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ABSTRACT
As global labor costs increase and product life cycles de-
crease, there is renewed interest in research in automated
manufacturing systems that can be reliably and rapidly con-
figured. Inspired by Turing’s abstractions for computing, Al-
gorithmic Automation explores mathematical abstractions
and algorithms that allow the functionality of assembly lines
and manufacturing automation systems to be designed in-
dependent of their underlying implementations. Abstrac-
tions based on minimal sets of geometric primitives can pro-
vide the foundation for formal specification, analysis, design,
optimization, and verification. Algorithmic Automation is
characterized by: (1) formal specification of sets of admis-
sible inputs (eg, polyhedra) and operations (eg, parallel-jaw
grasps), (2) complete algorithms that compute all solutions
or terminate with a report that no solution exists, and (3)
bounds on complexity as a function of input size. This ex-
tended abstract summarizes selected results and open prob-
lems.
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1. INTRODUCTION
Manufacturing automation today is where computer tech-

nology was in the early 1960’s: a patchwork of ad-hoc solu-
tions lacking a rigorous scientific methodology. Computer-
Aided Design (CAD) provides detailed models of part ge-
ometry but what is missing is a framework for the system-
atic design of automated assembly systems that handle parts
(e.g. feed, sort, fixture, assemble, and inspect them).

Assembly lines employ a finite set of deterministic ele-
ments that perform specific physical actions (pushing, squeez-
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ing, turning, grasping, etc). This suggests that assembly au-
tomation may be amenable to composition by a set of mini-
mal primitives for formal specification, analysis, and synthe-
sis [6]. Algorithmic results in robotics and automation often
apply results from computational geometry are presented
at symposia such as the biannual Workshop on Algorithmic
Foundations of Robotics (WAFR) [22, 23] and in publica-
tions such as the IEEE Transactions on Automation Science
and Engineering (T-ASE) [13].

2. ALGORITHMIC PART FEEDING
In manufacturing, parts often arrive in bags or boxes; an

important function is part feeding, where such parts are pre-
cisely oriented prior to assembly or packing. A variety of
clever mechanical techniques such as vibratory bowl feeders
have been used for over a century, but these are designed
ad-hoc by a rapidly diminishing cadre of specialists. A chal-
lenge is to develop algorithmic approaches that can take as
input a CAD model of the part and generate as output a
sequence of operations from a specified set that will feed
the part (or a report that no such sequence exists). This
problem was studied by Natarajan [26] and Eppstein [12],
who reduced a version of the problem to that of finding reset
sequences for monotonic deterministic finite automata.

In [15], I proposed a mechanical approach to orienting
polygonal parts using sequences of open-loop grasp opera-
tions with a modified parallel-jaw gripper [16]. I presented
an algorithm for computing an optimal sequence of grasp
operations and showed that there always exists a sequence
of operations that is guaranteed to orient any part (up to
symmetry). I conjectured that O(n) operations are suffi-
cient for an n-sided polygon; Chen and Ierardi proved this
conjecture in [8]. It was later shown that the complexity
can be bounded by a constant that is a function of the geo-
metric eccentricity of the part’s bounding box [43]. The al-
gorithm was generalized to algebraic parts [31], and applied
to designing of an optimal sequence of mechanical fences on
conveyor belts [45] and design of vibrational sequences for
orienting micro-scale parts in parallel [4]. There is also work
on algorithmic approaches to vibratory bowl feeder design
[2, 1, 14] but a complete algorithm for feeding 3D parts, even
polyhedra, is still an open problem.

3. ALGORITHMIC PART FIXTURING
Similar to robot grasping [25], fixturing is the problem of

immobilizing a part with a set of contact points, often sub-
ject to higher forces and not restricted to points reachable



by a hand. It has been known since the nineteenth-century
that 4 contacts are necessary in the plane, (7 for 3D) and a
variety of models and metrics have been studied for immobi-
lizing [35, 39, 3] and caging (finding sets of points that don’t
necessarily immobilize but restrict an object from escaping)
[34, 42, 41, 37].

Bud Mishra first considered the problem of fixturing with
modular components [24]. Randy Brost and I developed a
complete algorithm for finding sets of fixtures for a given
polygonal part using three circular locators and a clamp on
a regular lattice [5] and the negative result that an infinite
set of polygonal parts cannot be fixtured in this manner
[46]. Variations and extensions have been explored including
fixturing with edge locators [44], with unilaterial contacts
[18], fixturing deformable parts [19], fixturing a set of hinged
polygons [9, 36] and fixturing with redundant contacts as a
submodular coverage problem [38].

4. OPEN PROBLEMS IN ALGORITHMIC
AUTOMATION

Many open problems arise when sensors are considered
(eg, shape from probing) [6, 11] and when operations are
treated as nondeterministic [40, 10, 29]. Tolerance modeling
remains a fundamental open issue. The most common tol-
erance model specifies that part geometry must fit within a
geometric zone between two bounds: the least and greatest
”material conditions” [32, 33], This model permits arbitrary
shape complexity within this zone and hence is extremely
difficult to analyze; researchers have assumed instead lin-
ear edges between vertices that are restricted to individual
tolerance zones [27, 7]. A variant on the latter approach is
to use statistical sampling of shape [20], which is facilitated
by parallel-computing but is not complete. A rigorous tol-
erance model based on computational geometry would be
extremely valuable.

Widespread access to the Internet and “Cloud Comput-
ing” can provide access to parallel computation, large data
sets [21, 17] and to open-source software and benchmarks
for [28, 30]. The data structures and algorithms being con-
tributed to the open-source Computational Geometry Algo-
rithms Library (CGAL) implement Minkowski sums, offset
polygons, Voronoi diagrams, and Delaunay triangulations
that are valuable tools to guarantee correctness of algorith-
mic automation implementations [13].

5. SUMMARY
Algorithmic Automation explores mathematical abstrac-

tions and algorithms that allow the functionality of assembly
lines and manufacturing automation systems to be designed
independent of their underlying implementations. Abstrac-
tions based on minimal sets of geometric primitives can pro-
vide the foundation for formal specification, analysis, design,
optimization, and verification. Algorithmic Automation is
characterized by: (1) formal specification of sets of admis-
sible inputs (eg, polyhedra) and operations (eg, parallel-jaw
grasps), (2) complete algorithms that compute all solutions
or terminate with a report that no solution exists, and (3)
bounds on complexity as a function of input size. Much
remains to be done.
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