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Abstract—To support industrial automation, systems such as
Grasp-it! and Dex-Net 1.0 provide Grasp Planning as a Service
(GPaaS). For example, a manufacturer setting up an automated
assembly line for a new product can upload part geometry to the
service and receive a ranked set of robust grasp configurations,
and the GPaaS can accelerate future grasp planning by statis-
tically analyzing grasps on the part. However, many industrial
users may be reluctant to share proprietary details of product
geometry with any outside parties. This paper defines a privacy-
preserving approach to grasp planning and presents an algorithm
where a masked version of the part boundary is uploaded along
with stable pose configurations, allowing proprietary aspects
of the part boundary to remain confidential. One challenge is
the tradeoff between grasp coverage and privacy: balancing
the desire for a rich set of alternative grasps (coverage) based
on analysis of graspable surfaces against the user’s desire to
maximize privacy. We introduce a grasp coverage metric based
on dispersion, a coverage metric used in motion planning, and
we formalize its relationship with privacy (the amount of the
object surface that is masked). We implement our algorithm for
Dex-Net 1.0 and present case studies of the privacy-coverage
tradeoff on a set of 23 industrial parts. Our results suggest that
masking the part using the convex hull of the proprietary zone
prunes grasps in collision and provides grasp coverage with low
distortion of the object similarity metric used to accelerate grasp
planning in Dex-Net 1.0. We also find empirically that increasing
privacy always leads to decreasing coverage, and that coverage
of the set of all grasps with non-zero robustness decreases with
an increasing robustness threshold.

I. INTRODUCTION

Rather than performing computation in isolation, Cloud-
based Robotics and Automation systems utilize centrally-
hosted computational and storage resources, planning actions
based on shared libraries of product data, prior sensor readings,
and maps [17]. Recent research suggests that systems provid-
ing Grasp Planning as a Service (GPaaS) such as GraspIt! [6]
and Dex-Net 1.0 [26] can reduce the time required to plan a
diverse set of robust grasps to cover a new object by leveraging
prior 3D object models labeled with robotic grasps and grasp
quality metrics. The speedup may increase with the amount of
prior models and grasps, motivating the development of Cloud-
based shared and growing datasets where users can upload new
part geometry to a GPaaS and receive a ranked set of robust
grasp configurations. A Cloud-based GPaaS also eliminates the
need for platform-specific software updates and maintenance
for individual users.

One problem for Cloud-based planners is that proprietary
3D geometric data such as connectors between parts, the
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Fig. 1: Overview of our proposed methodology for privacy-preverving grasp
planning. Industrial users label proprietary zone of the part with a graphical
interface. The masked object is then transmitted to a Cloud-based grasp
planner along with its stable poses. The grasp planner computes a set of
grasps for each stable pose and returns the grasp sets to the user.

diameter of turbine shafts, or gear ratios and pitches can
be compromised via two attacks: (a) intercepting a part in
transmission to the Cloud or (b) querying the part from a
shared dataset. This may allow competitors to acquire design
parameters that may have been the result of complex and costly
simulations, motivating methods to mask proprietary sections
of a part boundary before transmission. However, planning on
a masked part may reduce the number of grasps returned by
the GPaaS and, in extreme cases, may prevent a planner from
finding any grasps for an object. This raises the question: how
can we balance the desire for a rich set of grasps covering the
part surface with the user’s desire to maximize privacy?

In this paper we introduce the problem of privacy-preserving
grasp planning: to plan a set of robust grasps on a masked
part boundary that best covers the surface of the unmasked
object. We define a grasp coverage metric based on dispersion,
a metric of sample coverage used in motion planning [23],
and define part privacy based on the percentage of the mesh
surface that is masked. We present an algorithm for planning
a covering set of robust and collision-free grasps on a masked
part given a set of stable poses for the part on a planar
worksurface and the geometry of a parallel-jaw gripper. We
formalize the privacy-coverage tradeoff for our algorithm,
showing that coverage cannot increase as the part becomes
more private.

We implement our algorithm in Dex-Net 1.0 [26] with
tools for labeling proprietary zones of parts and analyzing
object stable poses and inertial properties before transmitting
the data to a GPaaS as illustrated in Fig. 1. We study the
privacy-coverage tradeoff and the tradeoff between coverage
and the robustness of planned grasps for a set of 23 parts. We
compare three part masking methods: removing the proprietary
zone on the mesh, replacing each connected component of
the proprietary zone with a bounding box, and replacing
each connected component of the proprietary zone with its
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convex hull. Our experiments suggest that using only the non-
proprietary zone in planning may lead to grasps that are in
collision on the true object, and that masking the proprietary
zone using the convex hull provides lower dispersion and
lower distortion of the object similarity metric from Dex-
Net 1.0 than bounding-box masking. Furthermore, experiments
suggest that coverage does not increase with increasing privacy
or robustness.

II. RELATED WORK

The goal of grasp planning is to find a set of grasps for
an object that optimizes a grasp quality metric [11], [35] or
the number of successes in physical trials when the object and
contact locations are known exactly. However, in practice these
are not known precisely due to imprecision in perception and
control. Several methods have been developed to handle un-
certainty in object pose [33] or contact location [44], but these
methods cannot be easily extended to handle multiple sources
of uncertainty. Robust grasp planning handles uncertainty in
multiple quantities by finding a set of grasps that maximize an
expected quality metric under a set of sampled perturbations
in quantities such as object shape [15], [25], object pose [41],
and robot control or friction [22], [26].

Robust grasp planning may be computationally demanding
when the space of uncertain quantities is high dimensional.
Thus, recent research has studied precomputing a set of grasps
for an object offline and storing robust grasps in a database.
Weisz et al. [41] computed the probability of force closure
PF under object pose uncertainty for a subset of grasps in
the Columbia grasp database [12] and showed that PF was
better correlated with physical grasp success than deterministic
metrics. Brook et al. [5] developed a model to predict physical
grasp success based on a set of robust grasps planned on a
database on 892 point clouds. Kehoe et al. [16] transferred
grasps evaluated by PF on 100 objects in a Cloud-hosted
database to a physical robot by retrieving the objects with the
Google Goggles object recognition engine. Recently, Mahler
et al. [26] created the Dexterity-Network (Dex-Net) 1.0, a
dataset of over 10,000 objects and 2.5 million grasps, each
labelled with PF under uncertainty in object shape, pose,
and gripper positioning, and used the dataset to speed up
planning of a single robust grasp. In comparison, we present
an algorithm that plans a covering set of grasps to ensure
reachability under different accessbility conditions subject to
preserving proprietary part geometry. Other recent research has
used databases of 3D models [14] or images [34] to directly
regress to the probability of grasp success from simulation or
physical trials.

Cloud-based grasp planners raise the issue of how to store
and transmit data without compromising proprietary geomet-
ric information [36]. This is an example of “privacy over
structured data,” a common topic in database research in
which deterministic techniques are used to preserve privacy
for widely-used data analytics [4]. In robotics and automation
systems, security is a major topic of interest for the smart
grid [19] and manufacturing pipelines [13], and has also been

studied in the context of hijacking unmanned aerial vehicles
(UAVs) [18] and ground vehicles [40]. Our methods are
closely related to past work on the security of 3D models.
Early research considered schemes that embed information
such as the model owner directly into the geometry to iden-
tify theft, for example by using the spectral domain of the
mesh [31]. Koller et al. [20] developed a rendering system
that allows users to view low-resolution copies of the entire
model and request high-resolution snippets from a protected
server to prevent acquisition of the entire model geometry. In
industry models are often protected using industrial computer-
aided design (CAD) software, which is usually bundled with
tools for removing details from a model. Solidworks [3] and
Autodesk Inventor [1] both contain tools for “defeaturing” a
mesh by filling holes, smoothing details, and removing internal
features. Other techniques include low-pass filtering [37],
Finite Element Re-meshing [29], and feature suppression [10].

Our notion of grasp coverage is also closely related to
past research in motion planning and grasping. In motion
planning, Lavalle et al. [23] introduced the notion of dispersion
to construct deterministic sampling strategies for Probabilis-
tic Roadmap Planners that better cover the configuration
space. [23]. This research has been extended to adaptive sam-
pling strategies that reduce dispersion [24] and to deterministic
sampling strategies for SO(3) by Yershova et al. [43]. In
grasping, coverage research has focused on sampling dense
grasp and motion sets for finding grasps in cluttered scenes [9],
adaptive sampling of robust grasps over an object surface [7],
or analyzing the space of all possible grasps on polygonal
objects [39]. However, formal methods for measuring the
coverage of grasp sets are relatively less studied. In this work,
we introduce a formal notion of grasp coverage based on the
dispersion between the set of planned grasps and all possible
grasps on the object.

III. DEFINITIONS AND PROBLEM STATEMENT

In this paper, we consider the pre-computation of a set of ro-
bust parallel-jaw grasps for a 3D object model using a masked
version that obscures proprietary geometric information such
as part connectors. Our goal is to plan a set of grasps � on
the masked object such that the computed grasp set is robust
and covers the non-proprietary surface of the original object.

A. Assumptions

We assume a given binary quality metric S(g) that maps
grasps to {0, 1} and measure grasp quality by robustness, or
the probability of success PS(g) = E[S(g)] under uncertainty
due to imprecision in sensing and control. In this paper, we
use the probability of force closure PF under uncertainty in
object pose, gripper pose, and friction coefficient as the quality
metric, soft finger point contacts, and a Coulomb friction
model. For more details on our uncertainty and force closure
model, see [26]. We assume the exact object shape is given
as a compact surface in units of meters with a given center of
mass z 2 R3.
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Fig. 2: Illustration of our models for objects and grasps. (Left) The object
frame of reference is centered at the center-of-mass z. Each object is
associated with a set of stable poses (planar worksurface orienations) defined
by the plane (ni,pi). (Middle) We can parameterize parallel-jaw grasps by
their center x and axis u, which defines a gripper pose when the angle ✓ of
the gripper approach axis w is specified. (Right) A parallel-jaw gripper R
contacts a mesh M at points c1 and c2. The space of all possible grasps is
the space of all contact pairs. Each mesh is divided into a private region P
(blue) and public region Q (grey).

B. Object Parameterization

We use the object parameterization illustrated in Fig. 2. We
parameterize each object as a mesh M ⇢ R3. We represent
a mesh M as the tuple (V, T ) where V is a set of vertices
and T is a set of triangles interpolating 2-dimensional surfaces
between the vertices. Each vertex v 2 V is specified as a point
in 3D space and each triangle t 2 T is specified as a triplet
of vertex indices. All vertices of M are specified with respect
to a reference frame centered at the object center of mass z

and oriented along the principal axes of the vertex set.
We model the object as resting on an infinite planar work-

surface under quasi-static conditions with a uniform prior
distribution on part orientation. Under this assumption the
object rests in a stable pose, or orientation such that the
object remains in static equlibrium on the worksurface [28],
[42]. A triangular mesh has a finite set of stable poses
S = {S1..., S`} modulo rotations about an axis perpendicular
to the worksurface, and each stable pose Si is parameterized
by the table normal ni and a point on the object touching the
table surface pi.

C. Object Privacy

We assume that attackers are third parties that either (a)
intercept the part while it is being transmitted to a public
Cloud-Based GPaaS or (b) recover the part from queries to
a public Cloud-Based GPaaS. Our goal is to hide the exact
geometry of each part from attackers, which may be optimized
for gas flows, mechanical efficiency, or faster assembly.

To protect privacy, let each object M = (V, T ) be equipped
with a privacy mask, or function Z : T ! {0, 1} such that a
triangle t 2 T must remain private if Z(t) = 1. We denote
by P(M, Z) = {t 2 T | Z(t) = 1} the private region of
the object and Q(M, Z) = M\P(M, Z) the public region.
We create a masked version of the object 'Z(M) using a
masking function 'Z such that 'Z(P) 6= P and 'Z(Q) = Q.
We measure the degree of privacy for a mesh by �, the ratio
of the surface area of P to the total surface area:

�(M, Z) = Area(P(M, Z))/Area(M).

D. Grasp Parameterization

Our grasp parameterization is illustrated on the right side
of Fig. 2. Given an object M, let G(M) = M ⇥M be the
space of all possible contact point pairs on the object, and let
g = (c1, c2) 2 G be a parallel-jaw grasp. We can alternatively
describe a grasp g by the midpoint of the jaws in 3D space
x 2 R3 and approach axis u 2 S2 where

x =

1

2

(c1 + c2) and u =

c2 � c1

kc2 � c1k2
.

We can also convert a grasp g to a gripper pose T (g, ✓) 2
SE(3) relative to the object by specifying an angle ✓ of the
gripper approach axis w.

E. Grasp Subsets

Let R denote a mesh model of a robot gripper and R(g, ✓)
denote the gripper model in pose T (g, ✓). Of particular interest
are the following subsets of grasps:

Reachable Grasp Set, X (R, Si): The reachable grasp set
is the set of grasps on M such that R(g, ✓) does not collide
with the object M or the worksurface for stable pose Si.

Robust Grasp Set, Y(⌧): The set of grasps on M with PS

greater than some threshold ⌧ .
Executable Grasp Set, E(R, Si, ⌧): The intersection of the

reachable and robust grasp sets: E = X \ Y .

F. Grasp Coverage

Consider an arbitrary grasp set ⌥ ✓ G on object M and a
discrete set of planned grasps � ⇢ ⌥. We measure the extent
to which � covers ⌥ using dispersion [23], [30], a measure of
coverage previously used to analyze sampling-based motion
planners.

To measure coverage, we first need a notion of grasp
distance. We measure the distance between grasps for object
M by a function ⇢ : G ⇥ G ! R [21], where:

⇢(gi,gj) = �(M)kxi � xjk2 + (2/⇡) arccos(|hui,uji|)

where �(M) is a constant controlling the relative weighting of
the distance between the grasp center and axis. In this work we
choose �(M)

�1
= max

xi,xj2V
kxi � xjk2 to put equal weighting

between the center and axis distances.
Dispersion, illustrated in Fig. 3, is formally defined as [24]:

�(�,⌥) = sup
gj2⌥

min
gi2�

⇢(gi,gj).

In the case of � = ?, we let �(�,⌥) = 1. Intuitively, �
measures the radius of the largest ball (under ⇢) in ⌥ that
does not touch any samples in �.

Definition III.1. The coverage for � with respect to ⌥ is
↵(�,⌥) = exp(��(�,⌥)).

Coverage approaches 1 as dispersion decreases and is approx-
imately zero as the dispersion becomes infinite.
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Fig. 3: Illustration of the grasp dispersion metric �. (Left) In the workspace,
the public region of an object (grey) is covered by a set of grasps � (green).
Each grasp is illustrated by a line segment with orientation v centered at x.
Each grasp is a sample from a larger space of possible grasps ⌥, such as the
set of all possible grasps on the part. The farthest grasp in ⌥ from grasps
in � is shown in red. (Right) We measure coverage by the dispersion �, or
the radius of the largest empty ball centered in ⌥. Lower dispersion indicates
higher grasp coverage.

G. Objective
Our formal objective is to plan a set of n grasps � =

{g1, ...,gn} on the masked object such that � ⇢ E(R, Si, ⌧)
and the coverage ↵(�, E) is as small as possible. Note that �
must be a subset of the grasp sets on the original object, even
though it is planned using the masked version.

IV. PRIVACY-PRESERVING GRASP PLANNING ALGORITHM

Algorithm 1 details our algorithm for privacy-preserving
grasp planning, which is also illustrated in Fig. 1. The algo-
rithm takes as input the object mesh M, a masking function
' (see Section V), and parameters for the executable grasp
set, and returns a set of grasps �i and robustness metrics Ri

for each stable pose Si of the object. We mask the object and
compute stable poses before transmission, then compute a set
of candidate public grasps by considering all possible pairs of
contacts at mesh triangle centers, and then prune grasps based
on collisions and robustenss to form a subset of the executable
grasp set for each stable pose. We measure the robustness
PS of each grasp using the probability of force closure PF

under object pose, gripper pose, and friction uncertainty, and
compute PF using Monte-Carlo integration (for more details,
see [26]).

A. Grasp Candidate Generation
We form a set of candidate grasps for each object by form-

ing a set of candidate contact points from the mesh triangle
centers and then evaluating and pruning pairs of possible
contacts. In order to ensure that the set of contacts covers the
mesh surface, we first subdivide triangles of the masked mesh
using primal triangular quadrisection [32] until the maximum
edge length of each triangle is less than some threshold ✏,
transferring the privacy label Z(ti) from each triangle to its
children. We then use the set of triangle centers on the public
zone of the subdivided mesh as our set of candidate contacts
C since the geometry of triangles in the proprietary zone may
have been altered. The triangle subdivision step increases the
density of our candidate grasp set.

B. Privacy-Coverage Tradeoff
The set of possible contacts decreases as the surface of

the part becomes more private, , which intuitively would to a
smaller grasp set and therefore smaller coverage. This property
holds formally for the Privacy-Preserving Grasp Planning
Algorithm. Consider a part with two masks Z1 and Z2 such
that proprietary zones are nested, P(M, Z1) ⇢ P(M, Z2).
Then the candidate grasp sets G1 and G2 are also nested,
G2 ⇢ G1. If n > |Gi| then the loop on line 15 terminates
only once all possible contact pairs have been evaluated, and
thus the planned grasp sets are also nested �2 ✓ �1. Therefore
↵(�1, E) > ↵(�2, E).

1 Input: Object Mesh M, Masking Function ', Robot Gripper
R, Quality Threshold ⌧ , Stable Pose Threshold p, Number of
Grasps n, Edge Length Threshold ✏, Robustness metric PS

Result: Grasp Set � and Robustness Metrics R
// Mask mesh and analyze stable poses

2 S = StablePoses(M, p);
3 Z = UserLabel(M);
4 'Z(M) = Mask(M, Z,');
// Generate grasp candidates

5 'Z(M) =Subdivide('Z(M), ✏);
6 C = � = R = ?;
7 for t 2 'Z(T ) do
8 if Z(t) = 0 then
9 C = C [ {Center(t)};

10 end
11 end

// Compute cover for each stable pose

12 for Si 2 S do
13 �i = ?, Ri = ?, j = 0;
14 Gi = Shuffle(C ⇥ C);
15 while |�i| < n and j < |Gi| do
16 g = Gi[j];
17 if g 62 �i and PS(g) > ⌧ and

NoCollision(g, Si,R,'Z(M)) then
18 �i = �i [ {g}, Ri = Ri [ {PS(g)};
19 end
20 j = j + 1;
21 end
22 � = � [ {�i}, R = R [ {Ri};
23 end
24 return �, R;

Algorithm 1. Privacy-Preserving Grasp Planning

V. PART MASKING

Before transmitting the part across a network for grasp
planning, the part must be masked to ensure that proprietary
geometry is not compromised. Our proposed method, illus-
trated in the left panel of Fig. 1, consists of a labeling tool for
industrial users to select proprietary zones via a graphical user
interface and a mask application stage before transmission.

A. Labeling Tool
To use our graphical tool for labeling the proprietary zones

of parts, a user first loads a mesh and orients the mesh such that
the proprietary zone of the mesh lies within a bounding box
in a graphical user interface. Then the user drags the mouse to
form a box in pixel coordinates, and any triangles that project
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within the bounding box are labeled private. The labeled region
of the part is then colored blue for the user to either accept or
reject the label. If the label is accepted then we save a binary
label for each triangle Z(ti) such that Z(ti) = 1 if triangle
ti is private and Z(ti) = 0 if not.

B. Masking Methods
Fig. 4 illustrates the three methods we compare for obscur-

ing the geometry of a part with a mask. Each method produces
a masked part 'Z(M) = ('Z(V),'Z(T )) from the original
part M = (V, T ).

Deleted Mesh. The masked triangle list 'Z(T ) contains all
triangles from the public zone of the mesh (Z(ti) = 0) and
all triangles from the private zone (Z(ti) = 1) are deleted.
The masked vertex list 'Z(V) contains all vertices that are
referenced by a triangle in 'Z(T ). One potential shortcoming
of this method is that some areas on the masked object may
appear reachable by a gripper but cannot be reached on the
true object due to collisions.

Bounding Box. The masked part 'Z(M) contains all
triangles and vertices from the public zone of the mesh, and
triangles and vertices from the private zone are broken into
connected components. Each connected component is replaced
by a cube oriented along the rotational axes of the reference
frame for the original part. The bounding boxes are zippered
to the original mesh [27], [38]. This method preserves the
reachable areas of the part, however the size of the bounding
boxes can prune grasps that are reachable on the original part.

Convex Hull. The masked part 'Z(M) contains all trian-
gles and vertices from the public zone of the mesh. Triangles
and vertices from the private zone are broken into connected
components, each of which is replaced by its convex hull.
The convex hulls are zippered to the orignal mesh [27], [38].
This method preserves the reachable areas of the part but may
also induce collisions for grasps that are collision-free on the
original part.

VI. EXPERIMENTS

We implemented the described algorithm for privacy-
preserving grasp planning in Dex-Net 1.0 and planned grasp
sets � ⇢ E for a set of 23 parts from Thingiverse [2]. Unless
otherwise noted, our experiments used a number of grasps
n = 10, 000, a PF threshold of ⌧ = 0.01, and an edge length
threshold of 2.0cm. We compute the stable poses for each
object following [42] and use the stable pose with highest
probability of occurence under a uniform distribution on part
orientation. We used a mesh model of a Zymark parallel-jaw
gripper with custom fingers as the gripper R, and performed
collision checking in OpenRAVE [8]. For computing grasp
poses we set ✓ such that the approach axis w was maximally
aligned with the table normal given the stable pose. Evaluation
of PF was performed with 25 random samples using the
Monte-Carlo integration method [15].

A. Label Selection
We used human labels to mask features (holes, air flows,

or connectors) of each part to reflect the coverage metrics and

Complete
Model

Proprietary
Zone

Deleted
Mesh

Bounding
Box

Convex
Hull

Fig. 4: Illustration of the different methods for masking proprietary zones on
five example parts: (top to bottom) a bar clamp, a gearbox, a pipe connector,
a turbine housing, and an endstop holder. (Left to right) The original part
geometry and the geometry with the proprietary zone highlighted. One method
to mask parts is to delete the proprietary zone of the mesh, however this can
lead to planned grasps in collision on the original object. Alternatively, the
proprietary zone can be replaced with a its bounding box or convex hull.

tradeoffs that might be observed in practice, since proprietary
features are often masked by hand in industry. A single human
user without prior knowledge of the details of the Privacy-
Preserving Grasp Planning algorithm used our tool to label
each of the 23 parts with a single proprietary zone and also
labeled four of the parts with a set of five disjoint masks to
study the privacy-coverage tradeoff. The user was instructed
to label the largest feature on the part surface of each as
proprietary for the single masks, and to mask the five largest
features in arbitrary order for the nested masks.

B. Comparison of Masking Methods
Table I compares each of the masking methods from

Section V in terms of the average coverage metric for the
single mask dataset over the stable poses of the 23 parts,
the percentage of planned grasps that are in collision on the
true object, and the Multi-View Convolutional Neural Network
object kernel similarity metric from Dex-Net 1.0 [26]. High
similarity to the original object indicates that the masked
mesh could be used to accelerate grasp planning for new
objects with prior data. We see the method of deleting the
proprietary region of the mesh performs well in terms of
coverage but leads to planned grasps in collision on the
original object, which could be problematic if the grasps were
executed without further checks. Fig. 5 illustrates some of
these failure modes. Grasps planned on the convex hull masked
parts are never in collision on the original part and provide
higher coverage and higher similarity to the original object
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Masking Method Mean ↵ % Collision Similarity

Mesh Deletion 0.79 6.9 1.05
Bounding Box 0.70 0.0 2.60

Convex Hull 0.74 0.0 3.22
TABLE I: Evaluation on the 23 test parts for masking by removing vertices,
replacing the proprietary region with a bounding box, and replacing the
proprietary region with a convex hull. The mean coverage ↵ over all objects
is best for mesh deletion, however the planner may return grasps that are in
collision on the nominal part. Since both the bounding box and convex hull
are supersets of the original geometry, neither leads to any grasps in collision.
Of the two, the convex hull method performs better in average coverage and
similarity to the original object according to the MV-CNN similarity metric
of Dex-Net 1.0.

Fig. 5: Illustration of grasps in collision planned on a part using the mesh
deletion method. Failures occur because the true geometry of the private part
blocks access of a gripper to the planned contacts.

than the bounding box method, suggesting that speedups with
prior data observed in Dex-Net 1.0 [26] would hold.

C. Privacy-Coverage and Robustness-Coverage Tradeoff
Fig. 6 studies the privacy-coverage tradeoff and robustness

coverage tradeoff on a set of four parts (a gearbox, an extruder,
a nozzle mount, and an idler mount), each with five disjoint
proprietary regions masked using the convex hull method.

For the privacy-coverage tradeoff we compared
↵(�, E(R, Si, ⌧)) for the stable pose with the highest
probability and ⌧ = 0.01 to the privacy metric �. We see that
coverage never increases with increased privacy, consistent
with the theory of Section IV. However, the rate of change
of coverage with respect to privacy does not appear to be
consistent across the examples. This may be because grasps
do not appear to be uniformly distributed across the part
surface, suggesting that removing some parts of the mesh can
affect coverage more significantly than others. This effect is
illustrated in the covering sets displayed in Fig. 7.

For the robustness-coverage tradeoff we ran the privacy-
preserving grasp planning algorithm with a fixed privacy
mask and robustness values ⌧ 2 [0, 1] in increments of 0.05.
We compared ↵(�, E(R, Si, 0)) for the stable pose with the
highest probability to the robustness ⌧ for � planned by the
algorithm. We see that the coverage always decreases with an
increasing robustness threshold, consistent with the intuition
that the set of possible grasps considered by our algorithm can
only decrease with increasing ⌧ .

D. Covering Grasp Sets
Fig. 7 compares the top 50 most robust grasps from the cov-

ering grasp sets for the original masked part versus the grasp
set computed by our algorithm using convex hull masking for
a set of eight example parts. We see that for several parts, such
as the fan shroud and turbine housing, the set of most robust
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Fig. 6: Study of the privacy-coverage tradeoff and robustness-coverage trade-
off for four example parts (a gearbox, an extruder, a nozzle mount, and an
idler mount), each with a sequence of nested proprietary regions. For each
part the coverage ↵ never decreases with increasing privacy �. However,
the rate of change of coverage with respect to privacy is not constant, even
within a single part. This may be because the set of executable grasps may be
more dense in particular regions of the mesh, and jumps occur when areas of
high density are masked. Also, coverage always decreases with an increasing
robustness threshold.

grasps is clustered in particular regions of the part geometry
and when this zone is not masked, the coverage remains high.
The covering grasp sets on the original part geometry exhibit
variations in density, which may explain the part-variation
in the privacy-coverage tradeoffs reported in Section VI-C.
Our algorithm correctly avoids the proprietary region of the
part and prunes grasps in collision near the table and ares of
complex part geometry.

E. Computation Times
The runtimes in minutes for the Privacy-Preserving Grasp

Planning algorithm on the eight parts in Fig. 7 were (left to
right, top to bottom): 40.0, 36.5, 38.6, 39.1, 41.2, 42.0, 39.6,
and 48.9. One average planning took 0.25 seconds per grasp,
consistent with the brute force evaluation results reported
in [26]. All planning was performed on an Intel Core i7-4770K
3.5 GHz processor with 6 cores.

VII. DISCUSSION AND FUTURE WORK

We presented an algorithm and system for privacy-
preserving grasp planning to find a set of robust grasps for
parts while preserving proprietary geometric features of parts
such as mounts, connectors, and holes for air flows. Our
algorithm masks the part using the convex hull of the propri-
etary region and evaluates contact pairs on triangles from the
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Fig. 7: Comparison of the top 50 most robust grasps from the executable grasp set on the original part and from our algorithm using convex hull masking on
eight parts. The coverage ↵ is reported for each of our computed privacy-preserving grasp sets, and proprietary zones are marked in blue. Each grasp axis is
colored by its robustness, or probability of force closure (PF ) under uncertainty in object pose, gripper pose, and friction. We see that grasp sets planned by
our algorithm are similar to those planned without considering privacy, and that the computed sets do not intersect the private region of the original mesh,
suggesting that grasps planned on the masked part preserve privacy and cover the public region of the original part, and that robust grasps tend to be clustered
together on certain areas of the part.

public region of the part surface, checking collisions and the
probability of force closure for each. We also introduce grasp
coverage based on dispersion and prove that coverage cannot
increase with increasing part privacy for a sufficient number
of grasps input to our algorithm. Experiments suggest that
the convex hull masking method outperforms mesh deletion
and bounding box masking and that coverage decreases with
increasing privacy, and the increase appears to be proportional
to the density of grasps in the private region of the mesh.

In future work we will further study the privacy-coverage
tradeoff with additional parts and work with industrial experts
to refine the privacy-labeling interface and perform physical
experiments. We will investigate approaches to increasing
computational efficiency by actively identifying candidate
grasp surfaces that lack coverage, for example using anneal-
ing [6] or Multi-Armed Bandits [22]. We will also explore
alternate methods to preserve privacy other than masking, for
example adding small deformations to the geometry using

decimation or smoothing [37] and investigate how these affect
grasp robustness.
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