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SUMMARY
Planning a sequence of robot actions is especially difficult
when the outcome of actions is uncertain, as is inevitable
when interacting with the physical environment. In this
paper we consider the case of finite state and action
spaces where actions can be modeled as Markov
transitions. Finding a plan that achieves a desired state
with maximum probability is known to be an
NP-Complete problem. We consider two algorithms: an
exponential-time algorithm that maximizes probability,
and a polynomial-time algorithm that maximizes a lower
bound on the probability. As these algorithms trade off
plan time for plan quality, we compare their performance
on a mechanical system for orienting parts. Our results
lead us to identify two properties of stochastic actions
that can be used to choose between these planning
algorithms for other applications.

KEYWORDS: Automatic planning: Robots: Stochastic en-
vironments: Algorithms.

1. INTRODUCTION
To plan, a robot must anticipate the outcome of its
actions. If we choose to model the robot's environment
as a deterministic mapping on a finite set of possible
states, a robot operating in the physical environment
often encounters apparent non-determinism: a given
action applied to a given state does not always yield the
same result. As the robot's model of the environment is
an approximation to the real environment, such
uncertainty can arise from: errors in sensing (either the
initial or next state is not measured accurately), errors in
control (the commanded action is not repeated
accurately), or a combination of the two caused by
physical effects too fine to be modeled, such as friction or
collision dynamics.

• A portion of this work was performed by the authors at
Carnegie Mellon University.
t Computer Science Department, Tulane University, New
Orleans, LA 70118-5674 (USA).
Supported at CMU by an AT&T Bell Laboratories Ph.D.
Scholarship and by the National Science Foundation under
grant DMC-8520475. A portion of this work was completed
during a visit to the Laboratoire d'Informatique Fondamentali:
et dintelligence Artificielle (LIF1A) in Grenoble. France.
supported by INRIA.
t Institute for Robotics and Intelligent Systems, University of
Southern California. Los Angeles. CA 90089-0273 (USA).
Supported by the National Science Foundation under Awards
No. IRl-9123747. and DDM-9215362 (Strategic Manufacturing
Initiative).

To generate plans that will be reliable under such
conditions, we can model events stochastically. When an
action is applied to a given state, the probability of
reaching a particular next state is predicted using a
discrete probability distribution. We model the state of
the environment as a random variable with an associated
probability distribution.

This distribution can be thought of as a hyperstate with
"probability mass" assigned to each state of the
environment.' Each action is a mapping from one
hyperstate to another. If the current probability
distribution depends only on the action and previous
hyperstate, then the sequence of hyperstates is known as
a Markov chain.

The conditional probabilities that define each action
can be represented using a matrix. Depending on the
application, the field of statistics offers a variety of
approaches to estimating the value of such matrices."1 In
this paper we use a Bayesian estimator to estimate the
values in these matrices based on observations of a
physical robot system. We also test the resulting plans on
a particular part orienting application. Though we use a
specific robot application, we are motivated to identify
task characteristics that are common to a wide variety of
robot manipulation tasks.

Our problem can be defined as follows: Given a known
initial state, desired final state and a finite set of actions
represented with stochastic transition matrices, find a
sequence of actions that will maximize the probability of
reaching the desired final state. We consider the
"unobserved" planning problem (where we do not
observe the state between actions during plan
execution).4"'5 The exponential-time algorithm to solve
the problem (by checking all possibilities) is straightfor-
ward. It has been shown6 that finding an optimal plan is
NP-Complete: thus it is unlikely that a polynomial-time
algorithm exists. This motivates us to consider a faster
algorithm that yields suboptimal plans. Since the general
approach is to trade off planning time against plan
quality, this paper compares two planners on our
application task.

We have found that planning is affected by two
contrasting properties of stochastic actions. Some actions
have the property that a single initial state tends to map
onto more than one result state. We say that the action
exhibits .state divergence when, in executing the action,
there is a tendency to distribute probability mass.
Alternatively, some actions have the property that
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multiple initial states map into a single result state. In
these cases, we say that an action exhibits state
convergence—it tends to focus distributed probability
mass into a single state. An action can exhibit both
divergence and convergence if it spreads out probability
mass from one state while combining mass from other
states. Of course, some actions may exhibit neither state
divergence nor state convergence.

A stochastic planner evaluates plans by tracking how
probability mass is distributed by sequences of actions.
The objective is to find a plan that transfers a maximal
amount of probability mass into the desired final state.
This can be accomplished in several ways. One way is to
use actions that cause state divergence followed by
actions that cause convergence toward the desired state.
Another way to plan is to avoid actions that cause state
divergence. These two ways of transferring probability
mass suggest two planning methods: Method I
propagates hyperstates, using a forward exhaustive
search (to a fixed plan length) to find a plan most likely
to produce the desired goal. Method II propagates only
the most likely state, using a backward best-first search
to find a plan that maximizes a lower bound on the
probability i>f reaching the goal.

We describe ;he two planning methods in detail and
analyze the computational complexity of each method.
We compare the plans produced by each method and the
planning time required by each planner. We conclude the
paper by revisiting the concepts of state divergence and
state convergence and their importance to planning with
stochastic actions.

2. RELATED WORK

2.1 Stochastic reasoning
The general problem of planning with stochastic actions
has been considered in the Al literature beginning with
the landmark paper7 that advocated the use of decision
theory with numerical cost and probability models.
Today, decision theory is a standard tool in Al:8'9 in fact,
it has been argued1" that Bayesian decision theory
subsumes many alternative approaches to coping with
uncertainty. One factor that is not always considered is
the computation time required to find an optimal plan:
often we are willing to accept a satisfactory plan now
rather than an optimal plan later. Building on pioneering
work by Simon," Etzioni12 incorporated a model of
deliberation cost into a single Bayesian planning
framework. The present paper addresses the tradeoff
between plan time and plan quality by comparing the
measured performance of two algorithms on the same
problem.

In the field of control theory, stochastic dynamic
programming has been shown'-114 to be a powerful tool
for finding an optimal control policy (i.e. a mapping from
states to actions). During execution, the robot looks up
the current state in the table and performs the action
stored therein. Unfortunately, these methods do not
apply to the "unobserved" planning problem that we

consider in this paper, where the robot is not allowed to
sense the state of the system and must proceed
open-loop.

2.2 Empirical models
One can also view the systems of the current paper as
learning systems, because the models of the task are
developed by the robot from direct observations of the
effects of actions. (These observations are made off-line,
before planning occurs, in keeping with the unobserved
planning problem that we consider. There are variants of
our problem where sensing is allowed during plan
execution, and this sensing may be used to improve the
probability of achieving the goal.) The observations
allow the robot to adapt its model of action effects. If
these adaptations reflect physical reality, then the robot
improves its ability to generate correct plans, and also its
ability to achieve its goals. Learning systems for robotics
and control applications have been studied for more than
a decade. The peg-in-hole problem was consideredl5

using a learning automata approach."1 Dufay and
Latombe17 considered the problem of inducing robot
control programs from example program traces. Barto'lS

provided a survey of neural net approaches for control
problems. Buckley19 considered the problem of human-
guided robot teaching in the context of robot motion
planning. Gross2" described a method for learning
backprojections of desired part orientations under
pushing actions. Bennett21 presented a method for tuning
stochastic plans based upon prior models of the task
actions. Christiansen's PhD Thesis22 provides a detailed
review of learning systems for robotic manipulation.

As stated earlier, a planning algorithm must be able to
predict the outcome of alternative actions. This
prediction can either be based on analytic (a priori)
models of actions, or on empirical observations. In this
paper we consider the latter (although we do employ an
a priori discretization of the state space).

Research in robotic motion planning has tended to
focus on analytic models, even though such models are
often underspecified when friction is present.23"27 An
analytic model for the part orienting application
considered in this paper, based on a novel representation
for multiple frictional contacts in the plane, was
originally described by Erdmann and Mason.28 Erdmann
and Mason considered the problem of finding plans that
achieve a unique final orientation for a part regardless of
its initial orientation. The authors based their analytic
model on two strong assumptions: that friction obeyed
Coulomb's Law with a uniform constant coefficient
throughout the task space, and that inertial effects could
be ignored. Since this model does not uniquely specify
the outcome of every action, the planning algorithm kept
track of all possible outcomes. Although this planner
performed remarkably well in experiments (approxim-
ately 50% success rate), the prospect of adding more
elaborate analysis of friction and dynamics was daunting.
In contrast, our approach is to plan with a stochastic
model based solely on physical observations.
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3. TRAY-TILTING
To compare the two planning algorithms, we applied
them to a method for orienting parts called "tray-
tilting".2* The objective is to manipulate planar objects in
a walled tray by tilting the tray so that the objects slide to
a desired position and orientation. (See Figure 1.) The
physics of this task are subtle and include frictional and
impact effects. Tray-tilting has been studied before, both
analytically2'*1"' and empirically.-1""-12

Our robot arm was programmed to perform tilts in any
desired direction. As the tray is tilted by the robot,
gravity acts on the object and causes it to slide. For the
purposes of this paper, we define tilts by a parameter
which we call the tilt azimuth. This angle is the direction,
in the plane of the tray bottom, of the force of gravity on
the object during the tilt. (See Figure 2.) Other
parameters of the tilt, such as steepness of the tilt and tilt
speed, had constant values during all tilts. (The tilt
steepness was thirty degrees from the horizontal and the
tilt speed was set at a relatively slow speed: 25% of the
nominal monitor speed for the Puma 560 robot that we
used.) Although there is an infinite number of possible
tilt azimuths, and therefore an infinite number of tilts, we
sampled this space of azimuths at 30 degree intervals. In
all cases, the robot restricted its actions to one of these
12 tilts.

In addition to defining tilts by a single parameter, we
simplified the description of task state by discretizing the
object's position and orientation. As indicated in Figure
2, we divided the tray (conceptually) into nine regions,
corresponding to the four corners, the four sides, and the

Fig. 1. The robot performing a tilting action.

150

Fig. 2. The tray (viewed from above), its states, and examples
of tilt azimuths.

middle of the tray. We gave each of these regions
symbolic names, as shown in Figure 2. We described an
object's position by one of these names - the name of the
region in which the object's center is located. A camera
above the tray and an industrial image processor
provided this position information. We described
orientations by a similar discretization - our objects were
described as being either horizontal (to) or vertical (v),
depending on the orientation of the object's major axis,
as reported by our vision system. The rectangular tile of
Figure 2 would be classified as (swh). This discretization
is coarse and somewhat arbitrary. However, because the
object tends to be in contact with tray walls as a result of
the applied tilting actions, the states defined by our
discretization correspond to qualitatively distinct physical
configurations.

Because of our discretization of state, errors in our
vision system, inaccuracies of the robot, and unmodeled
physics (such as impact), this task exhibits apparent
non-determinism. Our robot system, given only coarse
sensory capabilities and no knowledge of physics,
observes that its actions are not perfectly repeatable.
This lack of repeatability makes the task seem
non-deterministic. However, it is possible for the robot
to build a stochastic model of its environment by
observing the relative frequencies with which events
occur in response to its actions. The observed
non-determinism may or may not be due to a
non-deterministic world. Noisy sensors and effectors are
sufficient to make the world seem non-deterministic to
the robot.

4. DEVELOPING A STOCHASTIC MODEL
FROM OBSERVATIONS
Given a set of observations from physical experiments,
what is an appropriate stochastic model of actions? If the
probabilities of future states depend only on the current
state, then we can use a Markov chain to represent the
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actions. We represented each tilting action u with a
stochastic transition matrix, P,,, where p,, is the
(conditional) probability that the system will be in state j
after action u is applied to state /. We assume that the set
of states and the set of actions are both finite.

In the physical experiments, each observation consists
of an initial state, a tilting action, and a final state. For
each tilting action u, consider the matrix X,,, where ,r,y is
the number of observations with initial state / and final
state / Given an observation matrix X,,, how do we
generate a stochastic transition matrix P,,?

One possible approach is to use the observed
frequencies. The difficulty is that some observed
transition frequencies may be zero. For such a transition,
it isn't clear whether the transition is truly impossible -
maybe the transition just has a low probability and hasn't
yet been observed. A standard approach from statistical
estimation is to use the following estimator for each
action u,

<*„
2, a,, + x,, '

(1)

where the numbers o,y for /' = 1, 2 k are Dirichlet
parameters based on a priori assumptions. This is
equivalent to a Bayes" estimator using a squared error
loss criterion.2

We could set a,v = 1.0 to represent the prior
assumption that the conditional probability distribution is
uniform: after an action is applied, the system is as likely
to be in any one state as in any other. For the tray tilting
problem, we set an = 0.01 to represent our prior
assumption that the conditional probability distribution
for each action will not be uniformly distributed, but will
in fact be skewed toward some subset of states.

We generated 2000 tilt azimuths by random selection
(with replacement) from the set of twelve azimuths
described previously. Our robot performed the corres-
ponding tilts of the tray, and observed the outcome of
each tilt. The X,, matrices were defined by this data and
we used equation (1) to generate the corresponding
stochastic transition matrices.

5. PLANNING WITH METHOD I
We now turn to the planning problem: given a stochastic
model of actions, a known initial state and desired final
state, find a sequence of open-loop tilting actions - a
p l a n - t o reach the desired final state. We will present
two planning methods and their resulting plans. In this
section we describe a method that maximizes the
probability of reaching the desired final state. This
method has been applied to programming parts
feeders/1

Method I is based on the control of Markov chains.
Consider a system with finite state space. Let us refer to
a probability distribution on this state space as a
hyperstate. Each action is a mapping between hyper-
states. A plan is a sequence of actions, which also
corresponds to a mapping between hyperstates. For a
given initial hyperstate. each plan generates a final

hyperstate. To compare plans, we compare their final
hyperstates. To rank hyperstates, we introduce a function
that maps each hyperstate into a real number called its
cost. The best plan is the plan with the lowest cost.

Let the vector A refer to a hyperstate. In a Markov
chain, the hyperstate that results from applying action it
to A is given by post-multiplying A by P,,,

A' = AP,,.

A plan is a sequence of actions. The outcome of a plan is
the composite effect of its inputs; the transition matrix
for a plan is the product of the transition matrices of its
actions. That is, for a plan consisting of the sequence of
actions («,, i/4, u2). the final hyperstate is

For the tray tilting task we are given a known initial
state and desired final state. In this case the initial
hyperstate is a vector with a 1 corresponding to the initial
state and zeros elsewhere. Each action (and hence plan)
defines a final hyperstate using the stochastic transition
matrices described in Section 4. The cost function
depends on the desired final state. If we want to reach
state /, let

so that the minimum cost hyperstate corresponds to the
highest probability that the system is in state /. Note that
there may be more than one minimum-cost hyperstate.

To compare plans, we compare their final hyperstates.
We express our desire for a particular outcome with a
cost function on the set of hyperstates. Typically, a
hyperstate"s cost is determined by a weighted average of
its constituent states.

To find the best plan, we consider all plans and find
one with minimum cost. The difficulty is that there is an
infinite number of plans to consider, requiring an infinite
amount of computation (unless we have prior informa-
tion that the optimal plan is not infinite in length). We
compromise and ignore plans longer than some cutoff
threshold. This threshold depends on how much time we
have and how fast we can evaluate potential plans. In our
case we considered all plans with length S3 to find a plan
with minimal cost.

6. PLANNING WITH METHOD II
An alternative planning method is based on heuristic
graph search. The transition probability matrices
described in Section 4 define a graph, or more correctly,
a multigraph. The vertices of the graph are the states that
were defined previously (the object configurations) and
the graph's edges are the actions that cause one state to
be changed to another. Associated with each edge is an
estimate of the probability that the action will provide
the indicated state change. The graph is a multi-graph
because there may be multiple edges possible between a
single pair of vertices, corresponding to multiple actions
causing the same state transition.
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Fig. 3. A portion of the robot's task model.

Figure 3 shows a small portion of the graph defined by
our data. Above each edge is a tilt azimuth. Below each
edge is the associated transition probability. Note that
when the object is in state (ne v), and a tilt of azimuth
300 is applied, the object's new state is uncertain. It is
estimated that it has a 61% chance of achieving the
(nwh) configuration, and a 38% chance of moving to
the (nh) configuration. Of course, not all transitions are
shown in Figure 3. The sum of the probabilities for a
particular action executed from a particular state must be
equal to one.

The planning problem of finding a sequence of actions
that will transform a given current state to a desired goal
state can now be viewed as finding a path in the graph
that links the two states. Since our model of state
transitions is stochastic, we naturally wish to find a plan
(path) with high probability of achieving the goal. When
a plan is executed, several actions are performed in
succession. The action probabilities for the plan steps
must be combined to give an estimate of the probability
of success for the whole plan.

A lower bound on the probability that a plan will reach
a desired state can be computed by multiplying the
probabilities along one path between initial and desired
states. Such a computation produces only a lower bound
because there can exist multiple paths between the initial
and desired states that share the same sequence of action
labels. We can find a plan that maximizes this lower
bound by using shortest-path graph search. This leads to
an efficient algorithm for finding plans that we will call
Method II.

Method II is an example of uniform-cost search.'*
While uniform-cost search is usually cast as finding a
minimum cost path in a graph (where the cost of a path
is the sum of the costs of the edges in the path), it is easy
to adapt the algorithm to our problem by changing the
evaluation function. In finding a minimum cost path in a
graph, one desires to find a sequence of edges linking the
start and goal vertices such that the sum of the costs of
those edges is as small as that of any other such
sequence. Our problem is to find a sequence of edges
linking the start and goal vertices such that the product
of the probabilities is as large as any other such sequence.
It is possible to map our problem exactly onto a shortest

path problem by transforming the values associated with
edges. For each edge probability p, we consider a new
edge value (- logp). In this way, we guarantee that
finding a shortest path in the transformed graph will
correspond exactly to a maximum product probability
path in the original graph.

Since Method II only considers single paths, it
sometimes misses good plans. Consider when Method II
is applied to the problem of getting from state (ne v) to
(neh), and its stochastic action model is defined by
Figure 3. Method II returns the plan (180 330 90). This
path's product of action probability estimates is larger
than any other single path in the graph. Method II has
found a good plan, but note that the plan (300 90) would
be better. Under this plan, the configuration achieved
after the first tilt is very likely to be either (nh) or
(nwh), and the second tilt is highly likely to achieve the
goal no matter which intermediate configuration was
actually achieved. The combination of paths yields a high
probability even though neither single path has higher
probability than the path (180 330 90). Note that Method
I would return the better plan in this case but we shall
show that Method I requires significantly more
computational effort to achieve this rigor.

7. COMPUTATIONAL COMPLEXITY
Our planning problem can be related to finding an
optimal control policy for an unobserved Markov chain
where the control and observation sets are finite.13 When
system state is perfectly observed at each stage and
either the transition probabilities are non-stationary and
the time horizon is finite or the transition probabilities
are stationary and the cost function decays with time, the
problem can be solved in polynomial time by dynamic
programming techniques. For cases where the system
state is only partially observed (in a known element of a
partition) at each stage, the problem is PSPACE-Hard,
even for stationary, finite-horizon problems.

Finding optimal open-loop plans with stochastic
actions has been shown to be NP-Complete.6 This
suggests that an algorithm with good worst-case running
time may not exist.

Recall that Method I considers all plans up to some
length limit, k. Let n be the number of states and m be
the number of actions. There are mk /c-step plans. We
can visualize the search for an optimal strategy as
proceeding through a tree, where the root node contains
the initial hyperstate and has a branch for each action in
the action space. Each branch leads to a new hyperstate
which in turn has branches for each action. We expand
the tree to some fixed depth (horizon) and select the
optimal path. To generate each node in the tree we must
perform O(n2) multiplications. The total time for finding
the best fc-step plan is 0(n2mk).

Recall that Method II is based on uniform-cost graph
search. Because the edge values ( - logp) are nonnega-
tive, uniform cost search on this problem has a monotone
heuristic, which implies that whenever a node is
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expanded, a best path to that node has been found. This
means that nodes will never have to be re-expanded, and
in a finite graph of n vertices, there can be no more than
n node expansions. If there are m actions available at
each state, then m is the maximum number of edges that
can be between any pair of vertices. Therefore, the
maximum amount of work that will have to be done at
each node expansion is 0{nm), and the complexity of
the algorithm is 0(n2m). The implemented algorithm
deals with probabilities and products directly instead of
transforming the problem to a shortest path problem, but
it performs analogous steps to those of uniform cost
search on the transformed graph. So, the complexity of
Method II is also 0(n2m).

Note that if Method I and Method II were applied in a
situation where only 1-step plans were desired, then the
complexity for planning with the two methods would
differ by no more than a constant factor.

Note the exponential factor mk in Method I's
complexity. For Method II, if the number of actions is
increased by a constant factor, the planning time
increases by a constant factor. However, if Method I is
applied to a task with a constant factor c more actions,
then the total planning time would grow by the factor ck,
where k is the length of the longest plan to be
considered. In this paper, we consider 12 actions
available at each step of a plan. The average planning
time was 62 seconds for Method I and 0.46 seconds for
Method II. If we considered the case where the tray
could be tilted at one degree intervals (360 possible
actions), and kept the three step plan length bound, then
the number of actions would increase by a factor of 30.
Method II's planning time would increase to 30 • 0.46, or
14 seconds. However, Method I's planning time would
swell to 303 - 62 seconds, which is more than 19 days.
Thus, Method I becomes less practical as the number of
actions to be considered increases.

8. EMPIRICAL COMPARISONS
OF THE PLANNERS
The two planning methods were implemented in
Common Lisp. To explore performance tradeoffs, we
performed several experiments with the tray-tilting task.
In all experiments reported in this paper, we used an
11 inch square tray and a 1 by 3 inch rectangular tile
(Figure 2).

In Section 3, we described the state space of possible
tile configurations for the tray-tilting tasks. There are
nine possible discrete positions and two discrete
orientations, making a total of eighteen possible
configurations. It turns out that only twelve of these
configurations occur in practice. When the tile is in one
of the four corners, both orientations are possible, for a
total of eight configurations. The two configurations in
the middle of the tray are impossible. For the remaining
positions - where the rectangular tile is against a side of
the tray - only the orientation where the tile's major axis
parallels the tray wall occurs in practice. This adds four
more possible configurations, for the total of twelve.

For twelve possible tile configurations, there are 144
pairs of configurations defining start state and goal state.
Let us refer to each of these pairs as a problem. There
are 132 non-trivial problems for our tray domain. (The
twelve problems with start state and goal state equal to
each other are trivial, since a null plan always solves the
problem.) We ran the two planners on each of the 132
non-trivial problems. Table I lists some of the resulting
plans.

For 51 (39%) of the problems, the two planners
produced identical plans. In many other cases, the two
planners produced similar or symmetrically equivalent
plans. In nearly every case, the estimated success ratios
of the two methods were within a few percentage points
of each other. Note that for plans of length s 3 , the
estimated success ratio P for Method II is less than or
equal to that for Method I, since in those cases, Method
II's estimate is a lower bound on the Method I estimate.

On some problems, the planners did not agree. In
Table I we have listed three such problems (the last three
entries). Since Method I was limited to searching for
plans of three steps or shorter, there were occasions
when Method II was able to search deeper and find a
superior plan. The four and five step plans listed in the
table are two such examples. On some problems Method
I was able to find a superior plan within its length bound
by taking advantage of state convergence. The plan
(300 90) is an example. In this problem, the initial state is
the northeast corner of the tray in a vertical
configuration, and the desired goal is the same corner,
but in a horizontal configuration. Figure 4 shows a trace
of the anticipated object locations as each of the plans
proceeds. Method II (below) finds an adequate plan: It
tilts the tray at 180, moving the object to the (sev)
configuration. Then it tilts at 330, moving the object
nominally to (nh). Finally, it tilts at 90, moving the
object to (ne h). This plan is good, but it can fail by (for
example) the tilt 330 not aligning the object horizontally.
Method I's plan (above) is better since its intermediate
hyperstate aligns the object horizontally but causes
divergence of its position. The second tilt of the plan
causes all such intermediate states to converge to (neh).

Both planners were implemented as compiled
Common Lisp programs and were tested on the same
computer, a Sun 3/280. Method I's search was truncated
at depth three, and so all of its plans were between one
and three steps in length. Method II's plans were all
between one and six steps in length. Over the 132
problems, Method I took an average of 62 seconds real
time per problem, with a standard deviation of 2.8
seconds. The average time for Method II on the same
problems was 0.46 seconds, with a standard deviation of
0.62 seconds. The minimum planning time for Method I
was 59 seconds and the maximum was 87 seconds. The
minimum planning time for Method II was 0.040 seconds
and the maximum was 6.5 seconds. The average length of
plans found by Method I was 2.4 tilts with a standard
deviation of 0.75 tilts. The average plan length for the
Method II planner was also 2.4 tilts, but with a standard
deviation of 1.2 tilts.
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Table I. Comparison of plans generated by the two methods.

Start

(nh)
(nh)
(nh)
(nh)
(nh)
(nh)
(nh)
(nh)
(nh)
(nh)
(nh)

(swv)

(nev)
(nev)

Problem

Goal

(neh)
(nev)
(ev)
(seh)
(sev)
(sh)
(swh)
(swv)
(wv)
(nwh)
(nwv)

(nh)

(nh)
(neh)

Method I

Plan

(90)
(240180 60)
(120)
(9018090)
(150 30180)
(240 150)
(270270180)
(240 180)
(240)
(270 30270)
(2400)

(120 300 30)

(270 30 60)
(300 90)

P

0.98
0.97
0.97
0.98
0.98
0.97
0.97
0.98
0.99
0.97
0.98

0.62

0.67
0.98

Method 11

Plan

(90)
(240180 60)
(120)
(270150)
(240 0120)
(240150)
(270 180)
(240 180)
(240)
(270)
(2400)

(60180240300 30)

(180240 300 30)
(18033091)

P

0.98
0.96
0.97
0.96
0.97
0.97
0.96
0.97
0.99
0.97
0.98

0.75

0.75
0.87

5./ Physical test of resulting plans
We further tested the last two problems of Table I with
the robot. These two problems represented cases where
the methods produced significantly different plans. In
terms of predicted success ratios (probability of reaching
the goal), Method II found a better plan for the first
problem because it was able to search deeper. In the
second problem, Method I found a better plan because it
considered state divergence and state convergence.

Table II summarizes the head-to-head competition.
Each of the four plans was executed 200 times. In the
first problem, the estimated success ratio was lower than
the observed success ratio. There are at least two
explanations for this. First, the estimates for these plans
may be low because insufficient data had been collected
to predict the correct transition probabilities for the
actions comprising the plans. This could be corrected by
taking more experimental trials prior to planning. A
second explanation is that the circumstances under which
the data were collected did not truly reflect the

300 90

180
\
330 90

Fig. 4. Two tray-tilting plans. The plans are read from left to
right, with intermediate states shown as views from above the
tray. Tray tilt directions are shown between the states that they
link. The problem is to re-orient the object from vertical to
horizontal, leaving the object in the upper right corner of the
tray. Above: Method I's plan. Below: Method II's plan.

circumstances under which the plans were executed. The
data were collected by selecting tilt azimuths at random
from the set of twelve nominal aximuths, and this may
have led to a greater variety of tilt outcomes than is the
case when a sequence of high-quality plans is executed.
Since we don't know a priori which plans are the best, it
is unclear how to correct this possible source of error.

In the second problem, the estimated and observed
success rates were nearly equal. In both cases selected
for detailed testing, the plan with higher estimated
success rate performed better.

9. DISCUSSION
We began this paper by acknowledging that it is not
always possible to predict the exact outcome of actions in
robotic manipulation due to factors such as control error,
friction, and dynamics. In response, we considered
stochastic models of action. When actions are viewed as
stochastic, the conventional planning paradigm must be
modified to search for plans that achieve a goal with high
probability.

For the class of problems where state and action
spaces are finite, we can view planning as finding a
sequence of actions that transfer probability mass from
the initial state to the desired final state. Certainly it is
true that the .state and action spaces in many robot
planning problems are not finite. However, they can
often be discretized using a uniform grid or preferably,
with a "criticality"-based partition justified by system
geometry.15

Planning is affected by two contrasting properties of
stochastic actions. We say that an action exhibits state
divergence when it distributes probability mass. We say
that an action exhibits state convergence when it focuses
probability mass. These properties affect the choice of
planing method. We considered two methods.
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Table II. Summary of execution trials for four plans. The estimated and measured success
columns show the number of successful plan executions (out of 200 trials) along with the
corresponding decimal fractions. Method II finds a better plan in the first instance because
Method I neglects plans longer than 3 steps. However in the second instance, Method I
finds a better plan because Method II neglects plans which incur state divergence.

Start
State

(nev)
(nev)

(nev)
(nev)

Goal
State

(nh)
(nh)

(neh)
(neh)

Planning
Approach

Method I
Method II

Method I
Method II

Best
Plan

(270 3060)
(180240 30030)

(300 90)
(180 33090)

Estimated
Successes

134 (0.67)
150(0.75)

196(0.98)
174(0.87)

Measured
Successes

170(0.85)
192 (0.96)

198(0.99)
171 (0.855)

Method I uses a forward exhaustive search (to a fixed
plan length) to find a plan most likely to produce the
desired goal. Method II uses a backward best-first search
to find a plan that maximizes a lower bound on the
probability of reaching the goal. Method I keeps track of
all probability mass as it evaluates plans, monitoring both
state divergence and state convergence as the plan
progresses. However, keeping track of all probability
mass requires substantial computation; Method I can
only consider short plans. Method II keeps track of only
the most probable trajectory, monitoring state diver-
gence and ignoring state convergence. Accordingly,
Method II is faster and can consider longer plans, but it
sometimes misses good plans.

Which method is better? It depends on the available
planning time and the degree of state divergence in the
available actions. Because Method I checks all plans
requiring fewer than k actions, Method II cannot find a
better plan within this depth. However, depending on the
number of available actions, the achievable value of k
could be quite small, prompting us to prefer Method II,
especially when we can avoid or minimize state
divergence.

Sometimes divergence is unavoidable. For example,
consider a tray-tilting problem where we want to achieve
a particular object configuration but the initial
configuration is unknown. This is equivalent to a highly
divergent action occurring before plan execution. It is as
if someone randomly shook the tray prior to the robot
carrying out its plan. Consider a case where the initial
hyperstate reflects a uniformly distributed state prob-
ability. Method I can find the best plan for getting the
tile into the northeast corner. Method II can't solve this
problem. As another example, consider programming a
robot to pick up parts on an assembly line. Each time a
part arrives, its initial position and orientation relative to
the robot will be slightly different. This results from a
divergent action earlier in the assembly line.

Sometimes state divergence is desirable. For example,
it may be more efficient to allow divergence followed by
effective convergence. Consider a typical plan for causing
two gears to mesh: we jiggle the gears at random
(divergence), until the gears fall into alignment
(convergence). This plan is more efficient than trying to
avoid divergence by carefully aligning the gears. The
process of deliberately incurring divergence is known as

randomization, and has been recently identified as an
important component of manipulation.36

For most problems in the tray-tilting domain, Method
II found plans that were comparable to those found by
Method I. Studying the resulting plans, we discovered it
was often possible to avoid significant state divergence.
This is a property of the tray-tilting task, and is not
guaranteed to be present in all manipulation tasks. For a
few problems, it was better to incur state divergence
followed by state convergence. An example of such a
problem was given in Figure 3. On a problem like this,
Method I is superior.

It may be possible to build a hybrid of these two
methods: an efficient planner that considers some state
convergence. Instead of tracking the probabilities for
every state, as Method I does, or tracking the probability
of only the most likely state, as Method II does, maybe
the hypothetical planner could track the probabilities of
the two or three most likely states. Like Method II, the
hypothetical planner would, in most cases, find a plan of
near-optimal quality. Even more desirable would be an
approximation algorithm, where we might be able to
guarantee, for all problems, that the plans produced
would be suboptimal by no more than a fixed constant
factor.

Uncertainty is inevitable for any robot operating in the
physical environment. When the outcome of each
potential action is unpredictable, planning a reliable
sequence of robot actions is extremely difficult. Yet
reliability is essential if robots are to be adopted in new
applications. The past thirty years of research in robotics
has taught us that it is extremely difficult to derive
accurate analytic models for simple actions such as
pushing a part across a table. More complex actions are
even harder to model analytically. One alternative is to
consider stochastic models obtained from physical
observations. In this paper we have considered the
problem of planning with such models.

Since finding optimal plans is known to be
NP-Complete, we compared an exponential-time planner
that finds optimal plans with a polynomial-time planner
that finds sub-optimal plans. Intuitively, there should be
a tradeoff between planning time and plan performance.
We explored this tradeoff by comparing the two
algorithms in the context of a physical application. These
experiments led us to identify two properties of actions
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that can aid in choosing between the algorithms for
future applications where state and action spaces are
finite.
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