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Abstract

Complexity bounds for algorithms for robotic motion and manipulation can be mis-
leading when they are constructed with pathological `worst-case' scenarios that rarely
appear in practice. Complexity can in some cases be reduced by characterizing non-
pathological objects in terms of intuitive geometric properties. In this paper we consider
the number of push and push-squeeze actions needed to orient a part without sensors
and improve on the upper bound of O(n) for polygonal parts given by Chen and Ierardi

in [9]. We de�ne the geometric eccentricity of a planar part based on the aspect ratio
of a distinguished bounding box. We show that only O(1) actions are required for parts
with non-zero eccentricity. The analysis also applies to curved parts, providing the �rst
complexity bound for non-polygonal parts. Our results also yield new bounds on part
feeders that use fences and conveyor belts.

1 Introduction

Many automated manufacturing processes require parts to be oriented prior to assembly. A

part feeder takes in a stream of identical parts in arbitrary orientations and outputs them

in a uniform orientation. Part feeders often use data obtained from some kind of sensing to

accomplish their task. We consider the problem of sensorless orientation of parts, in which

the initial pose of the part is assumed to be unknown. In sensorless manipulation, parts are

positioned and/or oriented using passive mechanical compliance. The input is a description

of part shape and the output is a sequence of open-loop actions that moves a part from an

unknown initial pose into a unique �nal pose [2, 6, 7, 8, 9, 10, 11, 16, 17, 20].

Goldberg [11] considered the problem of orienting (feeding) polygonal parts using a parallel-

jaw gripper. A parallel-jaw gripper consists of a pair of at parallel jaws that can close in

the direction orthogonal to the jaws, allowing it to squeeze the part. Figure 1 shows a (fric-

tionless) parallel-jaw gripper. Let N be the length of the shortest sequence of gripper actions

that will orient the part up to symmetry. Goldberg showed that N is O(n2) for polygonal

parts with n vertices, and gave an algorithm for �nding the shortest squeeze plan. Based on

a large number of pseudo-random trials, he conjectured that N is O(n).

Chen and Ierardi [9] proved Goldberg's conjecture using a di�erent planning algorithm.

They showed that plans generated by their algorithm, which does not necessarily �nd the

shortest plan, require at most 2n� 1 actions, thereby proving the O(n) bound on the length

of the shortest plan. Chen and Ierardi also construct pathological polygons where N is 
(n).
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Figure 1: A (frictionless) parallel-jaw gripper positioned over a part.

Such pathological polygons are `fat' (approximately circular), while N is almost always

small for `thin' parts. Consider the two parts shown in Figure 2. Imagine grasping part

A. Regardless of the orientation of the gripper, we expect the part to be squeezed into an

orientation in which its longest edge is ushed against a jaw of the gripper. Hence, the number

of possible orientations of the part (relative to the gripper) after a single application of the

gripper is very small. Part B can end up with any of its n edges against a gripper jaw; the

number of possible orientations after a single application of the gripper is considerably higher

than in the case of the thin part. In general, we observe that thin parts are easier to orient

than fat ones.

The theoretical analysis in this paper con�rms this intuition. To formalize our intuition

about fatness, we de�ne the geometric eccentricity of a planar part based on the aspect ratio

of a distinguished bounding box. We show that only O(1) actions are required for parts

with non-zero eccentricity. The analysis also applies to curved parts and provides the �rst

complexity bound for non-polygonal parts [17].

These results for part orienting are in contrast to computational geometric results in robot

motion planning, hidden surface removal, depth orders, motion planning, point location,

and range searching, where fatness often reduces combinatorial [3, 14, 18] and algorithmic

[1, 4, 12, 15, 19] complexities. For part orienting, we show that thinness reduces complexity.

Our results have implications for several other sensorless part feeders that use push-like

actions to orient a part. One such part feeder aligns parts as they move down a conveyor belt

and slide along a sequence of fences placed along the belt [8, 16]. Because fence design can

be regarded as �nding a constrained sequence of push actions [5, 20], we �nd that a constant

number of fences su�ces to orient parts with non-zero eccentricity.

Akella et al. [2] explore a part feeder (1JOC) consisting of a conveyor belt and a single

rotational fence. The fence repeatedly catches the part after which it uses its rotational degree
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Figure 2: Both polygonal parts have n = 11, but part A is thin, while B is fat. For part A,

N = 1, whereas N > 10 for part B since it has many edges that can be stable after the �rst

action.

of freedom to reorient the part while transporting it back along the belt (allowing it to be

caught again by the fence). As �nding a sequence of fence rotations is equivalent to �nding

a push plan, we conclude that a constant number of catches and reorientations by the fence

su�ces to orient parts with non-zero eccentricity.

We �rst prove the result for the case where the actions are pushes by a single jaw, and

then extend it to push-squeeze actions by a parallel-jaw gripper. In a push-squeeze action,

the part is �rst pushed by a single jaw until it settles, before the second jaw achieves contact

and both jaws start to squeeze the part. We prefer this more realistic model of a gripper

action over the model of pure squeezing in which both jaws are assumed to achieve contact

with the part simultaneously.

This paper is organized as follows. Section 2 is devoted to preliminaries; it discusses the key

notions of equilibrium orientation and geometric eccentricity. In Sections 3 and 4, we establish

relations between the longest angular interval without equilibrium (push) orientations on the

one hand and the number of actions needed to orient a part and the geometric eccentricity of

a part on the other hand. In Section 5, we extend the implied relation between eccentricity

and the length of push plans to push-squeeze plans and fence design. Section 6 concludes the

paper.

2 Pushing, squeezing, and geometric eccentricity

Throughout the paper, we assume zero friction between the part and the jaw(s) of the gripper.

As a jaw always touches the part at its convex hull, we assume without loss of generality that

the part under consideration is convex. Let P be a convex part.

We assume that a �xed coordinate frame is attached to P . Directions are expressed

relative to this frame. The contact direction of a supporting line l of a part P is uniquely
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de�ned as the direction of the vector perpendicular to the direction of l and pointing into

P . The radius function r : [0; 2�) ! IR+ of a part P with a center-of-mass c maps a

direction � onto the distance from the center-of-mass c to the supporting line of P with

contact direction �. Recall that the direction � is measured with respect to the frame attached

to P . The diameter function d : [0; 2�) ! IR+ of a part P maps a direction � onto the

distance between the supporting line with contact direction � and the supporting line parallel

to it, which has contact direction (� + �)mod2�. Note that the de�nition implies that

d(�) = d((� + �)mod2�) for all � 2 [0; 2�), hence d is periodic in �. The radius and the

diameter functions are both continuous. The �nal orientation of a part that is being pushed

or squeezed can be determined from the radius and diameter functions.

Throughout this paper, parts are either pushed by a single jaw in a direction perpendicular

to that jaw or squeezed by two parallel jaws that move towards each other in a direction

perpendicular to both jaws. In most cases, parts will start to rotate when pushed or squeezed.

If pushing or squeezing in a certain direction does not cause the part to rotate, then we refer

to the corresponding direction as an equilibrium (push or squeeze) direction or orientation.

These equilibrium orientations play a key role throughout this paper. If pushing or squeezing

does change the orientation, then this rotation changes the orientation of the pushing or

squeezing gripper relative to the part. We assume that pushing or squeezing continues until

the part stops rotating and settles in a (stable) equilibrium pose.

The push function p : [0; 2�)! [0; 2�) links every orientation � to the orientation p(�) in

which the part P settles after being pushed by a jaw with initial contact direction � (relative

to the frame attached to P ). The rotation of the part due to pushing causes the contact

direction of the jaw to change. The �nal orientation p(�) of the part is the contact direction

of the jaw after the part has settled. The equilibrium push directions are the �xed points of

the push function p. The squeeze function s : [0; 2�)! [0; 2�) links every orientation � to the

orientation s(�) in which the part P settles after being simultaneously pushed by jaws with

initial contact directions � and (�+�)mod2�. Both jaws are assumed to achieve contact with

the part simultaneously. The �nal orientation s(�) of the part equals the contact direction

of the former jaw after the part has settled. The equilibrium squeeze directions are the �xed

points of the squeeze function s. We will occasionally use the term transfer functions as a

common denominator for both push and squeeze functions.

The push function p and the squeeze function s consist of steps, which are intervals

I � [0; 2�) for which p(�) = C or s(�) = C for all � 2 I and some constant C 2 I , and

ramps, which are intervals I � [0; 2�) for which p(�) = � or s(�) = � for all � 2 I . Note that

the ramps are intervals of equilibrium orientations. The steps and ramps of the push function

are easily constructed from the radius function r, using the points of horizontal tangency, i.e.,

the points � at which r0(�) = 0. All points of horizontal tangency in the radius function are

�xed points of the push function. In other words, the part will not rotate when pushed in a

direction corresponding to a horizontal tangency of the radius function. The orientations of

horizontal tangency are the equilibrium push orientations. Notice that angular intervals of

constant radius turn up as ramps of the push function. If the part is pushed in a direction

corresponding to a point of non-horizontal tangency of the radius function then the part will

rotate in the direction in which the radius decreases. The part �nally settles in an orientation

corresponding to a local minimum of the radius function. As a result, all points in the open

interval I bounded two consecutive local maxima of the radius function r map onto the

orientation � 2 I corresponding to the unique local minimum of r on I . (Note that � itself

maps onto � because it is a point of horizontal tangency.) This results in the steps of the

4



push function. Note that each half-step, i.e., a part of a step on a single side of the p(�) = �,

is a (maximal) angular interval without equilibrium push orientation. Besides the steps and

ramps there are isolated points satisfying p(�) = � in the push function, corresponding to

local maxima of the radius function. Figure 3 shows an example of a radius function and the

corresponding push function. The construction of the steps and ramps of the squeeze function

0 � 2�

0 � 2�

2�

�

l(v) r(v)v

p(�)

�

�

r(�)

Figure 3: A radius function and the steps and ramps of the corresponding push function.

from the diameter function is accomplished in a similar manner (see [11, 17] for details).

Equilibrium orientations play a crucial role in this paper. More speci�cally, we use a

property of the point of contact of the part P with a jaw pushing P in an equilibrium push

direction. Let us consider a jaw pushing P in a certain direction �. The jaw touches the

convex part P at one or in�nitely many points of its boundary. Let p be the rightmost of

these points. We observe that, if the center-of-mass c of P lies to the right of the line through

p perpendicular to the jaw, then c will rotate in clockwise direction about p and towards

the (supporting line of the) jaw (see Figure 4(a)). Similarly, if c lies strictly to the left of

the line through the leftmost contact point and perpendicular to the jaw, then c will rotate

in counterclockwise direction about this contact point towards the jaw. In both cases, the

direction � can impossibly be an equilibrium push direction. The part will not rotate if the
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Figure 4: The center-of-mass c in (a) lies to the right of the line perpendicular to the jaw and

through the rightmost point of contact p of the part P and the jaw: the point c will rotate in

clockwise direction about p towards the jaw. If the supporting line of the contact normal at

the (in (b)) or some (in (c)) point of contact p intersects c, then the part will not rotate when

pushed in the direction of the normal; the normal direction is an equilibrium push direction.

contact normal at one of its points of contact with the jaw passes through the center-of-mass

c [13]. As a result, the corresponding contact or normal direction � is an equilibrium push

direction (see Figure 4(b,c)).

We use the aspect ratio of the minimum width bounding box as a measure for the eccen-

tricity of the part. This bounding box is obtained by taking the two closest parallel supporting

lines of the part and the two parallel supporting lines perpendicular to those. (The distance

between its two closest parallel supporting lines is also referred to as the width of the part.)

By de�nition, there exists no narrower bounding box of the part. The length-to-width ratio,

or aspect ratio, of the minimum width bounding box can be expressed by a scalar of the form

1 + �, with � � 0. Note that the minimum bounding box is a square if � = 0. We choose � as

a measure for the geometric eccentricity of a part.

De�nition 1 Let P � IR2
be a part. Let a � 1 be the aspect ratio (length-to-width ratio) of

the minimum width bounding box of P , which is de�ned by the two closest parallel supporting

lines and the two perpendicular supporting lines of P . The eccentricity � of P is de�ned by

� = a� 1.

Figure 5 shows a part P . The lines l and l0 are the closest parallel supporting lines of P .

Together with the two perpendicular supporting lines m and m0, they de�ne the minimum

width bounding box of P . The eccentricity � of the part P equals (10:6=3:7)� 1 � 1:9.

The notion of eccentricity is commonly used to denote the ratio of the lengths of the major

and minor axes of an ellipse. Observe that our notion of geometric eccentricity for parts is

quite similar to the notion of eccentricity for ellipses.

3 Grasp actions and equilibrium grasps

Chen and Ierardi [9] present simple (push and squeeze) plans for orienting polygonal parts.

Although their plans are generally not the shortest possible plans, an upper bound on the

length of their plans clearly bounds the (optimum) length of plans found by Goldberg's algo-

rithm. Chen and Ierardi's plans are based on the largest angular interval without equilibrium

orientations. We use their strategy to �nd an upper bound on the number of pushes required
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Figure 5: The closest parallel supporting lines l and l0 and the orthogonal supporting lines m

and m0 de�ne P 's minimum width bounding box.

to orient an eccentric part. In a later section, we generalize the result to push-squeeze grasps

and discuss some implications of part eccentricity for fence design.

Let f be a transfer function of the convex part P . Chen and Ierardi de�ne two open

intervals l(v) = f� < vjf(�) = vg and r(v) = f� > vjf(�) = vg for each �xed point - or

equilibrium orientation - v of the transfer function. Notice that an interval l(v) or r(v) can

only be non-empty if the equilibrium orientation v lies on a step of the transfer function. In

that case, the interval l(v) corresponds to the half-step left of v = f(v) and r(v) corresponds

to the half-step right of v = f(v) (see Figure 3). The union of all intervals l(v) and r(v)

equals the set of all non-equilibrium orientations. Moreover, the set of all (maximal) intervals

without equilibrium orientation equals the set of all intervals l(v) and r(v). Let � be the

length of the longest interval in the set. We assume that P has an equilibrium orientation a

such that jr(a)j = �. Like Chen and Ierardi in their paper, we �rst focus on the case in which

P has no second equilibrium orientation a0 satisfying jr(a0)j = �.

Chen and Ierardi use a sequence of equivalent basic actions to orient a polygonal part

P with a unique longest angular interval r(a) of length �. Each basic action consists of a

reorientation of the gripper by an angle of ���, with � > 0 such that ��� > jr(a0)j for any

equilibrium orientation a0 6= a, and a subsequent application of the gripper. (If the longest

angular interval is some l(a), the same arguments will apply with reorientation by an angle

of �(�� �) instead of �� �.) Note that a reorientation of the gripper by �� � corresponds

to a change of the orientation of the part by � � �. Every basic action puts the part into

an equilibrium orientation. If P is a polygonal part, then the equilibrium orientations occur

at isolated points in [0; 2�). After each basic action, the part is therefore in one of a �nite

number of equilibrium orientations. Let us label the m equilibrium orientations a0; : : : ; am�1

in order of decreasing angle starting from a0 = a. After the �rst application of the gripper,

the part P can be in any of the equilibrium orientations a0; : : : ; am�1. Chen and Ierardi

show that every next basic action eliminates the last orientation in the sequence as possible

orientation of the part. Assume that P is in one of the orientations a0; : : : ; ak, for some k � 1.

The key idea behind the proof is that a next basic action will cause P , when in a0, to stay

in a0 because � � � < jr(a0)j = jr(a)j, and, when in ai for some 1 � i � k, to move into

some orientation aj with 0 � j � i� 1 because ��� > jr(ai)j. Upon completion of the basic
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action, the part will therefore be in one of the orientations a0; : : : ; ak�1. As a consequence,

a total of m + 1 basic actions su�ces to put P into orientation a0 = a. (Chen and Ierardi

actually prove that m=2 + 1 actions are su�cient by showing that every basic action reduces

the number of possible stable orientations of P by one.)

Our upper bound on the number of gripper applications required to orient an arbitrary

convex part P depends on the length � of the longest interval without equilibrium orienta-

tions rather than on the number of such equilibrium orientations. Another di�erence with the

previous paragraph is that the arbitrary part P can have an in�nite number of equilibrium

orientations as its transfer function may have ramps in addition to steps; a ramp is a continu-

ous interval of equilibrium orientations. These modi�ed circumstances make it impossible to

discretize the problem. We modify Chen and Ierardi's proof by monitoring the length of the

interval containing the possible orientations of P rather than the number of possible orienta-

tions while performing the basic actions described above. We will show that two subsequent

basic actions shrink the interval of possible orientations from [b; a] to [minfb+ (���); ag; a].

Hence, the length of the interval decreases by � � � unless b is close to a. This leads to an

upper bound of 2dL=�e+1 on the number of applications of the gripper, where L is the period

of the gripper's transfer function. (Recall that L = � if the transfer function is a squeeze

function and L = 2� if the transfer function is a push function.)

Lemma 2 For part P , let � be the length of the unique largest angular half-interval without

equilibrium orientations. The part P will be oriented after N � 2dL=�e + 1 applications of

the gripper, where L is the period of the transfer function of the gripper.

Proof: Let a again be the unique equilibrium orientation satisfying r(a) = �. Initially, the

orientation of P is contained in the interval [a+��L; a+�). A single application of the gripper

reduces the interval to [a+��L; a]. A �rst observation is that a basic action performed on a

part in some equilibrium orientation v causes the part to end up in an equilibrium orientation

v0 satisfying v0 � v. In other words, a basic action cannot move the part into a smaller

equilibrium orientation.

Now let us assume that, after a number of basic actions, the part P is in an equilibrium

orientation v in the range [b; a]. We may assume without loss of generality that b is an

equilibrium orientation. We show that after two further actions P will be in an equilibrium

orientation in the range [minfb+ (�� �); ag; a].

If v = a then a reorientation of the gripper by ��� puts P into orientation a+(���) 2

r(a). Application of the gripper puts P back into a. The second basic action clearly yields

the same result. The �nal orientation a of P is in [minfb+ �; ag; a].

If v 2 [b; a) then a reorientation of the gripper by ��� puts P into orientation v+(���)

which is beyond r(v) because jr(v)j < �� �. We distinguish three cases:

� v + (�� �) is an equilibrium orientation.

Because v+(���) is an equilibrium orientation, application of the gripper will keep P in

v0 = v+(���). The second basic action puts P into an orientation v00 � v0 = v+(���);

hence v00 is in [minfb+ (�� �); ag; a].

� v + (�� �) 2 l(v0) for some equilibrium orientation v0 > v.

Because v + (�� �) 2 l(v0), application of the gripper will put P into v0 > v + (�� �).

The second basic action puts P into an orientation v00 � v0 > v + (� � �); hence v00 is

in [minfb+ (�� �); ag; a].
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� v + (�� �) 2 r(v0) for some equilibrium orientation v0 > v.

Because v + (�� �) 2 r(v0), application of the gripper will put P into v0 > v. If v0 = a

then the second basic action keeps P in a, which is clearly in [minfb + (� � �); ag; a].

If v0 < a, then the reorientation in the second basic action puts P into orientation

v0+ (���) which is beyond r(v0) because jr(v0)j < �� �. The orientation v0+ (�� �)

is again either an equilibrium orientation itself, or in l(v00) or r(v00) for some equilibrium

orientation v00, which must clearly lie beyond r(v0). Since v + (� � �) 2 r(v0), the

�nal orientation v00 also lies beyond v + (� � �), so v00 � v + (� � �); hence v00 is in

[minfb+ (�� �); ag; a].

The total number of applications required to shrink the interval of possible orientations

from [a + � � L; a] to [a; a] is 2d(L� �)=(�� �)e � 2dL=�e. Taking into account the initial

application of the gripper, we �nd N � 2dL=�e+ 1. 2

Let us now drop the uniqueness assumption for the longest angular interval without

equilibrium orientations and assume that there exist several equilibrium orientations a with

jr(a)j = �. Assume that, after a number of basic actions, the interval of possible part ori-

entations is reduced to [b; a] where both jr(a)j = � and jr(b)j = �. Chen and Ierardi prove

a so-called `stretching lemma' that deals with this problem. It reduces the interval [b; a] to

[b + �; a] (� > �) by means of a single application of the gripper: �nd an angle  such that

b +  2 l(v) and a +  2 r(v0) for some equilibrium orientations v and v0, then reorient the

gripper by  and apply it, moving the former orientation to v and the latter to v0; since v and

v0 are less far apart than b and a, we can reorient the gripper by some appropriate angle to

put v0 back to a and v to b+ �. A subsequent basic action then reduces the interval further

to [minfb + (� � �); ag; a]. Thus we can shrink the interval of possible orientations by an

application of the `stretching lemma' followed by a basic action. The alternative strategy

does not change the overall number of applications of the gripper required to orient the part.

Theorem 3 For part P , let � be the length of largest angular half-interval without equilibrium

orientations. The part P will be oriented after N = 2dL=�e + 1 applications of the gripper,

where L is the period of the transfer function of the gripper.

Proof: By the proof of Lemma 2, we only have to consider how to shrink an interval

[b; a] with jr(a)j = � and jr(b)j = �. Chen and Ierardi show (Lemma 2.5 [9]) that a single

application of the gripper su�ces to reduce the interval [b + �; a] (� > �). If the part is in

orientation v = b+�, then a reorientation of the gripper will put P in orientation b+�+���,

which is beyond r(b) because � > �. The orientation b + � + � � � is either an equilibrium

orientation itself, or in l(v0) or r(v0) for some equilibrium orientation v0, which must clearly

lie beyond the r(b).

Hence, if the left endpoint b of the interval of possible orientations satis�es jr(b)j = �,

then we simply replace two basic actions by one special application of the gripper plus one

basic action. As a result, the total number of applications remains 2dL=�e+ 1. 2

Chen and Ierardi's linear bound for polygonal parts follows from Theorem 3 if one realizes

that the radius function of a polygon has at most one local maximum for every vertex and at

most one local minimum for every edge and that the diameter function has at most one local

maximum per antipodal vertex pair and one local minimum per antipodal edge-vertex pair.

In both cases we obtain a linear number of isolated equilibrium orientations, which partition
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the angular interval [0; 2�) into a linear number of intervals without equilibrium orientations.

Clearly, the length � of the longest of these intervals is at least a linear fraction of the full

angular interval [0; 2�). Application of Theorem 3 to this � yields a linear bound on N .

The arguments in the previous paragraph indicate that the number of equilibrium orienta-

tions directly a�ects the number of steps in a push or squeeze plan. A constant upper bound

on the number of equilibrium orientations immediately implies a constant upper bound on

the number of steps in a plan. Unfortunately, the number of equilibrium (push and squeeze)

orientations can be arbitrarily large even for parts with high eccentricity �, even for polygonal

parts. Consider the n-gon with high � shown in Figure 6. The vertices v1; : : : ; vn�1 lie on an

c

v1

vi
vi+1

vn�1

�=(n� 2)

�

Figure 6: The extremely long and thin part can have arbitrary many equilibrium push direc-

tions.

imaginary circular arc about the center-of-mass c, and are assumed to be uniformly spaced.

The almost parallel edges extending from v1 and vn�1 to the right meet at the vertex v0.

The distance from c to each of the vertices vi (1 � i � n � 1) is r; the angle between cv1
and cvn�1 equals �. The radius function of the n-gon has n � 1 local maxima of r, which

is the distance from c to the tangent at vi perpendicular to cvi, and n � 2 local minima of

r cos (�=2(n� 2)), which is the distance from c to the supporting line of the edge vivi+1. The

construction works for arbitrary eccentricity � and for arbitrary n, and can easily be modi�ed

to show that the diameter function can have arbitrarily many maxima and minima. The

example shows that there is no relation between eccentricity and the number of equilibrium

orientations in its transfer functions. In the next section, however, we establish a relation

between the eccentricity � of a part and the length of the longest angular interval without

equilibrium push directions, which, by applying Theorem 3 leads to a relation between the

eccentricity and the required number of actions.

4 Equilibrium push directions and part eccentricity

As N is inversely proportional to the length � of the longest interval without equilibrium

orientation, we would like to have a lower bound on � given the eccentricity � of the part.

In this section, we derive the equivalent for push directions: an upper bound on � given the

length � of the longest interval without equilibrium push directions. In Section 5, we extend

the results to push-squeeze grasps.

Consider a part P with a largest angular interval without equilibrium push direction of

length at most some � < �=4. There must exist an equilibrium push direction of P in every

interval of length � (otherwise, � would not be the upper bound on the length of the largest
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interval). We show that achieving an equilibrium push direction for P in every such interval

requires an upper bound on its eccentricity �: the part cannot be arbitrarily thin.

Let us consider the part P and its two closest parallel supporting lines. Recall that these

lines are the supporting lines of the long edges of P 's minimum width bounding box. Without

loss of generality we assume that the distance between the closest parallel supporting lines

equals 1. It is clear that the distance from the center-of-mass c to one of the two supporting

lines is at most 1=2. Let l be this closest supporting line, and let l0 be the other line. We �nd

it convenient to express vector and push directions relative to the contact direction of l. The

direction of any other vector v equals the clockwise angle between v and the positive y-axis

(or the vertical vector pointing in upward direction). (This is basically an assumption on the

orientation of the reference frame attached to P .) Our objective is to show that there is a

bound on the extension of the part in the direction parallel to l and l0. (This bound almost

immediately gives us a bound on the eccentricity of the part.) We achieve this objective in two

steps. In a �rst step we consider the point of contact of the part P with a line - representing a

pushing jaw - touching P in an equilibrium push direction from a range [i�; (i+1)�], and show

that this point must lie in a sector of the plane bounded by two half-lines (or rays) emanating

from c. In the next step we restrict the location of this point further by constraining its

position inside the sector.

We extend a collection of rays (half-lines) from the center-of-mass c of P . The �rst ray

�0 emanates from c towards and perpendicular to l. Additional rays �i and ��i (0 < i �

b�=�c) are extended from c in such a way that the clockwise angle from �i to �0 and the

counterclockwise angle from ��i to �0 both equal i�. A last ray referred to as both �1 and

��1 extends from c towards and perpendicular to l0. Figure 7 shows the resulting collection

of 2b�=�c + 2 rays. Each pair of consecutive rays �i and �i+1 (for �b�=�c � i < b�=�c)

bounds a sector of angle � from P 's center-of-mass c. The boundary of the convex part P

intersects each of the sectors and each of the rays �i.

l

�0 �1 �2��1��2

c

��1 = �1

�

�

�

�i��i

l0

Figure 7: The 2b�=�c+ 2 rays �i emanating from c.

The assumption that the length of the longest interval without equilibrium orientation
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equals � implies that there must be an equilibrium push direction in every angular interval

[i�; (i+1)�]. This in turn means that there must be a line with contact direction in [i�; (i+1)�]

such that the normal at its point of contact with the part P passes through the center-of-

mass c 2 P . A simple observation is that in order for a point to have (the supporting line

c

�

�

Figure 8: The point of contact of a line with contact direction in the range [i�; (i+1)�] with

the part must lie in the sector bounded by the two rays emanating from c in the directions

i� + � and (i+ 1)�+ �.

of) a vector with a direction in [i�; (i+ 1)�] originating from it pass through c that point

must lie in the wedge bounded by the supporting lines of the vectors with directions i� and

(i + 1)� emanating from c. Since the vector is not just a vector in our case but a contact

normal, the point from which it originates must be a point on the boundary of P . Taking

into account the convexity of P and the fact that the center-of-mass c lies inside P , we

can constrain the position of this point to lie in the half-wedge or sector bounded by the

rays emanating from c in the directions i� + � and (i + 1)� + � (see the shaded region in

Figure 8). For any i 2 Z satisfying �b�=�c � i < b�=�c this sector is exactly the region

bounded by the rays �i and �i+1. Our assumption on the size of the longest interval without

equilibrium orientation implies that every sector bounded by two consecutive rays �i and �i+1
with �b�=�c � i < b�=�c contains a point (of the boundary of P ) in which a supporting line

of P through that point has a contact direction in the range [i�; (i+ 1)�]. This implied fact

is powerful enough to bound the extension of the part in each of the sectors by two polygonal

chains. The bounded extension of the chains in the direction parallel to the supporting lines

l and l0 provides a bound on the extension of the part itself in that same direction, which in

turn gives a bound on the eccentricity.

We de�ne a point pi on every ray �i and a point p�i on every ray ��i for i � 1. The

construction of the points is incremental in the sense that the position of pi+1 is determined

from the position of pi, and similarly for p�(i+1) from p�i. Let p�1, p0, and p1 be the points of

intersection of l and ��1, �0, and �1 respectively. To �nd pi+1 for all 1 < i < b�=�c, we take

the line through pi at a counterclockwise angle of (i�1)� from l. The intersection of this line

with �i+1 de�nes pi+1 (see Figure 9). The last point p1 on �1 lies at the intersection of �1
and the line through pb�=�c at a counterclockwise angle of (b�=�c� 1)� from l. The resulting

chain p0p1 : : : p1 takes a left or counterclockwise turn of � at every intersection with a ray �i,

for i > 1. A second sequence of points p�(i+1) is constructed by a similar incremental scheme,

using lines at a clockwise angle of (b�=�c � 1)� from l. The last point p�1 on ��1 = �1
coincides with p1. The resulting chain p0p�1 : : : p�1 takes a right or clockwise turn of �

at every intersection with a ray ��i. Figure 10 shows parts of the chains p0p1 : : : p1 and

p0p�1 : : :p�1. We will show that the part P lies entirely inside the region bounded by the

12



c

pi

�i �i+1

l

�

(i � 1)�

pi+1

Figure 9: The point pi+1 is the intersection of the ray �i+1 and the line through pi at a

counterclockwise angle of (i� 1)� from l.

l

c

l0

p0

p1 p2p�1p�2

pip�i

Figure 10: The chains p0p1 : : :p1 and p0p�1 : : : p�1 bounding the extension of the part P .

13



chains p0p1 : : : p1 and p0p�1 : : :p�1.

We show by induction that the intersection of P with a sector bounded by two consecutive

rays �i and �i+1 lies inside the triangle cpipi+1. The intersection of P with the sector between

�0 and �1 lies inside the triangle cp0p1 simply because the intersection of that sector and the

strip bounded by l and l0 is exactly the triangle cp0p1. Now consider a sector bounded by the

rays �i�1 and �i for some 1 � i � b�=�c and assume that its intersection with P is completely

contained in the triangle cpi�1pi (the shaded triangle in Figure 11). The triangle contains a

l

c

pi�1

pi

pi+1

�i

�i+1

�

� 2 [(i� 1)�; i�]

q

u

Figure 11: The tangent u - which has an equilibrium contact direction in the range [(i�1)�; i�]

- intersects �i between c and pi and �i+1 between c and pi+1.

point q of the boundary of P in which the supporting line u (of P ) has a contact direction in

the range [(i�1)�; i�]. As a consequence, the angle from the line l to the supporting line u is

a counterclockwise angle in the range [(i�1)�; i�]. The location of its point of contact q with

P and the bounds on its direction - u is slightly steeper than both segments pi�1pi and pipi+1
- jointly imply that u must intersect �i between c and pi and must intersect �i+1 between c

and pi+1 (or �1 between c and p1 if i = b�=�c). As u is a supporting line of the part P , P 's

intersection with the sector bounded by �i and �i+1 lies completely in the triangular region

bounded by �i, �i+1, and u, which, in turn is entirely contained in the triangle cpipi+1. As a

result, the part P cannot extend beyond the polygonal chain p0p1 : : : p1. Similar arguments

apply to the sectors bounded by rays ��i and ��(i+1) with i � 0, leading to the conclusion

that P cannot extend beyond the chain p0p�1 : : :p�1.

The polygonal chains p0p1 : : : p1 and p0p�1 : : : p�1 bound the extension of the part P in

the direction parallel to its two closest parallel supporting lines l and l0. The chains also give us

an upper bound on the distance 1+ � between the two parallel supporting lines perpendicular

to l and l0; this distance cannot exceed the distance between supporting line of p0p1 : : : p1
perpendicular to l and l0 and the supporting line of p0p�1 : : : p�1 perpendicular to l and l0.

It is easy to determine the points of tangency of these perpendicular supporting lines. Let

k = d�=(2�)e and remember that the chain p0p1 : : :p1 turns by an angle of � at every point

pi with i > 1. After k turns - at pk+1 - the chain bends back towards the common supporting

line of �0 and �1 (or becomes parallel to the supporting line if (�=2)mod� = 0). As a result,

the point pk+1 is the point of contact of p0p1 : : :p1 and its supporting line perpendicular to l.

Due to symmetry, the point of contact of the other chain and a perpendicular supporting line

is p�(k+1). The distance between the parallel supporting lines of p0p1 : : : p1 and p0p�1 : : :p�1

14



perpendicular to l and l0 is 2jp�(k+1)pk+1j so we get

1 + � � 2jp�(k+1)pk+1j: (1)

Using elementary trigonometry we �nd

jp�(k+1)pk+1j = jcp�(k+1)j � sin (k + 1)� = jcpk+1j � sin (k + 1)�: (2)

Our aim is to �nd the distance from c to pk+1.

We notice that all triangles cpipi+1 with i � 1 are congruent. Each such triangle has

angles �, �=2+�, and �=2� 2� at its vertices c, pi, and pi+1 respectively. Using the sine law

we get
sin (�

2
� 2�)

jcpij
=

sin (�
2
+ �)

jcpi+1j

for all i � 1, which is equivalent to

jcpi+1j =
cos�

cos 2�
� jcpij:

for all i � 1. Along with the obvious

jcp1j =
jcp0j

cos�
;

we obtain

jcpij =
cosi�2 �

cosi�1 2�
� jcp0j; (3)

for all i � 1. Note that, by its construction, the point p0 is the point on l closest to c, so

jcp0j � 0:5: (4)

We can combine Equations (1) - (4) to �nd an upper bound on the eccentricity � in terms of

the upper bound of � on the length � of the largest interval without equilibrium orientations:

� � 2jp�(k+1)pk+1j � 1

= 2jcpk+1j � sin (k + 1)� � 1

= 2jcp0j �
cosk�1 � � sin (k + 1)�

cosk 2�
� 1

�

cosk�1 � � sin (k + 1)�

cosk 2�
� 1;

where k = d�=(2�)e. Theorem 4 summarizes the result.

Theorem 4 Let P be a part and let � be the length of the longest angular interval without

equilibrium push directions. Then P 's eccentricity � is bounded by

� �
cosk�1 � � sin (k + 1)�

cosk 2�
� 1;

where k = d�=(2�)e.
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Figure 12: Upper bound h(�) on the eccentricity � for various bounds � on the length of the

longest interval without equilibrium push direction.

Thus we have derived an upper bound on � given an upper bound on �, which is equivalent

to a lower bound on � given a lower bound on �. Figure 12 shows the values of

h(�) =
cosk�1 � � sin (k + 1)�

cosk 2�
� 1;

with k = d�=(2�)e, for the even multiples i 2 (0; 45) of �=180 radians.

In order to combine Theorems 3 and 4 into an upper bound on the number of pushes N

as a function of the eccentricity �, we would have to invert the function h given above. Given

its complexity and its discontinuity, inverting h seems impossible. Therefore, we settle for

the less elegant formulation of the bound on the length of the push plan as a function of the

part eccentricity given by Theorem 5.

Theorem 5 Let P be a part with eccentricity

� >
cosk�1 � � sin (k + 1)�

cosk 2�
� 1

(k = d�=(2�)e), for some � 2 (0; �=4). Then, P can be oriented by a push plan of length N

with

N � 2d
2�

�
e + 1:
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Theorem 5 shows that the number of push actions needed to orient a part is a function of

its eccentricity. It provides the �rst bound on the length of a push plan for non-polygonal

parts, and improves the bound of 2n � 1 by Chen and Ierardi for a polygonal part with n

vertices to the minimum of 2n � 1 and the bound given by Theorem 5 based on the part's

eccentricity. We will see below that the bound on the number of actions provided by Theorem

5 is relatively low even for smaller values of �.

Figure 13 shows upper bounds on the length of push plans for parts of various degrees of

eccentricity. The values are compiled from the data points of Figure 12 and Theorem 3. As

a result, there may exist tighter lower bounds on the eccentricity for some push plan lengths

N . The objective of Figure 13, however, is to provide some indication of the relation between

the values of � and N . The �gure shows that even for parts with low eccentricity the length

100

200

0
5 100

N

�

50

25

1 2 3 4

Figure 13: Upper bound on the length N of an optimal push plan versus the eccentricity � of

the part to be oriented.

of the push plan is bounded by some relatively low constant. Moreover, we may expect the

length of the shortest push plan to remain far below the upper bound provided by Theorem

5 - which actually bounds the length of some rigorous (non-optimal) push plan. (Note that

the bound will never fall below 19, even though parts with very high eccentricity can easily

be oriented by less than a handful of pushes.)
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5 Extension to push-squeeze grasps and fence design

In this section, we extend the results of the previous section to push-squeeze actions. Recall

that a part is now pushed by a single jaw until it settles, and then squeezed by two jaws. As a

consequence, the �nal orientation of a part in initial orientation � will be s(p(�)) = (s�p)(�).

Let f and f 0 be two generic transfer functions, and let � be the length of the longest angular

interval without equilibrium orientation of the function f . Lemma 6 bounds the length of the

longest interval without equilibrium orientation of the composite transfer function f 0 � f .

Lemma 6 Let f and f 0 be transfer functions and let � be the length of the longest angular

interval without equilibrium orientation of f . Then, the longest interval without equilibrium

orientation of f 0 � f has length at least �=2.

Proof: Let I be an interval without equilibrium orientations of f with length �. Recall that

I is either of the form l(v) = f� < vjf(�) = vg or of the form r(v) = f� > vjf(�) = vg for

some �xed point v. In any case, we get that f(�) = v for all � 2 I . Let w = f 0(v). Clearly,

we obtain that f 0(f(�)) = w for all � 2 I . Hence, there exists an interval J � I such that

(f 0 � f)(�) = w for all � 2 J and some �xed point w of f 0 � f . In other words, f 0 � f has a

step of length jJ j � jI j � �. It is clear that one of the two half-steps of this step must have

length at least jJ j=2 � �=2. 2

Lemma 6 implies that if � is the length of the longest interval without equilibrium push

direction of a part P , then the length of its longest interval without equilibrium push-squeeze

orientation is at least �=2. Theorem 3 yields that this part P can be oriented by N �

2d4�=�e+1 push-squeeze actions. As a consequence, the length of the shortest push-squeeze

plan for a part P is at most (approximately) twice as long as the upper bound on the length

of the shortest push plan for P . Note that this is under worse-case conditions. In practice, the

composition tends to increase the lengths of the intervals without equilibrium orientations,

thereby reducing N . Theorem 7 summarizes the result for push-squeeze plans.

Theorem 7 Let P be a part with eccentricity

� >
cosk�1 � � sin (k + 1)�

cosk 2�
� 1

(k = d�=(2�)e), for some � 2 (0; �=4). Then, P can be oriented by a push-squeeze plan of

length N with

N � 2d
4�

�
e + 1:

We conclude that a constant number of push-squeeze actions su�ces to orient parts with

non-zero eccentricity.

A di�erent type of part feeder aligns parts as they move down a conveyor belt and slide

along a sequence of fences placed along the belt. It has been noted [5, 20] that �nding a

sequence of fences is equivalent to �nding a sequence of push actions under the constraint

that every reorientation of the jaw imposes a restriction on the next reorientation. In other

words, the previous push angle o�set restricts the next o�set. More speci�cally, if the i-th

reorientation is in the range (0; �=2)[ (��;��=2) then the i+ 1-th reorientation must be in
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(0; �=2) [ (�=2; �), and if the i-th reorientation is in (��=2; 0) [ (�=2; �) then the i + 1-th

reorientation must be in (��=2; 0) [ (��;��=2). The restrictions learn that a sequence of

either (exclusively) clockwise reorientations or (exclusively) counterclockwise reorientations

smaller than �=2 can be implemented by a sequence of fences. A part with a unique largest

angular interval without equilibrium orientations of length � < �=2 can therefore be oriented

by a sequence of fences of length at most d4�=�e + 1. If the part has a certain positive

eccentricity, then this upper bound turns into a constant.

Akella et al. [2] explore part orienting by a sensorless part feeder (1JOC) consisting of a

conveyor belt and a single rotational fence. The fence repeatedly catches the part after which

it uses its rotational degree of freedom to reorient the part while transporting it back along

the belt. The authors show that the e�ect of a single catch followed by a reorientation of the

part is equivalent to a single push followed by a reorientation of the jaw. As the rotational

fence can accomplish any part reorientation, any push plan can be implemented by sequence

of catches and fence rotations of equal length. Theorem 4 therefore bounds the number of

catches and fence rotations needed to orient a part with eccentricity �.

6 Conclusion

We have presented new bounds on the number of actions required to orient parts without

sensors. We formalized the intuitive description of parts as `fat' or `thin' based on eccentricity

and showed that only O(1) actions are required for parts with non-zero eccentricity. The

analysis also applies to curved parts, providing the �rst complexity bound for non-polygonal

parts. Our results also yield constant bounds on part feeders that use fences and conveyor

belts. Similar results may be possible for part orienting on a motion array [6, 7].

Complexity bounds for algorithms for robotic motion and manipulation can be misleading

when they are constructed with pathological 'worst-case' scenarios that rarely appear in

practice. Complexity can in some cases be reduced by characterizing non-pathological objects

in terms of intuitive geometric properties. Examples include computational geometric results

in robot motion planning, hidden surface removal, depth orders, motion planning, point

location, and range searching, where `fatness' reduces combinatorial [3, 14, 18] and algorithmic

[1, 4, 12, 15, 19] complexities. In the same spirit we prove a symmetrical result: for part

orienting, thinness reduces complexity.
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