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Abstract

A fixture is a device that locates and holds parts during machining or assembly. A modular fixture employs reusable
components on a regular lattice. Given a part, machinists combine intuition with trial-and-error to design an appropriate
fixture. When a machinist is unable to find a design, it may be the case that (1) a feasible design was overlooked or (2) no
feasible design exists. Complete algorithms for modular fixturing, such as [Brost and Goldberg 1994], insure that no fixture
designis overlooked. But the question remains: are there parts for which no modular fixture exists?

For the class of modular fixtures using 3 locators and a clamp, we show that there exists a class of polygonal parts that
cannot be fixtured. We believe that this is the first negative result in the area of fixturing. We also show two positive results,
namely that a modular fixture always exists when we broaden the class of fixtures to include T-slot and narrow the class
of parts. We show that one class of fixtures strictly dominates the other. These results raise a number of open problems
concerning the existence of solutionsfor other classes of fixtures and parts and suggest a hierarchy of fixturing models.

1 Introduction

A fixtureis adevicethat locates and holds a part for machining, assembly, inspection, etc. Modular fixture systemstypicaly
offer a precision lattice of holes for receiving locators and clamps, thereby insuring precise location and alowing re-use of
the fixture for avariety of parts.

“...This type of tooling may revolutionize the way our manufacturing industries produce parts. The overall
versatility, adaptability and compatibility of these systems with new manufacturing methods will dramatically
improve productivity by increasing production rates and substantially reducing the lead time required to fabricate
virtually any part. ” [Hoffman 1987]

Before adopting a new class of fixtures, it is natural to want clarification on the class of parts for which the new fixtures
will be suitable. This paper explores this question in the context of 2 classes of modular fixtures. Although these classes
include a small subset of the components found in a commercial modular fixturing system, the results suggest a number of
open problems for other classes of fixtures and point the way toward a hierarchy of fixture classes.

For agiven operation, one face of apart is generally specified to be in contact with aplanar support surface. In this paper
we consider the projection of the part into this plane, and treat only the planar problem. In particular, we assume that the
input is a polygona projection of some part and refer to this projection as the part.

*Thiswork was supported in part by NSF Strategic Manufacturing I nitiative Award DDM-9215362, the NSF National Young Investigator
Award for Goldberg, and a grant from Qu-Co, Inc.



Figure 1: Examplesof partsin modular fixtures. At top, a part fixtured with 3 locatorsand one clamp. At bottom, a part fixtured using 4
clamps.

Given aclass of fixturesand a part, does afixture exist that will hold thispart in form closure? If so, we might say that the
part is fixturable. Examples of fixturable parts areillustrated in Figure 1. Most literature on fixturing assumes that all parts
are fixturable. In experiments with an algorithm for finding fixtures, we found that for most polygonal parts, many fixtures
exist; random experiments did not yield a single part that was not fixturable. We thus set out to prove that al polygona parts
arefixturable. Instead, we discovered a class of counterexamples.

Inthis paper we consider two classes of modular fixtures. Both prevent apart from translating or rotatingin the planeusing
four point contacts on the part’sboundary. We consider aplanar polygona dice of the 3D part and refer to thispolygon asthe



part. An arrangement of four contacts on aregular |attice constitutesafixture. We assumethat all contacts are unilateral point
congtraints and that al contacts are frictionless. Thisis conservative, since any fixture that achieves form closure without
frictionwill a so achieve form closurewith non-zero friction. We a so assumethat all contacts areinterior to an edge of the part
—we do not alow afixture element to contact a part vertex since such contacts may damage the part. A fixture is acceptable
if it provides form closure, which is a kinematic condition that prevents any infinitesima motion [Reuleaux 1876]. Results
from linear a gebra show that at |east 4 wrenches are necessary for form closure. [Markenscoff, Ni, and Papadimitriou 1990]
showed that 4 wrenches are sufficient for any piecewise-smooth compact connected planar body, excluding surfaces of
revolution.

We consider two types of modular contacting el ements: locators are cylinders rigidly attached to the baseplate through
pegs that fit into a square lattice of holes. Clamps are adjustable elements that can make contact at any point within a unit
distance horizontally or verticaly from a lattice hole. These are formalized in the next section. A clamp is geometrically
equiva ent to the modular elements commonly known as“ T-dlots” inthefield [Hoffman 1987]. Notethat clamps can be more
easily adapted than locators to reach part boundaries. For the same reason, clamps are less capable of accurately locating
parts relative to the baseplate.

A fixd (fixture element) refers to either alocator or a clamp. We use the term 3L/1C fixture to refer to an arrangement of
3 locators and 1 clamp. Similarly, we use OL/4C to refer to an arrangement of 4 clamps. Section 4 describes our primary
result: an infinite class of polygonal parts for which no 3L/1C fixture exists. In Section 5, we prove two positive results:
infinite classes of polygonal partsfor which a OL/4C fixtureis guaranteed to exist.

Although fixels have finiteradius, weinitially assume that they are points. In Section 6, we generalize our resultsto fixels
of non-zero radius.

2 Reated Work

The problem of designing modular fixtures is closdly related to grasp planning in robotics. The goals of both are similar:
fixing an object kinematically by means of a suitable set of contacts. The primary difference is that modular fixtures place
restrictions on the relative location of contacts due to the underlying | attice.

The century-old definition of form closure [Reuleaux 1876] captures the intuitive function of afixture. A set of contacts
provides form closureif infinitesimal part motion is completely constrained; equivalently, the set of contactsisableto resist
arbitrary forces and torques on the part. Each contact provides awrench: aforce with a point of application. Inthe plane, a
wrench can be represented as a vector in IR®, where the first two components represent the direction of force and the third
component represents a moment about an arbitrary origin [Ohwovoriole 1987]. A set of wrenches provides form closure if
it positively spans IR®.

For 4 co-planar contacts, Nguyen [Nguyen 1988] gave a geometric test for form-closure! and gave the formal definition
of form closure repeated in the next section. Nguyen also showed how to construct grasps with four frictionless fingers by
finding 4 independent regions on the boundary of the part such that if each region contains one contact, the part will be in
form closure. For threefrictional contactsin the plane, Ponce and Faverjon [Ponce 1993] showed that comparable regionson
apolygon could be found using linear optimization. Asada and By [Asada and By 1985] showed how to determine whether
a given fixture design providestota constraint of arigid body, as well as loading accessibility before clamping. Surveys of
the grasping literature can be found in [Pertin-Troccaz 1989, Grupen, Henderson, and McCammon 1989].

Several dgorithms on synthesizing modular fixtures have been developed recently. Brost and Goldberg
[Brost and Goldberg 1994] presented a design algorithm that is complete in the sense that it is guaranteed to find a 3L/1C
solution for a given polygon if one exists, and to return failure otherwise. That algorithm runsin time O(n°d®), where n is
the number of part edges and d isits diameter inlattice units.

Penev and Requicha[Penev and Aristides 1995] studied the related problem of fixture fool proofing: given a3L/1C fixture,
where should blocking pins be inserted to insure that the part can be loaded in only one desired pose? Wallack and Canny

INguyen used the term “force-torque closure” to describe what is more commonly called form closure [Trinkle 1992].



[Wallack and Canny 1994] presented a complete algorithm for afixturing model using four locators on a split lattice that can
be closed likeavise.

Overmars et al. [Overmars et al.] recently proposed anew class of planar fixturesthat includes flat edge-contacts. They
presented a complete agorithm for finding such fixtures that runsin time O(n(n + p)*3+< + K), where K is the number
of fixtures found, and p is the part’s perimeter in lattice units. Aswe do in this paper, they considered the class of parts for
which such fixtures exists and showed that any polygonal part that has no edge parallel to one of the edges of its convex hull
can be fixtured using one edge and two point contacts.

Mishra[Mishra, Schwartz, and Sharir 1987] applied work on grasping to the problem of designing modular fixturesusing
aregular lattice. Mishragave the first existence results [Mishra 1991] as described in Section 5.1 below.

This paper isasubstantially revised and extended version of [Zhuang, Goldberg, and Wong 1994].

3 Preliminaries

We define a regular lattice as a 2D plane on which the lattice sites are arranged in rows and columns with uniform unit
distance. Henceforth, al distances are given in units of lattice spacing. We assume that the latticeis larger than the part to
be fixtured. Since contacts are frictionless, they can only exert force normal to the contacted edge of the part.

As stated earlier we focus on planar cross-sections of 3D parts. By a part we mean aregular [Reguicha 1980] planar set
with aboundary that is connected and piecewise smooth. We denote the boundary of apart P by 9 P.

We denote the set of all lattice sites asinteger pairs, Z2. A triplet of latticesitesis non-trivial if its components do not lie
onastraight line. A pair of lattice sites has length equal to the distance between them. If two pairs of |attice sites define the
line segments that are parallel and of equal length, we say that the two pairs are equivaent. The distance between a point «
and aset S isdefined asdgs(z) = inf{d(z,y) | y € S}, where d isthe Euclidean distance given in units of lattice spacing.

Given a part P whose 2D boundary is 0 P, we want to find a set of contacts 7 C 0P such that P will be held in form
closure, i.e. 9P issmooth at each contact and the contact normals, n1, ny, n3 and ng, satisfy the following [Nguyen 1988]

1. any 3 of them do not intersect at a common point or at infinity,

2. let p1o and ps4 be theintersection pointsof n; and n,, and of ns and n4 respectively, then

pas — p12 = Et(ang + Bna) = F(ynz + dna)
forsome«, 3,v,4 > 0. Namely theintersection of thefirst two normal vectors should be covered by the cone made of
the other two normal vectors, and vice versa.

Contactsare redized using fixels: either locatorsor clamps. Recall that locatorsarerigid cylinders attached to lattice sites
and so al locator contacts must be € Z?. Clamps must be anchored at alattice site but can be extended along the principle
axes within a unit. For each clamp contact, «, 3 (distinct) v € Z? such that:

o v isparalle to one of the principle axes.

e W NP =0,

o d(u,v) <1

4 UnfixturableParts

3L/1C fixtures use three contacts at locators (iel attice sites). Obvioudy, a part small enough to fit between 4 adjacent | attice
sites cannot make contact with more than one locator; for such parts a 3L/1C fixture does not exist. Similarly, it iseasy to
construct a long but very thin part that is not fixturable. The question is. can we construct a part of arbitrary “size” that is
unfixturable? First, we formalize the notion of size interms of part width.
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Figure 2: The width of a part at direction 8 is the maximum distance between two parallel supporting lines (indicated by é in the figure
and w elsawherein the paper).

Classica computational geometry definesawidth function[Yaglom and Boltyanskii 1961, Benson 1966, Lyusternik 1966]
for aplanar part, S, as the distance between two parallel supporting lines (See Figure 2). The maximum and minimum values
of this function are well defined; we denote them with w(.S) and w(S), respectively. To characterize parts that cannot fall
through cracks in the lattice, we define the size of a part as its minimum width.

We now construct a polygonal part of arbitrary size that is unfixturable. For any given size M, wefirst construct a disk of
size > M that can make contact with at most 2 lattice sites. We then show how to transform thisdisk into aregular polygon
that preserves this property. Thus this polygon cannot be fixtured under the 3L/1C model.

Three noncolinear points uniquely determine acircle. Thus, every non-trivial triplet of lattice sites, ¢, determines a disk
which we denote by d(t). If two tripletsdetermine adisk of the same width, we say that these tripletsare equivalent. Let the
maximumwidth of atriplet, w(?), be thelength of thelongest side of thetriangleit determines.

Lemmal For any given width there exists a disk of greater width that can achieve contact with at most two lattice sites.

Proof. For any given positive number M, let D(M) be the set of disks with width between M and M + 1, determined
by triplets of lattice sites. D(M) isfinite, since the number of tripletswith maximum width lessthan A/ + 1isfinite. Let us
define the set of widthsas

W(M) = {w(d(t)) | d(t) € D(M)}
Then W (M) isafiniteset. Let w* beany widthintheinterval (M, M + 1] notin W (M) and let D* bethe disk with width
w*. D* isnotin D(M) thus can achieve contact with at most two latticesites. (SeeFigure 3) O

Based on this disk, we now construct a polygon that can achieve contact with at most two locators.

Theorem 1 For any given width there exists a convex polygon of greater width that can achieve contact with at most two
lattice sites.

Proof. By lemma 1, for any given positive number A/ we can construct adisk D* with awidth w* > M, that has at
most two lattice sites on its boundary. For any pair of lattice sites with a length less than or equal to w*, we can dways
locate the disk D* such that the two lettice sites are on its boundary. Let @) be the set of all non-equivalent pairs of lattice
sites with length less than or equal to w*. @ isafinite set, thuswe can represent Q as @ = {p; | 1 < ¢ < k}, for some
k > 0. We define ¢(p) as the minimum distance from any non-contacting lattice sites to the boundary of the disk 9D*.
Then we have ¢(p;) = inf{dsp-(f) | f € Z? f ¢ p;} > 0, fordl 1 < i < k, by the congtruction of the disk D*. Let
e = min{e(p;) | 1 < i < k}, thene > 0. We now construct a equilateral convex polygon. There exists an inscribed
equilateral polygon, P, of D*, such that thelength of itssideislessthan Ze. (Figure 4) To construct one, we must choose the
number of sides of P, denoted by IV, large enough. Such an NV exists, since the length of the side of P, denoted by (),
satisfies the following

L(N):w*sin%—>0, as N — oo.
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Figure3: Provinglemmal: (a) Theset W (M) is afinite set of discrete pointswithin theinterval (M, M + 1], which allows usto choose
an excluded width, w*, as shown. (b) A disk of this width can achieve contact with at most two lattice sites.

Therefore we can construct such a equilateral polygon, P, with the length of itsside less than %e by choosing

T
N> g

2w*

Since w* > M (by the construction of D* inthelemma 1), we can select N to be large enough, such that w(P) > M.
We denote the maximum distance between P and D* by §. Since N > 3, we have

1 T 1 1
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Figure 4: lllustration of how to transform the disk into an unfixturable polygon: all variables are asin the proof of the Theorem 1.

Claim: Such a polygon, P, can achieve contact with at most two lattice sites.

Proof of Claim: Let f, ¢ and h be any three lattice sites, among which each pair has a length no greater than
w*. (If some pair has alength greater than w*, then they cannot form athree-point contact, due to the fact that
the maximum width of P isw*.) Without loss of generality, we assume that P has f and g asitstwo — point
contact, and the contacting edges are ¢y and ¢, respectively. Notethat 7 is an inscribed polygon of D*. We
can position the disk D*, with P inscribed, on the lattice, such that f and ¢ are on the arcs corresponding to e
and e,, respectively. (This can be aways achieved.) By the construction of D*, we know that dsp«(h) > .
Therefore, by the construction of the equilateral polygon P, the distance from & to the boundary of P isgreater
than 1¢, namely dsp(h) > 3e. Inorder to achieve two — point contact on the edges e and e, we can always
rotate P inside the disk D* first, then trandate it to achieve the contact. After therotation, f and ¢ will still lie
on the corresponding arcs. Therefore the distance needed for translation is less than 3¢, because the distance
of the trandation is bounded by the length of the side of P, which islessthan %e. But this trandation will not
be enough to make A the third point contact, since A is distant from the edge of P more than %e. Hence P can
achieve contact with at most two lattice sites. The intuition behind the above proof isillustrated in Figure 5. O

0

Thus we can construct an infinite set of convex polygona parts of arbitrary size that cannot be fixtured with 3 locators
and 1 clamp. We note that the value of N given above isnot alower bound on the number of sides needed to generate an
unfixturable part; often fewer sides are sufficient.

5 TheOL/4C Modd

Since the 3L/1C fixture model cannot fixture al polygona parts, we consider how we might increase the range of fixtures
and decrease the range of parts, such that a fixture design is guaranteed to exist. In this section, we present severa positive



Figure5: Intuition behind the proof: All lattice sites except f and g are outside an annulus of width 2¢, where D* is the disk constructed
by lemma 1. Thusthe polygon cannot be shifted to make contact with a third lattice site without losing contact with f and g.

results.

Inthe OL/4C model, we assume the same rectangular lattice asinthe 3L/1C model, but instead of using 3 locatorsrestricted
to lattice sites, we alow 4 clamps. Recall that a clamp contact can trandate either verticaly or horizontally within one unit
from alattice site. Thus any point on the principal axes of the baseplate is available for clamping. See Figure 1.

Perhaps more familiar to machinistsisthe so-called “ T-dot” modular fixturing system [Hoffman 1987] as shownin Figure
6. These use grooves or tracks cut into the baseplate that alow fixels to dide horizontally and vertically. We note that the
T-dot system is geometrically equivaent to the OL/4C model; al resultsfor the latter also hold for the former.

We now consider two restricted classes of polygonal parts.

5.1 Rectilinear Parts
By arectilinear part, we mean that all edges are either parallel or perpendicular to each other. Mishra showed the following
result and acknowledged that improvements were likely.

Theorem [Mishra 1991] If P isarectilinear part with all edges of length > 4 units, then there always exists a fixture using
at most 6 clamps.

In this section we tighten Mishra sresult as follows:

Theorem 2 Let P bearectilinear part and M be the minimal enclosing rectangle aligned with the edge of 9 P. If each side
of M hasalength > 1, then there always exists a OL/4C fixture for P.

Proof. : We show that afixture dways exists for this part when it is aligned with the principal axes of the lattice.
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Figure6: T-slot fixels are equivalent to clampsin our model.

We embed a unit-length square S into A/ also aligned with the edges of 9 P. Extend each of thefour sides of .S' until both
of its endpointsreach M. These extended linesintersect P a pointsby, by, . . ., bg, asshown in Figure 7. Notethat by our
assumptions we can aways embed S such that the pointsb; are not vertices of 9 P.

We claim that the following two sets of pointsyield a fixturefor the part: {61, b4, b5, bg} and {b,, b3.be.b7}. Clearly bybe
and bybs can be aligned with 2 vertical lattice lines whose separation isexactly 1 unit. A similar case holdsfor the linesb3bg
and b4b7. Hence, with zero rotation, it is aways possible to shift 9P horizontally and vertically such that the four points
defining the form closure are each vertically or horizontally close enough to alattice site, at which we could anchor a fixel
applying aforce normal to 9 P at that point. O

Note that 4 contacts are necessary according to [Reuleaux 1876].

Corollary 1 Let P bearectilinear part with all edges of length > 1 unit. Then there always exists a OL/4C fixture for P.

5.2 Convex Polygonal Parts

Nguyen [Nguyen 1988] studied the problem of achieving form closure for polygona parts when there is no restriction on
placement of contacts. Given 4 edges of the part, he showed how to find aset of 4 segments 2 such that if frictionlesscontacts
are placed at any point along each segment, the part will be in form closure. We refer to such a set of 4 edge segments as
Nguyen set. We note that given 4 edges, the Nguyen set is not unique: the length of one segment in the set can be traded off
against the length of another segment. If we sort the segments in the set by length, Ip < I3 < [, <3, let I; bethe critical
length of the Nguyen set.

Theorem 3 If P isaconvex polygonal part that hasa Nguyen set with critical length > /2, then there always exists a 0L/4C
fixture for P.

Proof. Without loss of generality we can aways locate P such that its shortest Nguyen segment, [y, is reachable by a
clamp. By the conditionsof thetheorem, the remaining segments must each be | onger than /2. By projecting each segment
onto the horizontal or vertical axis, we see that we can always achieve clamp contacts aong the principal axes within unit
distance of alattice site. Since P is convex, no clamps interfere and hence P has a OL/4C fixture. O

2Nguyen used the term “independent regions of contact”.
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Figure7: A rectilinear part and possible clamp positions: all variables correspond to the proof of Theorem 2.

Moreover, it follows that such parts can be fixtured in an arbitrary orientation. This would be useful, for example, to a
machinist who must fixture two partsin aignment.

6 Generalization to Round Fixels

Although physical fixels are round, we assumed in previous sections that they are points. We can justify this assumption
by “growing” the part by the nonzero radius of fixels using a Minkowski sum operation, while simultaneously shrinking the
fixelsto points (see Figure8). Then wetreat the expanded part boundary as anew part. Although vertices of theorigina part
will form circular segments of the expanded part, we can ignore these segments since fixel-vertex contacts are not permitted
under our assumptions. We must further assume that fixel radiusisthe same for al fixels and that thisradiusisless than one
half of the distance between |attice sites; otherwise two adjacent fixels may intersect. In this section we generalize al results
devel oped in the previous sections to round fixel's, based on the Minkowski operation.

6.1 Unfixturable Partson 3L/1C with Round Fixes

We can generalize Theorem 1 to round fixels by a“reverse Minkowski operation”.

Let P be the convex polygonal part constructed in Theorem 1 as a counterexample for 3L/1C. We replace each vertex of
P by around corner with radius of the round fixel. Let us denote the new part by P. Note that edges of P are shortened but
no straight edge will be eliminated, since fixel radiusis relatively small compared to the width of P.
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Thus we can consider 7 as an expanded version of P* by the Minkowski operation. Or equivalently we shrink P to a
polygon P*, by the “reverse Minkowski operation” using the fixel radius. The set of straight edges of P isa subset of the
boundary of P, which does not have a 3L/1C fixture with point fixels. Therefore P does not have a 3L/1C fixture with point
fixels. Hence P* is apolygon, which does not have a 3L/1C fixture with round fixels. Furthermore we can construct such a
polygon larger than any arbitrarily given size, according to Lemma 1 and Theorem 1.

6.2 Rectilinear Partswith Round Fixels

Now we generdize corollary 1 toround fixels. A simple“reverse Minkowski operation” does not work for the generalization.
So we present a new proof with round fixels, by using the Minkowski operation directly.

Theorem 4 Let P bearectilinear part with all edges of length > 1 unit. Then there always exists a OL/4C fixture with round
fixels
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Figure 8: The expanded rectilinear part. At the top, a grown part that can be fixtured by point fixels. At the bottom, three cases of the
straight edges in the grown rectilinear part, where the shadow stands for the interior of a part. All variables are corresponding to the

proof of Theorem4.

Proof. Let P be the expanded part of the original part P, by the fixel radius using the Minkowski operation. Since each
sideof P islonger than 1 and the radius of the round fixel islessthan % the expanded part P does not lose any straight edges
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athough some of them shorten. There are three cases for the edges of P, which are illustrated in Figure 8. Let L denote
the length of an edge in P and L the length of the corresponding straight edge in P. Theninthecase (1), L = L; in case
2,L=1L- > 5, in case (3), whichistheworst case, . = L — 1 > 0. To fixture P with round fixels, we only need to
fixture P W|th point fixels. We will show constructively that a OL/4C fixture with point fixels always exists for P whenitis
aligned with the principal axes of the lattice. Let ¢; be the upper most horizontal edge of 2. Obviously e; belongs to case
(2). Therefore e; has alength = % + e with e > 0. Without loss of generality, we choose point p; one; whichis %e distant
away from theleft end of e;. If thevertical line, v1, which is 1 unit to the right from p,, intersects with one horizontal edge
at the bottom of P, then we choose this intersection as p2. Otherwise we shift both p; and v1 to the right until 1 intersects
with a straight edge at the bottom and then choose this new intersection as p,. Since the radius of a round fixel isless than
%, the horizontal projection of around corner is less than % Therefore the distance needed to shift to get p, isless than %
Therefore theinitial choice of p; ensure that p; will be still on the straight edge e after the shift. Now we pick up the upper
most vertical edge, 62, on the |eft side of P. Obvioudly ¢, is an edge belonging to either the case (1) or (2). Therefore e,
also has alength > 3 + e withe > 0. By the similar argument, we can find one point ps on e, and another point p4 on a
vertical straight edge on theright side of P, whichis1 unit below ps. The four points p1, p2, p3, pa define form closure. By
zero rotation, we can aways shift 9 P horizontally and vertically such that the four points defining the form closure are each
vertically or horizontally close enough to alattice site, at which we can anchor afixel applying aforce normal to 9P at that
point. O

6.3 Convex Fixturable Partswith Round Fixels

We can aso generalize Theorem 3 to round fixels. In the expanded part, each edge segment of a convex polygona part will
be still a straight edge and keeps its origina length. Furthermore the set of independent edge segmentsis still such aset in
the expanded part because of the frictionless assumption. Therefore Theorem 3 still holdsfor round fixels.

7 Discussion

The notion of completeness isimportant in robot motion planning [Goldberg 1994]. We say that an agorithm is complete
if it is guaranteed to find a solution when one exists, and to return failure otherwise. Completeness is desirable especially
when agorithms are incorporated into industrial systems, where delays and failures can be extremely costly. The question
we consider in this paper isstronger: under what conditionsdoes a solution exist? We considered the existential question for
3L/1C and OL/AC fixtures. We constructed an infinite set of convex polygonal parts that cannot be fixtured under the 3L/1C
model. We a so gave two subclasses of polygona parts for which we can always guarantee the existence of a OL/4C fixture.

The last result required that the critical length of a Nguyen set be greater than /2. We acknowledge that the Nguyen set
for apart isnot unique. Isthere an algorithmthat can efficiently verify this condition for a given polygona part?

What about 3D fixtures? We note that the result for 3L/1C does not depend on the fact that the lattice is regular or
rectangular. A similar argument would hold for any fixed arrangement of lattice sites. This approach can be extended to
generate counterexamples for any modular fixturing system that requires 4 locators at 3D lattice sites.

In this paper we assumed zero friction. Friction can expand the range of partsthat can be fixtured. For example we know
that 3 contacts are often sufficient to provide frictional form closure. [Ponce 1993] showed how to find Nguyen sets of 3
segments for polygonal parts with frictional contacts. The existential question for modular fixtureswith friction is currently
open.

In summary, we have positive results for a genera class of fixtures with a specific class of parts, and a negative result
for a specific class of fixtures with a general class of parts. These results raise a number of questions about intermediate
cases. For example, can we characterize a set of polygonal parts that are fixturable in the 3L/1C model? Similarly, can we
characterize a set of polygonal partsthat are not fixturablein the OL/4C modd? So far we have not been able to construct a
single counterexample, although we are till unableto prove that OL/4C is complete for the class of polygona parts.
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What about other fixture models? Recently, [Wallack and Canny 1994] studied a fixturing model using four locators on
asplit lattice that can be closed likea vice. Can we specify a class of parts for which such afixture is guaranteed to exist?
Similar questionsremain for 2L/2C and 1L/3C fixture models.

These questions suggest a hierarchy of modular fixturing systems. We might say that modular fixturing system A
dominates modular fixturing system 5 if the set of parts that can be fixtured in A is a strict superset of those that can be
fixturedin 5. For example, we can show that OL/4C dominates 3L/1C: For any part which hasa3L/1C fixture, we can dways
create atrivial OL/AC fixture. Let P bethe part constructed in Theorem 1 that isnot fixturablein 3L/1C. We can easily insure
that it has an odd number of edges and thus has no parallel sides. If we locate P on the lattice such that its center lineis
vertical, then we can place 4 clamps symmetrically about itscenter line. If the4 normal vectors at contacts do not intersect at
acommon point, then this providesform closure. Otherwise, we can trandate P vertically to break the common intersection
to achieve form closure. Thus the class of OL/4C fixtures dominates the 3L/1C class. Relations between other classes are
currently open.
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