large packet size (that
results in a single packet for each lambda to process), and
large packet sizes result in reduced costs. However, no-work-
sharing suffers from a worse end-time than asynchronous
methods due to the poor work distribution. Cyclic work-
sharing methods perform worse on both metrics than other
methods because cyclic work-sharing requires every lambda

to sample nearly all vertices in the graph, which adds up to
increased costs and worse end times.

Finally, log-based work sharing (using packets with equal
work) on the Fetch scenarios for high numbers of lambdas
(128 or above) finishes as quickly as the asynchronous work
sharing method and has nearly the same cost as no-work-
sharing with fixed packet sizes: the absence of communica-
tion lowers the cost while the approximately equal work in
each packet allows for the quicker end times. Additionally,
the cost of log-based work sharing is only slightly greater
than no-work-sharing. However, at lower numbers of lamb-
das and for certain scenarios (like the SE(3) simulations),
log-based work sharing is outperformed by asynchronous
work sharing methods. This is likely due to large deviations
from the predicted log-growth of work for SE(3) scenarios
that causes an uneven work distribution.

B. Scaling with Lambdas

We then experiment to measure the speedup provided
by more lambdas. Ideal scaling means that a doubling of
lambdas leads to a halving of runtime. However, due to
startup and network overhead, and repeated sampling work,
real-world scaling incurs performance penalties.

Fig. 4 compares 4- and 8-core local baselines (running
PRM* on the robot’s CPU) against Alg. 1 running on 16
to 128 lambdas. Scaling beyond 128 lambdas is difficult
with the current serverless offering due to startup overhead—
simultaneously starting up 256 lambdas takes 5s, which is
nearly the runtime of the algorithm on 128 lambdas. We
hypothesize that this startup delay will be eliminated in the
future [6], [7], and also simulate lambdas starting without the
delay. We show results for 128*, 256*, and 512* lambdas
that simulate no delayed startup with an asterisk.

To quantify the speedup of the algorithm, we measure
the parallel efficiency of k lambdas which can be defined
as time for m lambdas

time for k lambdas ·
m
k where m refers to the number of

lambdas being compared against. A parallel efficiency of 1
indicates ideal scaling.

Fig. 4 shows that using 128 lambdas has a mean parallel
efficiency of 0.77 as compared to 4 cores. As the number
of lambdas increases, we observe that the proportion of
time spent in sampling and startup increases and causes the
efficiency to drop. When controlling for startup overhead, we
observe that the algorithm continues to scale to 512 lambdas.
512 lambdas on the Fetch scenarios has an end time of
only 2.9s compared to the 157.2s end time of a 4-core local
baseline, a 52x speedup. SE(3) scenarios scale even better
with 512 lambdas finishing in 1.43s compared to the 153.5s
of the 4-core local baseline, a 106x speedup.

C. Choosing Optimal Parameters

In a real-world scenario people are most interested in cost
and end time. We measure the tradeoffs that between the
two, and plot the cost of execution in USD against the time
to obtain the solution across all lambda counts in Fig. 4.
The ideal position for a point on the graph is in the bottom-
left, corresponding to lowest end time (left) and lowest cost

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1591 submitted to 2021 IEEE International Conference
on Robotics and Automation (ICRA). Received October 31, 2020.

T
im

e
(s

)

Work Sharing Method
None
Log
Modulo
Async
Sync

Ideal Scaling
End Time

Fr
ac

ti
on

of
T

im
e

Startup Overhead
Sampling Time
Connect Time

Local Baseline
No Startup Overhead

**
*

100

101

102

4** 8** 16 32 64 128128*256*512*
NumLambdas

0

1

10000 20000 30000 40000 50000
Lambda End Time (ms)

3.5¢

4.0¢

4.5¢

10000 20000 30000 40000 50000
Lambda End Time (ms)

3.5¢

4.0¢

4.5¢

100

101

102

4** 8** 16 32 64 128128*256*512*
NumLambdas

0

1

C
o
st

 (
U

S
D

)

100

101

102

4** 8** 16 32 64 128128*256*512*
NumLambdas

0

1

10000 20000 30000 40000
Lambda End Time (ms)

2.1¢

2.2¢

2.3¢

2.4¢

101

102

4** 8** 16 32 64 128128*256*512*
NumLambdas

0

1

20000 40000 60000 80000
Lambda End Time (ms)

4.4¢

4.6¢

4.8¢

Fig. 4. Experiments are run on real-world decluttering scenarios (with the Fetch robot) and on synthetic benchmarks. The first row for
each scenario depicts the tradeoff between cost and end-time that a user can make: the size of the dot indicates the number of packets
sent. Higher numbers of lambdas always finish quicker but have a marginally higher cost; and the best work-sharing method is scenario
dependent. In general, asynchronous work sharing performs better than synchronous work sharing, and less communication results in a
lower total cost. The second row for each scenario shows time scaling of the algorithm with increasing number of lambdas: as the number
of lambdas increases the startup overhead and sampling time costs dominate the overall computation that causes a reduction in parallel
efficiency.

(down). This means that if a point is on the below and left
of any neighbors, it is a strictly better choice.

Using this insight, one can traverse the graphs in Fig. 4
to pick optimal parameters for a specific application. For
the Fetch scenario, the log-based work-sharing method is to
the bottom-left of the asynchronous and synchronous work
sharing methods due to its low cost. However, in these
scenarios, no-work-sharing is marginally cheaper than the
log-based method with the penalty of a higher end time.
Thus depending on the unit economics of the application, the
choice can be made between log-based work sharing and no-
work-sharing. In this example, no-work-sharing is suitable
where the unit economics don’t allow a marginally higher
cost for quicker end times, otherwise log-based work sharing
is preferable. Similarly, lower lambda counts can result in a
lower unit cost, but at the penalty of much worse end times.

Another perspective involves viewing idle time on the
robot as lost opportunity cost. If the opportunity cost can be
quantified, then the time saved by using a more expensive
work-sharing method or more lambdas can translate to cost
savings. For example, in the Fetch scenario, the log-based
method is faster than no work sharing by 0.2s, but costs
$0.001 more. If 0.2s of robot idle time is worth more than
0.001, then log-based work sharing method is superior due
to the additional work that can be performed by the robot.

VI. CONCLUSION

We propose using cloud-based serverless comput-
ing to rapidly compute a probabilistically-complete and
asymptotically-optimal road map for multi-query motion

planning. Serverless computing provides a nearly unbounded
source of parallelism that we exploit by dividing vertices
to connect across lambda functions. Each lambda samples
the same vertex sequence by initializing the sampler with a
common seed and connects a subset of edges.

In experiments with a Fetch robot, the proposed serverless
computing speeds up motion planning computation by up
to 52x compared to local baselines while costing $0.035
to build a graph (that can be reused for multiple motions),
suggesting this approach can be used to speed up sporadically
computationally-intensive motion-planning problems while
being more cost effective than an always-on high-end com-
puter. Additionally, we provide guidelines for applications
to simultaneously optimize for Dollar-cost and end-time by
varying the work sharing method and the number of lambdas.

In future work, we plan to explore different approaches
to sharing information between serverless processes, taking
advantage of recent developments in serverless comput-
ing [6], to achieve lower startup overhead, faster point-to-
point communication, and reduce bottlenecks on scalability.

ACKNOWLEDGMENT

This research was performed at the AUTOLAB at UC Berkeley in
affiliation with the Berkeley AI Research (BAIR) Lab, Berkeley Deep Drive
(BDD), the Swarm Lab, the Real-Time Intelligent Secure Execution (RISE)
Lab, the CITRIS “People and Robots” (CPAR) Initiative, and by the NSF
Scalable Collaborative Human-Robot Learning (SCHooL) Project 1734633
and the NSF ECDI Secure Fog Robotics Project Award 1838833. The work
was supported in part by donations from Siemens, Google, and Toyota
Research Institute. The information, data, comments, and views detailed
herein does not necessarily reflect the endorsements of the sponsors.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1591 submitted to 2021 IEEE International Conference
on Robotics and Automation (ICRA). Received October 31, 2020.

REFERENCES

[1] J. Canny, The complexity of robot motion planning. MIT press, 1988.
[2] J. Ichnowski, W. Lee, V. Murta, S. Paradis, R. Alterovitz, J. E.

Gonzalez, I. Stoica, and K. G. Goldberg, “Fog robotics algorithms
for distributed motion planning using lambda serverless computing,”
in Proceedings IEEE Int. Conf. Robotics and Automation (ICRA), Jun.
2020.

[3] J. M. Hellerstein, J. M. Faleiro, J. E. Gonzalez, J. Schleier-Smith,
V. Sreekanti, A. Tumanov, and C. Wu, “Serverless computing:
One step forward, two steps back,” in Conference on Innovative
Data Systems Research (CIDR ’19), 1 2019. [Online]. Available:
https://arxiv.org/abs/1812.03651

[4] Amazon Web Services, Inc. AWS Lambda – pricing. [Online].
Available: https://web.archive.org/web/20190909111142/https://aws.
amazon.com/lambda/pricing/

[5] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal,
Q. Pu, V. Shankar, J. M. Carreira, K. Krauth, N. Yadwadkar,
J. E. Gonzalez, R. A. Popa, I. Stoica, and D. A. Patterson,
“Cloud programming simplified: A berkeley view on serverless
computing,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2019-3, 2 2019. [Online]. Available: http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html

[6] V. Sreekanti, C. Wu, X. C. Lin, J. Schleier-Smith, J. M. Faleiro, J. E.
Gonzalez, J. M. Hellerstein, and A. Tumanov, “Cloudburst: Stateful
functions-as-a-service,” 2020.

[7] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck,
P. Aditya, and V. Hilt, “SAND: Towards high-performance serverless
computing,” in 2018 USENIX Annual Technical Conference (USENIX
ATC 18). Boston, MA: USENIX Association, Jul. 2018, pp. 923–
935. [Online]. Available: https://www.usenix.org/conference/atc18/
presentation/akkus

[8] Fetch Robotics, “Fetch research robot,” http://fetchrobotics.com/
research/.

[9] H. Choset, K. M. Lynch, S. A. Hutchinson, G. A. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, 2005.

[10] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Proba-
bilistic roadmaps for path planning in high dimensional configuration
spaces,” IEEE Trans. Robotics and Automation, vol. 12, no. 4, pp.
566–580, 1996.

[11] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
The International Journal of Robotics Research, vol. 20, no. 5, pp.
378–400, May 2001.

[12] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, Jun. 2011.

[13] Y. Li, Z. Littlefield, and K. E. Bekris, “Asymptotically optimal
sampling-based kinodynamic planning,” The International Journal of
Robotics Research, vol. 35, no. 5, pp. 528–564, 2016.

[14] N. M. Amato and L. K. Dale, “Probabilistic roadmap methods are
embarrassingly parallel,” in Proceedings IEEE Int. Conf. Robotics and
Automation (ICRA), May 1999, pp. 688–694.

[15] I. A. Şucan and L. E. Kavraki, “Kinodynamic motion planning
by interior-exterior cell exploration,” in Algorithmic Foundation of
Robotics VIII. Springer, 2009, pp. 449–464.

[16] J. Ichnowski and R. Alterovitz, “Scalable multicore motion planning
using lock-free concurrency,” IEEE Transactions on Robotics, vol. 30,
no. 5, pp. 1123–1136, 2014.

[17] M. Otte and N. Correll, “C-FOREST: Parallel shortest path planning
with superlinear speedup,” IEEE Transactions on Robotics, vol. 29,
no. 3, pp. 798–806, 2013.

[18] S. Carpin and E. Pagello, “On parallel RRTs for multi-robot systems,”
Proceedings 8th Conference Italian Association for Artificial Intelli-
gence, 2002.

[19] S. A. Jacobs, N. Stradford, C. Rodriguez, S. Thomas, and N. M.
Amato, “A scalable distributed RRT for motion planning,” in Proceed-
ings IEEE Int. Conf. Robotics and Automation (ICRA), May 2013, pp.
5073–5080.

[20] N. J. Yadwadkar, B. Hariharan, J. E. Gonzalez, B. Smith, and
R. H. Katz, “Selecting the best VM across multiple public clouds:
A data-driven performance modeling approach,” in Proceedings of
the 2017 Symposium on Cloud Computing, ser. SoCC ’17. New
York, NY, USA: ACM, 9 2017, pp. 452–465. [Online]. Available:
http://doi.acm.org/10.1145/3127479.3131614

[21] G. McGrath and P. R. Brenner, “Serverless computing: Design,
implementation, and performance,” in 2017 IEEE 37th International
Conference on Distributed Computing Systems Workshops (ICDCSW).
IEEE, 2017, pp. 405–410.

[22] Amazon Inc., “Aws case studies,” https://aws.amazon.com/lambda/
resources/customer-case-studies/.

[23] J. Ichnowski, J. Prins, and R. Alterovitz, “The economic case for
cloud-based computation for robot motion planning,” in Proceedings
International Symposium on Robotics Research (ISRR), 2017, pp. 1–7.

[24] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A survey of research
on cloud robotics and automation,” IEEE Transactions on Automation
Science and Engineering, vol. 12, no. 2, pp. 398–409, 2015.

[25] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking
behind the curtains of serverless platforms,” in 2018 USENIX
Annual Technical Conference (USENIX ATC 18). Boston, MA:
USENIX Association, Jul. 2018, pp. 133–146. [Online]. Available:
https://www.usenix.org/conference/atc18/presentation/wang-liang

[26] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” 1967.

[27] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics and Automation Magazine, vol. 19, no. 4,
pp. 72–82, Dec. 2012. [Online]. Available: http://ompl.kavrakilab.org

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1591 submitted to 2021 IEEE International Conference
on Robotics and Automation (ICRA). Received October 31, 2020.

