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Approximate Algorithms for a Collaboratively
Controlled Robotic Camera

Dezhen Song, Member, IEEE, and Kenneth Y. Goldberg, Fellow, IEEE

Abstract—Deployed as a natural environment observatory or
a surveillance device, a remote networked robotic pan-tilt-zoom
camera needs to be controlled by simultaneous frame requests from
both online users and in situ sensors such as motion detectors. This
paper presents algorithms that are capable of finding a camera
frame that optimizes a measure of total satisfaction over all re-
quests, which is a generalized version of the single frame-selection
problem proposed by Song et al. in 2006.We present a lattice-based
approximation algorithm; given n requests and approximation
bound ε, we analyze the tradeoff between solution quality and
the corresponding computation time, and prove that the algorithm
runs in O(n/ε3) time. We also develop a branch-and-bound-like
implementation that reduces the constant factor of the algorithm
by more than 70%. We have implemented the algorithms, and
numerical experiment results conform to our analysis. Field ex-
periments of the proposed algorithms have been conducted in the
past three years. The proposed algorithms have been deployed suc-
cessfully in a variety of real world applications including natural
environment observation, building construction monitoring, and
the surveillance of public space.

Index Terms—Natural environment observation, pan-tilt-zoom
camera, teleoperation, telerobotics.

NOMENCLATURE

Z = [z, z] is a set of feasible values of image
resolution/camera zoom range.

(x, y) Center position of a camera frame.
z Camera frame size, z ∈ Z.
c Camera frame c = [x, y, z].
c∗ Optimal camera frame c∗ = [x∗, y∗, z∗].
n Number of request frames.
zi Image resolution of the ith request, zi ∈ Z, i =

1, . . . , n.
ri Request i, ri = [Ti, zi ], where Ti is an arbitrary

closed region, and it takes constant time to compute
its area, i = 1, . . . , n.

si Satisfaction function of request i.
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s Overall satisfaction.
ε Approximation bound.
Area(·) Function that computes the area of the closed

polygon.
w, h, g Camera pan, tilt, and zoom range.

I. INTRODUCTION

THE RECENT development of low-power networked
robotic cameras provides low-cost interactive access to

remote sites. Robotic pan-tilt-zoom cameras can cover a large
region without using excessive communication bandwidth. With
applications in natural environment observation or surveillance,
a single robotic camera is often concurrently controlled by many
online users and networked in situ sensors such as motion detec-
tors. Since there are multiple simultaneous requests in a dynamic
environment, an optimal camera frame needs to be computed
quickly to address the resource contention problem and hence to
achieve the best observation or surveillance results. In [23], this
is proposed as a single frame selection (SFS) problem when re-
quests are rectangular regions. However, a majority of requests
are not necessarily rectangular in many applications. The shapes
of requests are usually determined by factors such as the shapes
of objects in the scene and the coverage of in situ sensors. On
the other hand, the existing algorithms give exact optimal solu-
tions and are not scalable due to their high complexity. A new
class of fast and approximate algorithms are favorable for this
generalized SFS problem that prefers speed to accuracy.

As illustrated in Fig. 1, the input of a generalized SFS prob-
lem is a set of n requests. The output of the problem is a camera
frame that maximizes the satisfaction of all requests, which can
be intuitively understood as the best tradeoff between the cover-
age and the detail/resolution of the camera frame. We present a
lattice-based approximation algorithm; given n requests and an
approximation bound ε, we analyze the tradeoff between solu-
tion quality and the required computation time and prove that the
algorithm runs in O(n/ε3) time. We also develop a branch-and-
bound (BnB)-like approach that can reduce the constant factor of
the algorithm by more than 70%. We have implemented the al-
gorithm, and the speed-testing results conform to our design and
analysis. We have successfully tested the algorithm in a variety
of situations such as construction monitoring, the surveillance
of public space, and natural environment observation.

II. RELATED WORK

The SFS problem is related to problems in online robots,
facility location in operations research, spatial databases, and
video conferencing.
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Fig. 1. Illustration of the frame-selection problem. The panorama describes
the camera’s full workspace (reachable field of view). Each user/sensor positions
a request as a dashed closed region in the panorama. Based on these requests,
the algorithm computes an optimal camera frame (shown with a rectangle) and
moves the camera accordingly. In this case, the wildlife-observing camera is
pointed at Richardson Bay Audubon Center and Sanctuary, which is located
inside San Francisco Bay.

The Internet provides a low-cost and widely available inter-
face that can make physical resources accessible to a broad range
of participants. Online robots, controllable over the Internet, are
an active research area [6]. The pan-tilt-zoom camera in the
frame-selection problem can be viewed as a robot with 3 DOF
that is collaboratively controlled by both online users and in
situ sensors. Inputs from each user/sensor must be combined to
generate a single control stream for the robot. In the taxonomy
proposed by Chong et al. [3], these are multiple operator sin-
gle robot (MOSR) systems. An Internet-based MOSR system is
described by McDonald et al. [2], [16]. In their work, several
users assist in waste cleanup using point-and-direct (PAD) com-
mands. Users point to cleanup locations in a shared image, and
a robot excavates each location in turn. Recent developments
in MOSR systems can be found in [5] and [8]. In [7] and [8],
Goldberg et al. proposed the “spatial dynamic voting” (SDV)
interface. SDV collects, displays, and analyzes sets of spatial
votes from multiple online operators at their Internet browsers
using a Gaussian point clustering algorithm developed to guide
the motion of a remote human “Tele-Actor.”

Operator inputs are closed regions rather than points in the
frame-selection problem. The frame-selection problem is a non-
linear optimization problem with a nondifferentiable objective
function. The structure of the problem is closely related to the
planar p-center facility location problem that was proven to
be NP-complete by Megiddo and Supowit [17]. Using a geo-
metric approach, Eppstein [4] gives O(n log2 n) algorithm for
the planar two-center problem. Halperin et al. [11] give an al-
gorithm for the 2-center problem with m obstacles that runs
in expected time O(m log2(mn) + mn log2 n log(mn)). In al-
most all nonlinear mathematical programming approaches, a
constrained optimization problem is converted to a series of
unconstrained problems using barrier or penalty methods. Line
search is then used to solve the unconstrained optimization prob-
lems. Although there are many different ways of guiding search
directions and step size, most of these methods are based on
derivatives [19].

Evaluating the objective function for a given candidate, cam-
era frame is related to a special instance of the general “box ag-
gregation” query over spatial objects in database research [25].

The spatial objects could be points, intervals, or rectangles.
Aggregation over points is a special case of orthogonal range
search queries from computational geometry. Agarwal and
Erickson [1] provide a review of geometric range searching and
related topics. Grossi and Italiano [9], [10] propose the cross-
tree data structure, a generalized version of a balanced tree, to
speed up range search queries in high-dimensional space. The
continuity of the solution space of our problem makes it impos-
sible to simply evaluate a fixed set of candidate frames through
queries.

BnB is a general problem-solving paradigm, which is es-
pecially useful for finding optimal solutions to most of the
NP-hard combinatorial problems [26]. BnB can efficiently re-
duce the search space as computation proceeds. Lin et al. [13]
applied BnB to solve the protein backbone nuclear magnetic
resonance peaks assignment problem. Mitchell and Brochers
analyzed BnB performance with respect to 0–1 mixed integer
nonlinear programming problems [18]. A comprehensive review
of BnB can be found in Papadimitriou and Steiglitz [20].

In the multimedia literature, Liu et al. combine a fixed
panoramic camera with a robotic pan-tilt-zoom camera for col-
laborative video conferencing [15]. They [14] address a frame-
selection problem by partitioning the solution space into small
nonoverlapping rectangular regions. They estimate the probabil-
ity that each small region will be viewed based on the frequency
that this region intersects with user requests. Based on the prob-
ability distribution, they choose the optimum frame by mini-
mizing the discrepancy in probability-based estimation. Their
approach is approximate and relies on how the small nonover-
lapping regions are defined. This approach is promising but may
be difficult to compute efficiently. One advantage of their ap-
proach is a Bayesian model for estimating user-zone requests
based on past data when explicit requests are unavailable. This
is an interesting and important variant on the problem that we
address in our paper, where regions of interests are represented
as arbitrary closed regions, which is especially appropriate to
cameras in outdoor unstructured environments where regions of
interest may not necessarily be rectangular.

We introduced the frame-selection problem for robotic we-
bcams in a series of papers: exact solution with discrete zoom
[22], approximate solution with continuous zoom [21], approx-
imate solution with fixed zoom [12], and exact solution with
continuous zoom and rectangular requests with fixed-aspect ra-
tio [24] or variable-aspect ratio [23]. This journal paper collects
and expands our results on approximate solutions [21]. It also
extends the problem formulation to arbitrary requests as long as
the area of their coverage can be computed in a constant time.

III. PROBLEM DEFINITION

In this section, we formulate the frame-selection problem, as
an optimization problem, finding the camera frame that maxi-
mizes total request satisfaction.

Let c be a vector of control parameters for the pan-tilt-zoom
camera with a fixed base. Frame c = [x, y, z], where x, y specify
the center point of the camera frame that corresponds to the pan
and tilt, and z specifies the size of the rectangular camera frame.
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For a camera with a fixed-aspect ratio of kx : ky , we define z
such that the four corners of frame c = [x, y, z] are located at

(
x ± kxz

2
, y ± ky z

2

)
. (1)

Frame c uniquely defines a rectangular camera frame because
the camera has a fixed-aspect ratio. It is worth mentioning that
z uniquely defines camera zoom and image resolution and is
sometimes referred to as image resolution or camera zoom. A
smaller z means a smaller coverage of the camera frame and
actually corresponds to a higher zoom. Since charge coupled
device (CCD) camera sensors have a fixed number of pixels,
a smaller z also refers to higher resolution. Let Z = [z, z̄] be
the range of camera frame size. Since the camera cannot have
infinite resolution and infinite coverage, therefore,

z > 0 and z̄ < ∞. (2)

For frame c = [x, y, z] with aspect ratio of 4:3, the width of
the frame is 4z, the height of the frame is 3z, and the area of the
frame is 12z2. To facilitate our analysis, the aspect ratio of 4:3
is used as the default-aspect ratio. Our algorithm can be easily
adapted to cameras with different aspect ratios.

Let w and h be the camera pan and tilt ranges, respectively. Let
Θ = {(x, y) : x ∈ [0, w], y ∈ [0, h]} be the set of all reachable
x, y pairs. Set C = Θ × Z = {[x, y, z]|[x, y] ∈ Θ, z ∈ Z} as
the feasible region of the problem.

Request i is defined as ri = [Ti, zi ], where Ti specifies the
closed requested region and zi ∈ Z specifies the desired image
resolution using the same units as z in c. The only requirement
for Ti is that its area of coverage can be computed in constant
time. Given n requests, the system computes an optimal frame
c∗ that will best satisfy the set of requests.

As described in [23], request “satisfaction” is a coverage-
resolution ratio (CRR) function. It is based on how a requested
region compares with a candidate camera frame. The metric
is a scalar si ∈ [0, 1], the level of “satisfaction” that request i
receives. Request i gets no satisfaction if the candidate frame
does not intersect ri : si = 0 when c ∩ ri = ∅. In this paper we
abuse the set intersection operator ∩ as the intersection between
the coverage of c and the coverage of ri . Request i is perfectly
satisfied, si = 1 when Ti is located inside c (full coverage), and
zi ≥ z because it means the resolution of the camera frame is
equal to or better than the requested zi . When there is a partial
overlap

si(ri, c) =
Area(ri ∩ c)

Area(ri)
min

(zi

z
, 1

)
. (3)

If z is bigger, the candidate frame will be bigger. A suffi-
ciently large z can define a candidate frame that covers all re-
quests, Area(ri ∩ c)/Area(ri) = 1 for i = 1, . . . , n. However,
request satisfaction is not necessarily high because the request
wants to see the camera frame at a desired resolution. The term
min(zi/z, 1) characterizes this desire; it reaches its maximum
of 1 if the candidate frame resolution is better than the requested
resolution z ≤ zi . We do not consider the case of oversatisfac-
tion in this version. More accurately speaking, the notation ri

in (3) should be Ti . We abuse ri to make the equation easy to
be associated with the request.

For n total requests, let the total request satisfaction be

s(c) =
n∑

i=1

si(ri, c). (4)

We want to find c∗, the value of c that maximizes s(c). Since
c = [x, y, z], we now have a maximization problem

arg max
c

s(c); subject to c ∈ C. (5)

We next present two lattice-based approximation algorithms to
solve it.

IV. ALGORITHMS

We begin with a lattice-based approximation algorithm, and
derive formal approximation bounds that characterize the trade-
off between speed and accuracy. We then present a BnB-like
approach to reduce the constant factor of the lattice-based
algorithm.

A. Algorithm I: Exhaustive Lattice Search

Since the camera needs to respond to fast moving objects, a
fast approximate solution is more desirable than a slow exact
solution. We propose an algorithm that searches a regular lattice
for an approximate solution c̃.

Defining the lattice as the set of points with coordinates

L = {(pd, qd, rdz )|pd ∈ [0, w], qd ∈ [0, h]

rdz ∈ [z, z̄ + 2dz ], p, q, r ∈ N} (6)

where d is the spacing of the pan and tilt samples, dz is the
spacing of the zoom, and p, q, r are positive integers.

To find c̃, we evaluate all (wh/d2)(g/dz ) candidate points,
where g = z̄ − z. According to (4), it takes O(n) computing
time to determine the satisfaction for a single candidate frame
c. The total amount of computation is

O((wh/d2)(g/dz )n). (7)

How good is the approximate solution in comparison to the
optimal solution? Specifically, what is the tradeoff between so-
lution quality and computation speed? Let c∗ be an optimal so-
lution. Let ε characterize the comparative ratio of the objective
values for the two solutions

s(c̃)/s(c∗) = 1 − ε. (8)

Since (5) defines a maximization problem, s(c∗) is always
greater than or equal to s(c̃), so 0 ≤ ε < 1. As ε → 0, s(c̃) →
s(c∗).

We will establish theorems that give an upper bound
εu such that ε ≤ εu (d, dz ) for given d and dz . This char-
acterizes the tradeoff between solution quality and com-
putation speed. We first prove the lemmas based on two
observations.

1) As illustrated in Fig. 2, consider a set of requests ri , each
with zoom level zi . Now consider two candidate frames for
the camera ca , cb , with za , zb such that for all i, ri ⊂ ca ⊂
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Fig. 2. Example illustrating the lower bound on solution quality.

cb
1 and zi < za < zb . This case provides a lower bound

where s(cb)/s(ca) = za/zb . In general, some requests ri

will be included in cb but outside ca , which will only
increase the ratio.

2) Now, consider the smallest frame on the lattice that con-
tains an optimal frame. Its size is a function of the size of
the optimal frame z∗, d, and dz , as derived in Lemma 2.

We now prove these formally in the general case to obtain a
bound on solution quality.

Lemma 1: For two candidate frames ca = [xa , ya , za ] and
cb = [xb, yb , zb ], if ca is within cb , then s(cb)/s(ca) ≥ za/zb .

Proof: Recall that ri is the ith request. Let us assume the
following.

1) ai = Area(ri).
2) pai = Area(ca ∩ ri).
3) pbi = Area(cb ∩ ri), then pbi ≥ pai .
4) Ia = {i|ri ∩ ca 
= ∅} be the set of requests that intersect

with frame ca .
5) Ib = {i|ri ∩ cb 
= ∅} be the set of requests that intersect

with frame cb ; Ia ⊆ Ib .
6) I ′ be the set of requests that intersect with frame ca and

are bigger than ca , I ′ = {i|i ∈ Ia and zi ≥ za}.
7) I ′′ be the set of requests that intersect with frame ca and are

bigger than cb , I ′′ = {i|i ∈ Ia and zi ≥ zb}; I ′′ ⊆ I ′ ⊆
Ia because zb ≥ za .

We can classify the proof into two cases:
1) s(cb) ≥ s(ca); here, we have s(cb)/s(ca) ≥ 1 ≥ za/zb .

The lemma holds.
2) s(cb) < s(ca); this is nontrivial. Let us focus on this case

in the rest of the proof.
We have

s(ca) =
n∑

i=1

(pai/ai)min(zi/za , 1)

and because Ia ⊆ Ib

s(cb) =
∑
i∈Ib

(pbi/ai)min(zi/zb , 1)

≥
∑
i∈Ia

(pbi/ai)min(zi/zb , 1).

1We use set operators ⊂ and ∩ to represent the coverage relationship between
a camera frame and a requested region.

Therefore

s(cb)/s(ca)

≥
∑

i∈Ia
(pbi/ai)min(zi/zb , 1)∑

i∈Ia
(pai/ai)min(zi/za , 1)

≥
∑

i∈Ia
(pai/ai)min(zi/zb , 1)∑

i∈Ia
(pai/ai)min(zi/za , 1)

=

∑
i∈I ′′(pai/ai) +

∑
i∈Ia −I ′′(pai/ai)(zi/zb)∑

i∈I ′(pai/ai) +
∑

i∈Ia −I ′(pai/ai)(zi/za)
. (9)

We also know that a generic function f(x) = x+a ′

x+b ′ is an in-
creasing function of x if b′ ≥ a′ ≥ 0 and x ≥ 0. We know
that 1 > s(cb)/s(ca). If we simultaneously decrease the nom-
inator and the denominator of (9) by a nonnegative quantity∑

i∈I ′′(pai/ai), then, the following holds:

s(cb)/s(ca)

≥
∑

i∈Ia −I ′′(pai/ai)(zi/zb)∑
i∈I ′−I ′′(pai/ai) +

∑
i∈Ia −I ′(pai/ai)(zi/za)

. (10)

Defining Sl =
∑

i∈I ′−I ′′(pai/ai)(zi/za), we know that

zi/za ≥ 1,∀i ∈ I ′ − I ′′.

Then ∑
i∈I ′−I ′′

(pai/ai) ≤ Sl.

If we use Sl to replace
∑

i∈I ′−I ′′(pai/ai) in the denominator of
(10), then we have

s(cb)/s(ca) ≥
∑

i∈Ia −I ′′(pai/ai)(zi/zb)
Sl +

∑
i∈Ia −I ′(pai/ai)(zi/za)

=

∑
i∈Ia −I ′′(pai/ai)(zi/zb)∑
i∈Ia −I ′′(pai/ai)(zi/za)

=
(1/zb)

∑
i∈Ia −I ′′(pai/ai)zi

(1/za)
∑

i∈Ia −I ′′(pai/ai)zi

=
1/zb

1/za
=

za

zb
.

�
Now, we are ready to find the smallest frame on the lattice

that contains the optimal frame.
Lemma 2: Recall that d is the spacing of the lattice, and dz

is the spacing for zoom levels. For any frame c = [x, y, z] ∈ C,
there exists c′ = [x′, y′, z′] ∈ L such that c′ is the smallest frame
on the lattice that ensures c is within c′, which implies

|x − x′| ≤ d/2 and |y − y′| ≤ d/2 (11)

z′ ≤
⌈

3z + d

3dz

⌉
dz . (12)

If we choose d = 3dz , then

z′ ≤ z + 2dz . (13)

Proof: The center (point B in Fig. 3) of the given frame c must
have four neighboring lattice points. Without loss of generality,
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Fig. 3. Relationship between frame c and the smallest frame ĉ on the lattice
that encloses it. α = 
 AOB , β = 
 AOC , and the frame c is centered at point
B .

let us assume that the nearest lattice point of the center is the
top-right lattice point, which is point O in Fig. 3. Other cases
can be proven by symmetry.

Since frame c′ is the smallest frame on the lattice that ensures
c is within c′, (x′, y′) has to be the closest neighboring lattice
point of (x, y) on the Θ plane, which implies that (11) has to be
true.

Recall that d is the spacing of the lattice. To ensure the point
O is the nearest lattice point, (11) states that point B must satisfy
the following constraints:

|OB| sin α ≤ d/2, and |OB| cos α ≤ d/2. (14)

Let us define frame ĉ = [x′, y′, ẑ] to be the smallest frame con-
taining frame c such that (x′, y′) ∈ Θ and ẑ ∈ R+. In other
words, frame ĉ is located at the lattice point (x, y), but with
continuous zoom ẑ. It is not difficult to find the relationship
between c′ and ĉ

z′ = �ẑ/dz �dz . (15)

Since point F at (xF , yF ) is the bottom-left corner of frame
ĉ, and point E at (xE , yE ) is the bottom-left corner of frame c,
the condition that frame c is located inside frame ĉ is equivalent
to following conditions:

xF ≤ xE and yF ≤ yE . (16)

Since the frames are iso-oriented rectangles and have the same
aspect ratio, their diagonal lines have to be parallel to each other

BE ‖ OF.

Therefore, when 0 ≤ α ≤ β, BE is always above OF , and if
xF = xE , then yF ≤ yE . The boundary conditions for ĉ can be
simplified as follows.

Case 1: xF = xE , if 0 ≤ α ≤ β.
Case 2: yF = yE , if β ≤ α ≤ π/2.

Fig. 3 describes case 1. We draw a vertical line at point B,
which intersects the x-axis at point A and OF at point C.
Since xF = xE , we know that EF ‖ AC. Therefore, we have
|CF | = |BE| and

|OC| = |OF | − |CF | = |OF | − |BE|. (17)

Also, since AC⊥OA, we have

|OC| cos β = |OB| cos α

⇒ (|OF | − |BE|) cos β = |OB| cos α.

According to (14)

⇒ (|OF | − |BE|) cos β ≤ d/2.

The aspect ratio of the frame is 4:3⇒ cos β = 4/5

⇒ |OF | ≤ |BE| + 5d/8.

Similarly, we can get |OF | ≤ |BE| + 5d/6 from case 2. Com-
bining the two cases, we know

|OF | ≤ |BE| + 5d/6.

Since |OF | = 5ẑ/2 and |BE| = 5z/2

ẑ ≤ z + d/3.

Putting it into (15), we get

z′ ≤
⌈

3z + d

3dz

⌉
dz .

If we choose d = 3dz , (12) can be simplified as

z′ ≤
⌈

z

dz

⌉
dz + dz ≤ z + 2dz . (18)

�
Remark 1: It is worth mentioning that the result of Lemma

1 depends on the camera-aspect ratio. Taking a close look, it
is not difficult to find that the constant 3 in the proof is from
min(kx, ky ) for a camera with an aspect ratio of 4:3 (kx = 4,
ky = 3). Therefore, the choice of lattice spacing in x–y plane

d = min(kx, ky )dz = 3dz .

in (18) also depends on the camera-aspect ratio. It is not difficult
to extend it to cameras with different aspect ratios because it only
changes the constant factors in the analysis.

Theorem 1: Recall z is the smallest allowable z value and
d = 3dz . The approximation factor ε of the deterministic lattice-
based algorithm is bounded with some constant εu , 0 ≤ ε ≤ εu ,
where

εu =
2dz

z + 2dz
.

.
Proof: Recall the following.
1) c∗ = [x∗, y∗, z∗] is the optimal frame.
2) c′ = [x′, y′, z′] is the closest lattice point with the smallest

zoom level that ensures c∗ is within c′.
3) c̃ = [x̃, ỹ, z̃] is the lattice point found by the approximation

algorithm.
It is worth mentioning that we do not know c∗ and c′. The
geometric enclosure relationship between c∗ and c′ is known.
We also know that c′ is just one of the points in lattice L. We note
that c̃ is the solution to: arg maxc∈L s(c). Since c′ ∈ L ⊂ C, we
know that s(c′) ≤ s(c̃). Therefore

s(c′) ≤ s(c̃) ≤ s(c∗).
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Applying Lemma 1

1 − ε = s(c̃)/s(c∗) ≥ s(c′)/s(c∗) ≥ z∗

z′
.

Applying (13) of Lemma 2, we have

z′ ≤ z∗ + 2dz .

Using this result, we have

1 − ε ≥ z∗

z∗ + 2dz
.

On the other hand, we know z∗ ≥ z; so

1 − ε ≥ z

z + 2dz
↔ ε ≤ 2dz

z + 2dz
.

�
Theorem 1 states that the approximation bound

2dz/(z + 2dz ) is a monotonically increasing function of
dz . It characterizes the tradeoff between accuracy and compu-
tation speed for the lattice-based approximation algorithm.

The relationship between solution quality and computation
speed is summarized by Theorem 2.

Theorem 2: We can solve the frame-selection problem in
O(n/ε3) for a given approximation bound ε.

Proof: Since d = 3dz and dz = 1
2 ( ε

1−ε )z, we need to eval-
uate all (wh/d2)(g/dz ) = whg/(9/4){ε/(1 − ε)}3z3 points.
According to (4), each point will take O(n) time. Removing
the constants, ε approaches zero; thus, the computation time
approaches O(n/ε3). �

B. Algorithm II: BnB Implementation

In the lattice-based approximation algorithm, we evaluate the
objective function at each lattice point. However, we may not
need to check them all. The proof of Theorem 1 implies the
following corollary. �

Corollary 1: Given that frame ĉ is currently the best known
solution, if a candidate frame c = [x, y, z] does not satisfy the
condition

Fig. 4. Illustration of the solution space formed by frames contained in the
given frame c′. The constants kx and ky are determined by the camera-aspect
ratio. For an aspect ratio of 4:3, kx = 4 and ky = 3.

s(c) ≥ s(ĉ)(z/z) (20)

then, the candidate frame does not contain any optimal frame.
Proof: Assume that c∗ = [x∗, y∗, z∗] is an optimal solution, if

the candidate frame contains it. Then, according to Lemma 1,
the following is true:

s(c)
s(c∗)

≥ z∗

z
≥ z/z.

�
Since c∗ is the optimal solution, then s(ĉ) ≤ s(c∗). Therefore,
(20) is true if the candidate frame contains an optimal frame.
The corollary is true.

Corollary 1 allows us to improve the lattice-based algorithm
by using a BnB-like approach. We check if the condition in
(20) is satisfied. If not, we know that the optimal frame is not
contained in the candidate frame. Hence, we can delete frames
that are contained in the candidate frame. Let the candidate
frame be c′ = [x′, y′, z′], then, the frames contained in c′ define
a subset of the solution space, i.e., Φc ′ .

Recall that kx : ky is the camera-aspect ratio in (1). As illus-
trated in Fig. 4(a), if a frame (x, y, z) is contained in c′, it has
to satisfy the following set of conditions:

x − kxz/2 ≥ x′ − kxz′/2

x + kxz/2 ≤ x′ + kxz′/2

y − ky z/2 ≥ y′ − ky z′/2

y + ky z/2 ≤ y′ + ky z′/2

(x, y, z) ∈ Φ. (21)

Therefore, Φc ′ = (x, y, z)|(x, y, z) satisfies (21). Recall that the
solution space Φ is a 3-D rectangle. Fig. 4(b) illustrates that the
shape of Φc ′ is a pyramid within the 3-D rectangle and has its
top located at c′. The volume of the pyramid is determined by
its height z′ of the candidate frame. A larger z′ means a larger
candidate frame, which leads to a bigger cut in Φ if the candidate
frame does not satisfy Corollary 1. This suggests that we should
evaluate the lattice points in descending order relative to the
z-axis.

Fig. 5 illustrates how to perform the BnB-like search using
a 3 × 3 × 3 lattice. We divide the lattice points into different
layers with respect to their z values. The search starts with the
topmost layer and follows a descending order in z. In this lattice,
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Fig. 5. Illustration of the BnB-like approach.

we set d = 3dz , which will be used as the default setting in the
rest of the section.

In each layer, we evaluate the objective function at each lattice
point in lexicographic order (i.e., the numbered sequence in layer
1 in Fig. 5). After the evaluation, we test if the point satisfies
the condition in Corollary 1. If so, we refer to this point as a
survived node. Otherwise, this is a deleted node. If a node is
deleted, it will also cause some nodes in the next layer to be
deleted because of the shape of the pyramid. We refer to those
nodes in the next layer as the child nodes of the deleted node.
Since we choose d = kdz (where k = min(kx, ky ). Therefore,
k = 3 for most cameras, which have an aspect ratio of 4:3.), we
have the following lemma.

Lemma 3: If a lattice point (x, y, z) is deleted and is not
a boundary node, then its nine child nodes in the next layer
(frames with zoom z − dz )

(x − kdz , y − kdz ), (x − kdz , y), (x − kdz , y + kdz ),

(x, y − kdz ), (x, y), (x, y + kdz ),

(x + kdz , y − kdz ), (x + kdz , y), (x + kdz , y + kdz )

should also be deleted.
Lemma 3 can be proven by checking if all nine child nodes

are located inside the frame (x, y, z), and their union region
covers no more area than the frame (x, y, z) does. Fig. 5
also illustrates this relationship. The central node in layer 2
is deleted and causes all nine children to be deleted. If the
deleted node is a boundary node, the number of children is
less than nine. If one node concludes that it is not viable and
the neighbor node concludes that it is viable, then, the shared
child nodes should be nonviable that leads to great computation
savings.

Lemma 3 unveils an iterative scheme that we can use to
cut the solution space. Recall that we need to evaluate the
lattice points in descending order in z, and follow a lexico-
graphic order in the x–y plane. Recall that ĉ is currently the
best known solution. Initially, we set ĉ to be an arbitrary fea-
sible frame and every node on the lattice to be a survived
node. Combining the aforementioned information, we can re-

duce the computational effort required and present the BnB-like
approach.

In the worst case scenario, this approach does not improve
the complexity bound. For example, if all requested viewing
zones are identical to the accessible region, the approach is not
able to cut any computation. Since such worst cases are rare, the
approach has its value. We will show the numerical test results
in Section V.

V. EXPERIMENTS

We have implemented the algorithms in Sections IV-A and
IV-B. The algorithms are programmed in C++ that is compatible
with both Microsoft Visual C++ and Gnu C++. Both numerical
experiments and field applications have been used to test the
performance. During numerical experiments, we test algorithm
speed under different parameter settings, such as the number of
requests n and the approximation bound ε. The extensive field
tests are conducted over three years across a variety of applica-
tions. We first report the results of the numerical experiments.

A. Numerical Experiments

The testing computer in the numerical experiments is a PC
laptop with a 1.6-GHz Intel Centrino CPU and 512 MB RAM.
The operating system is Windows XP. Fig. 1 shows the algo-
rithm’s sample result for an example with seven requests.

During the speed test, triangular random inputs are used. The
random inputs are generated for testing in two steps. First, we
generate four random points, which are uniformly distributed
in the reachable field of view of the robotic camera. The four
points represent locations of interest that are referred to as seeds.
For each seed, we use a random number to generate a radius of
interest. Then, we generate the requested regions in the sec-
ond step. We generate a requested region using eight random
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Fig. 6. Efficiency of the BnB-like approach. Smaller γ is more desirable.
Recall that n is the number of requests.

numbers: one is used to determine which seed the request is
associated with; six are used to generate the location of the
request (two random numbers per vertex for a triangular re-
quest), which is located within the corresponding radius of the
associated seed; and the remaining random number is used to
generate the resolution for the request.

To measure the effectiveness of the BnB-like approach in
Section IV-B, we define

γ =
computation time using BnB

computation time using exhaustive lattice search
(22)

as the performance index variable. Equation (22) shows that a
smaller γ is more desirable because it means that less compu-
tation time is needed. Each data point in Fig. 6 is an average
of five iterations using different sets of random requests. The
result in Fig. 6 can be classified into two cases according to ε
values.

If ε ≤ 0.05, the curves in Fig. 6 appear to have two trends.
The first trend is that γ decreases as the number of requests n
increases. The second trend is that γ decreases as ε decreases.
Both trends are very desirable because it means BnB becomes
more efficient as more computation is needed.

If ε > 0.05 and n = 5, the overhead cost of the BnB-like
approach dominates the computation, and hence, γ decreases as
ε increases. When n increases, the point for γ to change its trend
from increasing to decreasing does not show up until ε is very
large. However, it is very rare for us to set ε > 0.1 because it is
faster enough for our applications as illustrated later. Therefore,
it is not an interesting trend for us. Nevertheless, the BnB-like
approach can cut the constant factor of the algorithm by more
than 70% when ε < 0.05, which speeds up computation by more
than three times.

It is also worth mentioning that the effectiveness of the BnB-
like approach also depends on z according to (19). If z = 0,
the BnB-like approach fails to cut the computation time. Fortu-
nately, z = 0 means that the camera has an infinite resolution,
which cannot happen according to (2).

We have also compared the approximation algorithm to the
exact algorithm in [23]. Since the exact algorithm takes O(n3)

Fig. 7. Speed comparison between the basic lattice-based approximation al-
gorithm and the exact algorithm in [23].

computation time and only accepts rectangular requests, we
have modified our algorithm accordingly to ensure a fair com-
parison. Fig. 7 illustrates the speed comparison between the
approximation algorithm and the exact algorithm. The imple-
mentation is the basic lattice-based algorithm in Section IV-
A. We set w = h = 500, z = 40, z̄ = 80, and k = 3. The re-
sult conforms to our analysis. The computation time of our
approximation algorithm is linear in the number of requests,
and the slope of the line is determined by the approximation
bound ε.

B. Field Tests

Our algorithms have also been continuously tested in the field
since September 2002. Applications of the algorithm include
construction monitoring, public space surveillance, and natural
environment observation. Table I summarizes the five testing
sites and the corresponding durations and applications. The al-
gorithm runs on a server with dual 2.5 GHz Intel Xeon CPUs and
2 GB RAM. The operating system is Mandrake Linux. Accord-
ing to our records (as of February 22, 2006), we have received
more than 301 340 requests.

For the duration when the system is not idle, the experimental
data show that requests follow an interesting 95–5 distribution
pattern for human inputs, which means only 5% of requests
occupy 95% of system time and 95% of users compete for the
remaining 5% of the time. Our conjecture is that users tend to
log on to the system when there are some activities going on
such as a political rally, crane operations for construction of
building, and a moving wild animal.

The irregular traffic pattern favors our fast approximation
algorithm because the system can satisfy a majority of users in
a timely manner. We know that camera servo time is around 1
s. If it takes more than 1 s to compute an optimal frame, the
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TABLE I
FIELD-TEST HISTORY

significant delay can make the system difficult to retain users
and track dynamic events. Since accuracy in optimality is not a
big concern on web cameras, we set ε = 0.1 to favor speed. The
ability of choosing the tradeoff between speed and accuracy is
another advantage of the approximate algorithm.

Even when the number of requests is small (95% of time with
5% users), the exact algorithm still has the difficulty to match the
computation speed because of its overhead in the construction
of complex data structures.

Although the number of concurrent requests from human
users is rarely more than 50, the number of requests generated
from sensory inputs (i.e., requests from motion detection) can
easily be more than 100. The exact algorithm is not able to
handle such amount of inputs.

During the tests, the algorithm successfully combines real-
time inputs from online users, preprogrammed commands, and
sensory inputs, and drives the robotic camera automatically and
efficiently. The cameras used in our systems include Panasonic
HCM 280, Canon VCC3, and Canon VCC4. After analyzing the
data from multiple deployments, we have an interesting finding
that the average user satisfaction level is inversely proportional
to the number of concurrent activities on the site. In other words,
the users tend to spread their requests evenly across the activities.
Our latest research goal is to incorporate the algorithm into
sensor/human-driven natural environment observation (visit us
at http://www.c-o-n-e.org for details).

VI. CONCLUSION AND FUTURE WORK

We present new algorithms for the frame-selection problem:
controlling a single robotic pan-tilt-zoom camera based on n
simultaneous requests. With approximation bound ε, the al-
gorithm runs in O(n/ε3) time. We also introduce a BnB-like
approach that can reduce the constant factor of the algorithm
by more than 70%. The algorithms have been implemented and
tested in both numerical experiments and extensive field ap-
plications. The results of the numerical experiments conform
to our design and analysis. The three-and-half-year field tests
in five different sites have demonstrated that the algorithm has
successfully addressed the problem of effective collaborative
camera control in a variety of applications.

In the future, we plan to investigate the problems involving
more than one camera frame. As an expansion of the SFS prob-
lem, the multiple frame-selection problem has to consider both
camera travel time and camera task allocation in addition to re-
quest satisfaction. The optimization problem is nontrivial given
its complex geometric and combinatorial nature. We will report
our findings as new results emerge.
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