
1

Visual Tracking of Human Visitors under
Variable-Lighting Conditions for a Responsive

Audio Art Installation
Andrew B. Godbehere, Akihiro Matsukawa, Ken Goldberg

Abstract—For a responsive audio art installation in a skylit
atrium, we introduce a single-camera statistical segmentation
and tracking algorithm. The algorithm combines statistical
background image estimation, per-pixel Bayesian segmentation,
and an approximate solution to the multi-target tracking prob-
lem using a bank of Kalman filters and Gale-Shapley matching.
A heuristic confidence model enables selective filtering of tracks
based on dynamic data. We demonstrate that our algorithm has
improved recall and F2-score over existing methods in OpenCV
2.1 in a variety of situations. We further demonstrate that
feedback between the tracking and the segmentation systems
improves recall and F2-score. The system described operated
effectively for 5-8 hours per day for 4 months; algorithms are
evaluated on video from the camera installed in the atrium.
Source code and sample data is open source and available in
OpenCV.

I. INTRODUCTION

We present the design of a computer vision system that
separates video into “foreground” and “background”, and
then segments and tracks people in the foreground while
being robust to variable lighting conditions. The system we
present ran a successful interactive audio art installation
called “Are We There Yet?” from March 31 - July 31
2011 at the Contemporary Jewish Museum in San Francisco,
California. Using video collected during the operation of the
installation, under variable illumination created by myriad
skylights, we demonstrate a significant performance improve-
ment over existing methods in OpenCV 2.1. The system runs
in real-time (15 frames per second), requires no training
datasets or calibration, and uses only a couple seconds of
video to initialize.

Our system consists of two stages: first is a probabilis-
tic foreground segmentation algorithm that identifies pos-
sible foreground objects using Bayesian inference with an
estimated time-varying background model and an inferred
foreground model, described in Section II. The background
model consists of nonparametric distributions on RGB color-
space for every pixel in the image. The estimates are adap-
tive; newer observations are more heavily weighted than
old observations to accommodate variable illumination. The
second portion is a multi-visitor tracking system, described in
Section III, which refines and selectively filters the proposed
foreground objects. Selective filtering is achieved with a
heuristic confidence model, which incorporates error covari-
ances calculated by the multi-visitor tracking algorithm. For

the tracking subsystem, in Section III, we apply a bank of
Kalman filters [18] and match tracks and observations with
the Gale-Shapley algorithm [13], with preferences related to
the Mahalanobis distance weighted by the estimated error
covariance. Finally, a feedback loop from the tracking subsys-
tem to the segmentation subsystem is introduced: the results
of the tracking system selectively update the background im-
age model, avoiding regions identified as foreground. Figure
1 illustrates a system-level block diagram. Figure 2 offers an
example view from our camera and some visual results of
our algorithm.

The operating features of our system are derived from
the unique requirements of an interactive audio installation.
False negatives, i.e. people the system has not detected, are
particularly problematic because they expect a response from
the system and become frustrated or disillusioned when the
response doesn’t come. Some tolerance is allowed for false
positives, which add audio tracks to the installation; a few add
texture and atmosphere. However, too many false positives
creates cacophony. Performance of vision segmentation algo-
rithms is often presented in terms of precision and recall [30];
many false negatives corresponds to a system with low recall.
Many false positives lowers precision. We discuss precision,
recall, and the F2-score in Section I-D.

Section IV contains an experimental evaluation of the
algorithm on video collected during the 4 months the system
operated in the gallery. We evaluate performance with recall
and the F2-score [16], [24]. Our results on three distinct
tracking scenarios indicate a significant performance gain
over the algorithms in OpenCV 2.1, when used with the
recommended parameters. Further, we demonstrate that the
feedback loop between the segmentation and tracking sub-
systems improves performance by further increasing recall
and the F2-score.

A. Related Work

The structure of the computer vision system we propose
is inspired by algorithms in OpenCV 2.1 [5], [8], [17], [22],
which offers a variety of probabilistic foreground detectors,
including both parametric and nonparametric approaches,
along with several multi-target tracking algorithms, utilizing,
for example, the mean-shift algorithm [10] and particle filters
[28]. Another approach applies the Kalman Filter on any
detected connected component, and doesn’t attempt collision
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Figure 2. Example output of our algorithm. Left: Raw image from gallery during operation. Center: Extracted foreground regions. Right: Bounding boxes
of tracked foreground objects and annotated confidence levels.
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Figure 1. Algorithm Block Diagram. An image I(k) is quantized in
color-space, and compared against the statistical background image model,
Ĥ(k), to generate a posterior probability image. This image is filtered with
morphological operations and then segmented into a set of bounding boxes,
M(k), by the connected components algorithm. The Kalman filter bank
maintains a set of tracked visitors Ẑ(k), and has predicted bounding boxes
for time k, Z̆(k). The Gale-Shapley matching algorithm pairs elements of
M(k) with Z̆(k); these pairs are then used to update the Kalman Filter
bank. The result is Ẑ(k), the collection of pixels identified as foreground.
This, along with image I(k), is used to update the background image model
to Ĥ(k + 1). This step selectively updates only the pixels identified as
background.

resolution. We evaluated these algorithms for possible use
in the installation, although they exhibited low recall, i.e.
people in the field of view of the camera were too easily lost,
even while moving. This problem arises from the method by
which the background model is updated: every pixel of every
image is used to update the histogram, so pixels identified as
foreground pixels are used to update the background model.
The benefit is that a sudden change in the appearance of the
background in a region is correctly identified as background;
the cost is the frequent misidentification of pedestrians as
background. To mitigate this problem, our approach uses
dynamic information from the tracking subsystem to filter
results of the segmentation algorithm, so only the probability
distributions associated with background pixels are updated.

The class of algorithm we employ is not the only class
available for the problem of detecting and tracking pedestri-
ans in video. A good overview of the various approaches is
provided by Yilmaz et al. [40]. Our foreground segmentation
algorithm is derived from a family of algorithms which model
every pixel of the background image with probability distri-
butions, and use these models to classify pixels as foreground
or background. Many of these algorithms are parametric [9],
[14], leading to efficient storage and computation. In outdoor
scenes, mixture-of-gaussian models capture complexity in
the underlying distribution that single gaussian distribution
models miss [17], [31], [34], [41]. Ours is nonparametric:

it estimates the distribution itself rather than its parameters.
For nonparametric approaches, kernel density estimators are
typically used, as distributions on color-space are very high-
dimensional constructs [11]. To efficiently store distributions
for every pixel, we make a sparsity assumption on the
distribution similar to [23], i.e. the random variables are
assumed to be restricted to a small subset of the sample space.

Other algorithms use foreground object appearance mod-
els, leaving the background unmodeled. These approaches
use support-vector-machines, AdaBoost [12], or other ma-
chine learning approaches in conjunction with a training
dataset to develop classifiers that are used to detect objects of
interest in images or videos. For tracking problems, pedes-
trian detection may take place in each frame independently
[1], [37]. In [29], these detections are fed into a particle-
filter multi-target tracking algorithm. These single-frame de-
tection approaches have been extended to detecting patterns
of motion, and Viola et al. [38] show that incorporation
of dynamical information into the segmentation algorithm
improves performance. Our algorithm is based on different
operating assumptions, notably requiring very little training
data; initialization uses only a couple seconds of video.

A third, relatively new approach, is Robust-PCA [7],
which neither models the foreground nor the background,
but assumes that the video sequence may be decomposed
as I = L + S, where L is low-rank and S is sparse. The
relatively constant background image generates a “low-rank”
video sequence, and foreground objects passing through the
image plane introduce sparse errors into the low-rank video
sequence. Candes et al. [7] demonstrate the efficacy of this
approach for pedestrian segmentation, although the algorithm
requires the entire video sequence to generate the segmenta-
tion, so it is not suitable for our real-time application.

Generally, multi-target tracking approaches attempt to find
the precise tracks that each object follows, to maintain
identification of each object [4]. For our purposes, this is
unnecessary, and we avoid computationally intensive ap-
proaches like particle-filters [28], [29], [39]. Our sub-optimal
approximation of the true maximum likelihood multi-target
tracking algorithm allows our system to avoid exponential
complexity [4] and to run in real-time. Similar object-to-track
matching utilizing the Gale-Shapley matching algorithm is
explored in [2].

Other authors have pursued applications of control algo-
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rithms to art [3], [15], [19], [20], [21], [32], and the emerging
applications signal a growing maturity of control technology
in its ability to coexist with people.

B. Notation

We consider a length N image sequence, denoted {I}N−1
k=0 .

The kth image in the sequence is denoted I(k) ∈ Cw×h,
where w and h are the image width and height in pixels,
respectively, and C = {(c1, c2, c3) : 0 ≤ ci ≤ q − 1} is
the color-space for a 3-channel video. For our 8-bit video,
q = 256, but quantization described in Section II-A will alter
q. We downsample the image by a factor of 4 and use linear
interpolation before processing, so w and h are assumed to
refer to the size of the downsampled image. Denote the pixel
in column j and row i of the kth image of the sequence as
Iij(k) ∈ C. Denote the set of possible subscripts as I ≡
{(i, j) : 0 ≤ i < h, 0 ≤ j < w}, referred to as the “index
set”, and (0, 0) is the upper-left corner of the image plane.
For this paper, if A ⊂ I, let Ac ⊂ I and A

⋃
Ac = I. Define

an inequality relationship for tuples (x, y) as (x, y) ≤ (u, v)
if and only if x ≤ u and y ≤ v.

The color of each pixel is represented by a random
variable, Iij(k) ∼ Hij(k), where Hij(k) : C → [0, 1] is
a probability mass function. Using a “lifting” operation L,
map each element c ∈ C to unique axes of Rq3 with value
[Hij(k)](c) to represent probability mass functions as vectors
(or normalized histograms), a convenient representation for
the rest of the paper. Note that ~1THij(k) = 1, when
conceived of as a vector; ~1 ∈ Rq3 . Denote an estimated
distribution as Ĥij(k). Let Ĥ(k) = {Ĥij(k) : (i, j) ∈ I}
represent the background image model, as in Figure 1.

A foreground object is defined as an 8-connected col-
lection of pixels in the image plane corresponding to a
visitor. Define the set of foreground objects at time k as
X(k) = {χn ⊂ I : n < R(k)}, where χn represents an 8-
connected collection of pixels in the image plane, and R(k)
represents the number of foreground objects at time k. Let
F (k) =

⋃
χ∈X(k) χ be the set of all pixels in the image asso-

ciated with the foreground. We define the minimum bounding
box around each contiguous region of pixels with the upper
left and lower right corners: let x+

n = arg min(i,j)∈I(i, j) s.t.
(i, j) ≥ (u, v) ∀(u, v) ∈ χn, and x−n = arg max(i,j)∈I(i, j)
s.t. (i, j) ≤ (u, v) ∀(u, v) ∈ χn. The set of pixels within
the minimum bounding box of χn is χ̄n = {(i, j) : x−n ≤
(i, j) ≤ x+

n }. Then, let F (k) =
⋃
n<R(k) χn, the set of

all pixels within the minimum bounding boxes around each
foreground object. F (k) ⊂ I is referred to as the foreground
bounding box support of the image I(k).

The tracking algorithm returns a set Ẑ(k) ⊂ I, indicating
the pixels identified as foreground, described in more detail
in Section III. Throughout, variants of the symbol Z will refer
to collections of tracks, not to the set of integers.

C. Assumptions

With this notation, we make the following assumptions:
1) Foreground regions of images are small: let B(k) ≡

F (k)c represent the set of pixels associated with the back-
ground. Assume that |B(k)| � |F (k)|.

2) The color distribution of a given pixel changes slowly
relative to the frame rate. The appearance is allowed to
change rapidly, as with a flickering light, but the distribution
of colors at a given pixel must remain essentially constant
between frames. In practice, this condition is only violated
in extreme situations, as when lights are turned on or off.
High-level logic helps the algorithm recover from a violation
of this assumption : Interpreting Hij(k) as a vector, ∃ε > 0
such that for all i, j, k, ||Hij(k)−Hij(k + 1)|| < ε, where
ε is small.

3) To limit memory requirements, we store only a small
number of the total possible histogram bins. To avoid a loss
of accuracy, we make an assumption that most elements of
Hij(k) are 0 : the support of the probability mass function
Hij(k) is sparse over C.

4) By starting the algorithm before visitors enter the
gallery, we assume that the image sequence contains no
foreground objects for the first few seconds : ∃K > 0 such
that R(k) = 0 ∀k < K.

5) Pixels corresponding to visitors have a color distribu-
tion distinct from the background distribution: consider a
foreground pixel Iij(k) such that (i, j) ∈ F (k), has proba-
bility mass function Fij(k). The background distribution at
the same pixel is Hij(k). Interpreting distributions as vectors,
||Fij(k)−Hij(k)|| > δ for some δ > 0. While this property
is necessary in order to detect a visitor, it is not sufficient,
and we use additional information for classification.

6) Visitors move slowly in the image plane relative to the
camera’s frame-rate : Formally, assuming χi(k) and χi(k+
1) refer to the same foreground object at different times,
there is a significant overlap between χi(k) and χi(k + 1):
|χi(k)∩χi(k+1)|
|χi(k)∪χi(k+1)| > O, O ∈ (0, 1), where O is close to 1.

7) Visitors move according to a straight-line motion model
with Gaussian process noise in the image plane : such
a model is used in pedestrian tracking [25] and is used
in tracking the location of mobile wireless devices [27].
Further, the model can be interpreted as a rigid body traveling
according to Newton’s laws of motion. We also assume that
the time between each frame is approximately constant, so
the Kalman filter system matrices of Section III are constant.

D. Problem Statement

Performance of each algorithm is measured as a function
of the number of pixels correctly or incorrectly identified
as belonging to the foreground bounding box support, F (k).
First, tp refers to the number of pixels the algorithm correctly
identifies as foreground pixels: tp(k) = |F (k)

⋂
Ẑ(k)|. fp

is the number of pixels incorrectly identified as foreground
pixels: fp(k) = |F (k)c

⋂
Ẑ(k)|. Finally, fn is the number

of pixels identified as background that are actually fore-
ground pixels: fn(k) = |F (k)

⋂
Ẑ(k)c|. As in [30], define

“precision” as p = tp
tp+fp and “recall” as r = tp

tp+fn . For
our interactive installation, recall is more important than
precision, so we use the F2-score [16], [24], a weighted
harmonic mean that puts more emphasis on recall than
precision:

F2 =
5pr

4p + r
(1)
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The problem is then: for each image I(k) in sequence
{I}N−1

k=0 , find a collection of foreground pixels Ẑ(k) such
that F2(k) is maximized. The optimal value at each time is
1, which corresponds to an algorithm returning precisely the
bounding boxes of the true foreground objects: Ẑ(k) = F (k).
We use Equation 1 to evaluate our algorithm in Section IV.

II. PROBABILISTIC FOREGROUND SEGMENTATION

In this section, we focus on the top row of Figure 1, which
takes an image I(k) and generates a set of bounding boxes of
possible foreground objects, denoted M(k). Ẑ(k), the final
estimated collection of foreground pixels, is used with I(k)
to update the probabilistic background model for time k+ 1.

A. Quantization

We store a histogram Ĥij(k) on RGB color-space for
every pixel. Ĥij(k) must be sparse by Assumption I-C3,
so the number of exhibited colors is limited to Fmax, a
system parameter. Noise in the camera’s electronics, however,
spreads the support of the underlying distribution, threatening
the sparsity assumption. To mitigate this effect, we quantize
the color-space. We perform a linear quantization, given
parameter q < 256, and interpreting Iij(k) ∈ C as a
vector, Îij(k) = b q

256Iij(k)c. The floor operation reflects the
typecast to integer in software in each color channel. Note
that this changes the color-space C by altering q as indicated
in Section I-B.

B. Histogram Initialization

We use the first T frames of video as training data to
initialize each pixel’s estimated probability mass function, or
background model. Interpret the probability mass function
Ĥij(k) as a vector in Rq3 , where each axis represents a
unique color. We define a lifting operation L : C → F ⊂
Rq3 by generating a unit vector on the axis corresponding to
the input color. The set F is the “feature set,” representing
all unit vectors in Rq3 . Let fij(k) = L(Îij(k)) ∈ F be a
feature (pixel color) observed at time k. Of the T observed
features, select the Ftot ≤ Fmax most recently observed
unique features; let I ⊂ {1, 2, . . . T}, where |I| = Ftot, be the
corresponding time index set. (If T > Fmax, it is possible
that Ftot, the number of distinct features observed, exceeds
the limit Fmax. In that case, we throw away the oldest
observations so Ftot ≤ Fmax.) Then, we calculate an average
to generate the initial histogram: Ĥij(T ) = 1

Ftot

∑
r∈I fij(r).

This puts equal weight, 1/Ftot, in Ftot unique bins of the
histogram.

C. Bayesian Inference

We use Bayes’ Rule to calculate the likelihood of a pixel
being classified as foreground (F) or background (B) given
the observed feature, fij(k). To simplify notation, let p(F |f)
represent the probability that pixel (i, j) is classified as
foreground at time k given feature fij(k). Using Bayes’ rule
and the law of total probability,

p(B|f) =
p(f |B)p(B)

p(f |B)p(B) + p(f |F )p(F )

We calculate p(f |B) = fij(k)T Ĥij(k), as Ĥij(k) rep-
resents the background model. The prior probability that a
pixel is foreground is a constant parameter, p(F ), a design
parameter that affects the sensitivity of the segmentation
algorithm. As there are only two labels, p(B) = 1 − p(F ).
Without a statistical model for the foreground, however,
we cannot calculate Bayes’ rule explicitly. Making use of
Assumption I-C5, we let p(f |F ) = 1−p(f |B), which has the
nice property that if p(f |B) = 1, then the pixel is certainly
identified as background, and if p(f |B) = 0, the pixel is
certainly identified as foreground. After calculating posterior
probabilities for every pixel, the posterior image is P (k) ∈
[0, 1]w×h where Pij(k) = p(F |fij(k)) = 1− p(B|fij(k)).

D. Filtering and Connected Components

Given the posterior image, P (k), we perform several
filtering operations to prepare a binary image for input to the
connected components algorithm. We perform a morpholog-
ical open followed by a morphological close on the posterior
image with a circular kernel of radius r, a design parameter,
using the notion of morphological operations on greyscale
images discussed in [36], [35]. Such morphological opera-
tions have been used previously in segmentation tasks [26].
Intuitively, the morphological open operation will reduce the
estimated probability of pixels that aren’t surrounded by a
region of high-probability pixels, smoothing out anomalies.
The close operation increases the probability of pixels that
are close to regions of high-probability pixels. The two
filters together form a sort of smoothing operation, yielding
a modified probability image P̆ (k).

We apply a threshold with level γ ∈ (0, 1) to P̆ (k) to gen-
erate a binary image P(k). This threshold acts as a decision
rule: if P̆ij(k) ≥ γ, Pij(k) = 1, and otherwise, Pij(k) = 0,
where 1 corresponds to “foreground” and 0 to “background”.
Then, we perform morphological open and close operations
on Pij(k); operating on a binary image, these morphological
operations have their standard definition. The morphological
open operation will remove any foreground region smaller
than the circular kernel of radius r′, a design parameter. The
morphological close operation fills in any region too small for
the kernel to fit without overlapping an existing foreground
region, connecting adjacent regions.

On the resulting image, the connected components al-
gorithm detects 8-connected regions of pixels labeled as
foreground. For this calculation, we make use of OpenCV’s
findContours() function [6] which returns both contours
of connected components, used in Section III-B, and the
set of bounding boxes around the connected components,
denoted M(k). These bounding boxes are used by the
tracking system in Section III, so we represent them as
vectors: for m ∈ M(k), m ∈ R4 with axes representing
the x, y coordinates of the center, along with the width and
height of the box.

E. Updating the Histogram

The tracking algorithm takes M(k), the list of detected
foreground objects, as input and returns Ẑ(k), the set of
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pixels identified as foreground. To update the histogram, we
make use of feature fij(k), defined in Section II-B.

First, the histogram Hij(k) is not updated if it corresponds
to a foreground pixel: if (i, j) ∈ Ẑ(k), then Hij(k + 1) =
Hij(k).

Otherwise, let S represent the support of the histogram
Hij(k), or the set of non-zero bins: S = {x ∈ F :
xTHij(k) 6= 0} ⊂ F . By the sparsity constraint, |S| ≤
Fmax. If feature fij(k) has no weight in the histogram
(fij(k)THij(k) = 0) and there are too many features
in the histogram (|S| = Fmax), a feature must be re-
moved from the histogram before updating to maintain
the sparsity constraint. The feature with minimum weight
(one arbitrarily selected in event of a tie) is removed and
the histogram is re-normalized. Selecting the minimum:
f ∈ arg minx∈S xTHij(k). Removing f and renormalizing:
Hij(k) = (Hij(k)− (fTHij(k))f)/(1− fTHij(k)).

Finally, we update the histogram with the new feature:
Hij(k + 1) = (1 − α)Hij(k) + αfij(k). The parameter α
affects the adaptation rate of the histogram. Given that a
particular feature f ∈ F was last observed τ frames in the
past and had weight ω, the feature will have weight ω(1−α)τ .
As α gets larger, the past observations are “forgotten” more
quickly. This is useful for scenes in which the background
may change slowly, as with natural lighting through the
course of a day.

III. MULTIPLE VISITOR TRACKING

Lacking camera calibration, we track foreground visitors
in the image plane rather than the ground plane. Once the
foreground/background segmentation algorithm returns a set
of detected visitors, the challenge is to track the visitors to
gather useful state information: their position, velocity, and
size in the image plane.

Using Assumption I-C7, we approximate the stochastic
dynamical model of a visitor as follows: zi(k + 1) =
Azi(k) + qi(k), mi(k) = Czi(k) + ri(k), qi(k) ∼ N (0, Q),
ri(k) ∼ N (0, R), R = σI ,

A =

A′ 0 0
0 A′ 0
0 0 I2

 , A′ =
[
1 1
0 1

]

C =


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , Q =

Qx 0 0
0 Qy 0
0 0 Qs


where I2 is a 2-dimensional identity matrix. State vector

zi(k) ∈ R6 encodes the x-position, x-velocity, y-position, y-
velocity, width, and height of the bounding box respectively,
relative to the center of the box. mi(k) ∈ R4 represents
the observed bounding box of the object. Q,R � 0 are
the covariances, parameters for the algorithm. Let Z(k) =
{zi(k) : i < Z(k)} be the true states of the Z(k) visitors.
Let Ẑ(k) = {ẑi(k) : i < Ẑ(k)} be the set of Ẑ(k) estimated
states. Let Z̆(k) = {z̆i(k) : i < Z̆(k)} be the set of Z̆(k)
predicted states.M(k) is the set of observed bounding boxes

at time k, and M̆(k) = {m̆i : m̆i = Cz̆i(k), i < Z̆(k)} is
the set of predicted observations.

Given this linear model, and given that observations are
correctly matched to the tracks, a Kalman filter bank solves
the multiple target tracking problem. In Section III-A, we
discuss the matching problem. When observations are not
matched with an existing track, a new track must be created
in the Kalman filter bank. Given an observation m ∈ R4,
representing a bounding box, we initialize a new Kalman
filter with state z = (CTC)−1CTm, the pseudo-inverse of
m = Cz, and initial error covariance P = CTRC + Q. In
Section III-B, we discuss criteria for tracks to be deleted.
After matching and deleting low confidence tracks, the
tracking algorithm has a set of estimated bounding boxes,
M̂(k) = {m̂n = Cẑn(k) : n < Ẑ(k)}. The final result must
be a set of pixels identified as foreground, Ẑ(k) ⊂ I, and
we need to convert mi from vector form to coordinates of
the corners of the bounding box to generate Ẑ(k), which is
used to evaluate performance at time k in Section IV. Using
superscripts to denote elements of a vector, m1

n and m2
n are

the x and y coordinates of the center of the box. m3
n and

m4
n are the width and height. To convert the vector back to

a subset of I, let m−n = (m1
n −

m3
n

2 ,m2
n −

m4
n

2 ) ∈ I and
m+
n = (m1

n + m3
n

2 ,m2
n + m4

n

2 ) ∈ I. If any coordinate lies
outside the limits of I, we set that coordinate to the closest
value within I, to clip to the image plane. Let νn = {(i, j) :
m−n ≤ (i, j) ≤ m+

n }. Finally, Ẑ(k) =
⋃
n<Ẑ(k) νn ⊂ I, the

set of pixels within the estimated bounding boxes.

A. Gale-Shapley Matching

Matching observations to tracks makes multiple-target
tracking a difficult problem: in its full generality, the prob-
lem requires re-computation of the Kalman filter over the
entire time history as previously decided matchings may be
rejected with the additional information, preventing recursive
solutions. To avoid this complexity, sub-optimal solutions
are sought. In this section, we describe a greedy, recursive
approach that, for a single frame, matches observations to
tracks to update the Kalman filter bank.

While some algorithms, e.g. mean-shift [10], use informa-
tion gathered about the appearance of the foreground object
to aid in track matching, our algorithm does not: we assume
that individuals are indistinguishable. Here, observation-to-
track matching is performed entirely within the context of
the probability distribution induced by the Kalman filters.
We make use of the Gale-Shapley matching algorithm [13],
the solution to the “stable-marriage” problem.

In what follows, we describe the matching problem at time
k. Formally, we are given M, the set of detected foreground
object bounding boxes, and Z̆, the set of predicted states. Let
|M| = M and |Z̆| = Z. Introduce placeholder sets M∅ and
Z∅ such that |M∅| = Z and |Z∅| = M . Further,M

⋂
M∅ =

∅ and Z̆
⋂

Z∅ = ∅. These placeholder sets will allow tracks
and observations to be unpaired, implying a continuation of
a track with a missed observation [33], or the creation of a
new track. Define extended sets as M+ = M

⋃
M∅ and
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Z+ = Z̆
⋃

Z∅. Note that |M+| = |Z+|, a prerequisite for
applying the Gale-Shapley algorithm [13]. Let G ≡ |M+|.

We now describe the preference relation necessary for
the Gale-Shapley algorithm. Let mi ∈ M and z̆j ∈ Z̆.
z̆j is the predicted state of track j. The Kalman filter
estimates an error covariance for the predicted state: Pj � 0.
We are interested in comparing observations, not states, so
the estimated error covariance of the predicted observation,
m̆j = Cz̆j , is CPjCT +R, from the linear system described
at the start of Section III. The Mahalanobis distance between
two observations under this error covariance matrix is

d(mi, m̆j) =
√

(mi − m̆j)T (CPjCT +R)−1(mi − m̆j)

To make a preference relation, we exponentially weight
the distance: ωij = exp(−d(mi, m̆j)), ωij ∈ (0, 1). As the
distance approaches 0, ωij → 1. Making use of Assumption
I-C6, we place constraints on the distance: for some threshold
γmin ∈ (0, 1), if ωij < γmin (equiv. the distance is too great),
then we deem the matching impossible, by Assumption I-C6.
The symmetric preference relation φ : M+ × Z+ → R is
as follows:

φ(mi, z̆j) =


0 mi ∈M∅ or z̆j ∈ Z∅
ωij ωij ≥ γmin
−1 ωij < γmin

(2)

Equation 2 indicates that if a track z̆j or observation mi

is to be unpaired, the preference relation between z̆j and mi

is 0. If the Mahalanobis distance is too large, the preference
relation is −1, so not pairing the two is preferred. Otherwise,
the preference is precisely the exponentially weighted Maha-
lanobis distance between the predicted observation m̆j and
mi.

Then, the Gale-Shapley algorithm with Z+ as the propos-
ing set pairs each z ∈ Z+ with exactly one m ∈ M+,
resulting in a stable matching. That is, if observation i is
paired with track j, and another observation n is paired with
track k, if ωij < ωik, then ωik < ωnk, so while observation
i would benefit from matching with track k, track k would
lose, so no re-matching is accepted. Gale and Shapley prove
that their algorithm generates a stable matching, and that
it is optimal for Z+ in the sense that, if wj is the final
score associated with zj ∈ Z+ after matching, then

∑
j ωj

is maximized over the set of all possible stable matchings
[13]. Thus, tracks are paired with the best possible candidate
observations.

We refer to the final matching as the set M ⊂ Z+ ×
M+, where |M| = G. M is the input to the Kalman Filter
bank as in Figure 1. Then, each pair (z,m) ∈ M is used
to update the Kalman filter bank: depending on the pairing,
this creates a new track, or updates an existing track with or
without an observation. The Kalman update step generates
Ẑ(k) and Z̆(k+1). Ẑ(k) is used to generate M̂(k) and Ẑ(k)
as described at the beginning of Section III, and Z̆(k + 1)
is used as input for the next iteration of the Gale-Shapley
Matching algorithm.

B. Heuristic Confidence Model

We employ a heuristic confidence model to discern people
from spurious detections such as reflections from skylights.
We maintain a confidence level ci ∈ [0, 1] for each tracked
object zi ∈ Ẑ(k), which is a weighted mix of information
from the error covariance of the Kalman filter, the size of the
object, and the amount of shape deformation of the contour
of the object (provided by OpenCV). Typically, undesirable
objects are small, move slowly, and have a nearly constant
contour.

In the following, we drop the dependence on time k for
simplicity and denote time k + 1, with a superscript +.

Consider an estimated state ẑ ∈ Ẑ, with error covariance
P . Let cdyn = exp(−det(P )/γdet), with parameter γdet.
Intuitively, as the determinant of P increases, the region
around ẑ which is likely to contain the true state expands,
implying lower confidence in the estimate. Let csz = 1 if
the bounding box width and height are both large enough,
csz = 0.5 if one dimension is too small, and csz = 0 if both
are too small, relative to parameters w and h representing
the minimum width and height. The third component, csh, is
derived from the Hu moment (using OpenCV functionality),
measuring the difference between the contour of the object
at time k − 1 and time k. Let νdyn, νsz , νsh be parameters
in [0, 1] such that νdyn + νsz + νsh = 1; these are weighting
parameters for different components of the confidence model.
Then, given a parameter β,

c+ = (1− β)c+ β(νdyncdyn + νszc
sz + νshc

sh)

When a track is first created at time k, c(k) = 0. After the
first update, if at time r > k, c(r) < ϕ, another parameter,
the track is discarded.

IV. RESULTS

Performance is measured according to precision, p, recall,
r, and the F2 measure F2, introduced in Section I-D. These
are evaluated with respect to manually labeled ground-truth
sequences, which determine F (k).

We evaluate the performance of our proposed algorithm in
comparison with three methods in OpenCV 2.1. We compare
our algorithm against tracking algorithms in OpenCV using
a nonparametric statistical background model similar to what
we propose, CV_BG_MODEL_FGD [22]. We compare against
three “blob tracking” algorithms, which are tasked with
segmentation and tracking: CCMSPF (connected component
and mean-shift tracking particle-filter collision resolution), CC
(simple connected components with Kalman Filter tracking),
and MS (mean-shift). These comparisons, in Figure 3, indicate
a significant performance improvement over OpenCV across
the board. We also explore the effect of the additional
feedback loop we propose, by comparing our “dynamic”
segmentation and tracking algorithm with a “static” version,
which utilizes only the top row of the block diagram in
Figure 1. In the “static” version, the background model is not
updated selectively, and no dynamical information is used.
Figure 4 illustrates a precision/recall tradeoff. In both com-
parisons, we see an F2 gain similar to the recall gain, so recall
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is not shown in the former and F2 in the latter comparisons,
due to space limitations. These and many more comparisons,
along with annotated videos of algorithm output, are available
at automation.berkeley.edu/ACC2012Data/.

In each experiment, the first 120 frames of the given
video sequence are used to initialize the background models.
Results are filtered with a gaussian window, using 8 points
on either side of the datapoint in question. We evaluate
performance on three videos. The first is a video sequence
called StationaryVisitors where three visitors enter
the gallery and then stand still for the remainder of the
video. Situations where visitors remain still are difficult
for all the algorithms. Second is a video sequence called
ThreeVisitors with three visitors moving about the gallery
independently, a typical situation for our installation. Figure
4 illustrates that this task is accomplished well by a statistical
segmentation algorithm without any tracking. Third is a video
with 13 visitors, some moving about and some standing still,
a particularly difficult segmentation task; this is called the
ManyVisitors sequence.

V. CONCLUSIONS

This paper presents a single-camera statistical track-
ing algorithm and results from our implementation at the
Contemporary Jewish Museum installation called “Are We
There Yet?”. This system worked reliably during museum
hours (5-8 hours a day) over the four month duration
of the exhibition under highly variable lighting condi-
tions. We would like to extend our analysis and experi-
ment with other datasets. We welcome others to experi-
ment with our data and use the software under a Creative
Commons License. Source code and benchmark datasets
are freely available and in OpenCV. For details, visit:
automation.berkeley.edu/ACC2012Data/

In future versions, we’d like to explore automatic param-
eter adaptation, for example, to determine the prior proba-
bilities in high-traffic zones such as doorways. We would
also like to explore how the system can be extended with
higher-level logic. For example, we added a module to check
the size of the estimated foreground region; when the lights
were turned on or off, and too many pixels were identified
as foreground, we would refresh the histograms of the back-
ground image probability model, allowing the system to re-
cover quickly. A 2-minute video describing the installation is
available at j.mp/awty-video-hd, and project reviews and
documentation are available at are-we-there-yet.org.
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