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Abstract— This paper presents Dexterity Network 1.0 (Dex-
Net), a new dataset and associated algorithm to study the
scaling effects of Big Data and Cloud Computation on robust
grasp planning. The algorithm uses a Multi-Armed Bandit
model with correlated rewards to leverage prior grasps and
3D object models in a growing dataset that currently includes
over 10,000 unique 3D object models and 2.5 million parallel-
jaw grasps. Each grasp includes an estimate of the probability
of force closure under uncertainty in object and gripper pose
and friction. Dex-Net 1.0 uses Multi-View Convolutional Neural
Networks (MV-CNNs), a new deep learning method for 3D
object classification, as a similarity metric between objects and
the Google Cloud Platform to simultaneously run up to 1,500
virtual cores, reducing runtime by three orders of magnitude.
Experiments suggest that using prior data can significantly
benefit the quality and complexity of robust grasp planning.
We report on system sensitivity to varying similarity metrics
and pose and friction uncertainty levels. Code and additional in-
formation can be found at: http://berkeleyautomation.
github.io/dex-net/.

I. INTRODUCTION

Cloud-based Robotics and Automation systems exchange
data and perform computation via networks instead of operat-
ing in isolation with limited computation and memory. Poten-
tial advantages to using the Cloud include Big Data: access
to updated libraries of images, maps, and object/product data;
and Parallel Computation: access to parallel grid computing
for statistical analysis, machine learning, and planning [22].
These benefits have recently been demonstrated in vision
and speech, where datasets with millions of examples such
as ImageNet have produced results [14], [24] that surpass
those obtained from decades of research on analytic methods.
This suggests that large-scale machine learning of grasps for
vast numbers of possible object shapes, object poses, and
environment configurations [12], [18], [27], could exhibit
scaling effects similar to those observed in computer vision
and speech recognition.

The primary contribution of this paper is an algorithm
based on a Multi-Armed Bandit (MAB) model with correlated
rewards to speed up robust planning by learning from a large
dataset of prior grasps and 3D object models. The algorithm is
based on Continuous Correlated Beta Processes (CCBPs) [11],
[32], an efficient model for predicting a belief distribution
on the quality of each grasp from prior data.
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Fig. 1: Normalized grasp quality versus iteration averaged over 25 trials for
the Dex-Net 1.0 algorithm with 1,000 and 10,000 prior 3D objects (bottom)
and illustrations of five nearest neighbors in Dex-Net (top) for a spray bottle.
We measure quality by the probability of force closure of the best grasp
predicted by the algorithm on each iteration and compare with Thompson
sampling without priors and uniform allocation. (Top) The spray bottle has
no similar neighbors with 1,000 objects, but two other spray bottles are
found by the MV-CNN in the 10,000 object set. (Bottom) As a result, the
Dex-Net 1.0 algorithm does not outperform Thompson sampling for 1,000
objects, but quickly converges to the optimal grasp with 10,000 prior objects.

To study scaling effects, we developed Dex-Net 1.0, a
growing dataset that currently includes over 10,000 unique 3D
object models selected to reflect objects that could be encoun-
tered in warehousing or the home such as containers, tools,
tableware, and toys. Dex-Net also contains approximately 2.5
million parallel-jaw grasps, as each object is labelled with
up to 250 grasps and an estimate of the probability of force
closure for each under uncertainty in object pose, gripper
pose, and friction coefficient. To the best of our knowledge,
this is the largest object dataset used for grasping research to-
date. We also incorporate Multi-View Convolutional Neural
Networks (MV-CNNs) [43], a state-of-the-art method for 3D
shape classification, to efficiently retrieve similar 3D objects.
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We implement the algorithm on Google Compute Engine
and store Dex-Net 1.0 on Google Cloud Storage, with a
system that can run up to 1,500 instances at once. Experiments
suggest that using 10,000 prior object models from Dex-Net
reduces the number of samples needed to plan robust parallel-
jaw grasps by up to 2× on average over 45 objects.

II. RELATED WORK

Grasp planning considers the problem of finding grasps
for a given object that achieve force closure or optimize a
related quality metric [36]. Usually it is assumed that the
object is known exactly and that contacts are placed exactly,
and mechanical wrench space analysis is applied. Robust
grasp planning considers the same problem in the presence of
bounded perturbations in properties such as object shape, pose,
or mechanical properties such as friction, which are inevitable
due to imprecision in perception and control. One way to treat
perturbations is statistical sampling. Since sampling in high
dimensions can be computationally demanding, recent work
has explored how a robust grasp computed from one object
can guide the search for robust grasps on similar objects [4],
for example by warping contacts [42] or interpolating grasps
and shapes over a Grasp Moduli Space [35]. To study grasp
planning at scale, Goldfeder et al. [12], [13] developed the
Columbia grasp database, a dataset of 1,814 distinct models
and over 200,000 force closure grasps generated using the
GraspIt! stochastic sampling-based grasp planner.

Recent research has studied labelling grasps in a database
with metrics that are robust to imprecision in perception
and control using probability of force closure (PF ) [44] or
expected Ferrari-Canny quality [23]. Experiments by Weisz
et al. [44] and Kim et al. [23] suggest that the robust metrics
are better correlated with success on a physical robot than
deterministic wrench space metrics. Brook et al. [6] planned
robust grasps for a database of 892 point clouds and developed
a model to predict grasp success on a physical robot based
on correlations with grasps in the database. Kehoe et al. [21]
created a Cloud-based system to transfer grasps evaluated
by PF on 100 objects in a database to a physical robot
by indexing the objects with the Google Goggles object
recognition engine, and achieved 80% success in grasping
objects on a table.

Another line of research has focused on synthesizing
grasps using statistical models [4] learned from a database
of images [27] or point clouds [9], [15], [47] of objects
annotated with grasps from human demonstrators [15], [27]
or physical execution [15]. Kappler et al. [18] created a
database of over 700 object instances, each labelled with 500
Barrett hand grasps and their associated quality from human
annotations and the results of simulations with the ODE
physics engine. The authors trained a deep neural network
to predict grasp quality from heightmaps of the local object
surface. We estimate PF using similar objects and grasps
using a variant of the Multi-Armed Bandit (MAB) model for
sequential decision-making.

Our work is also closely related to research on actively sam-
pling grasps to build a statistical model of grasp quality from

fewer examples [10], [25], [37]. Montesano and Lopes [32]
used Continuous Correlated Beta Processes [11] to actively
acquire grasp executions on a physical robot, and measured
correlations from the responses to a bank of image filters
designed to detect grasp affordances such as edges. Oberlin
and Tellex [33] developed a budgeted MAB algorithm for
planning 3 DOF crane grasps using priors from the responses
of hand-designed depth image filters, but did not study the
effects of orders of magnitude of prior data on convergence.
Recently, Laskey et al. [26] used MAB algorithms to reduce
the number of samples needed to identify grasps with high
PF under uncertainty in object shape, pose, and friction in
2D. In this work we extend the model of [26] to 3D and
study the scaling effects of using prior data from Dex-Net
on planning grasps with high PF .

To use the prior information contained in Dex-Net, we also
draw on research on 3D model similarity. One line of research
has focused on shape geometry, such as characteristics of
harmonic functions on the shape [5], or CNNs trained on
a voxel representation of shape [31], [46]. Another line of
research relies on the description of rendered views of a 3D
model [8], [12]. One of the key difficulty of these methods
is comparing views from different objects, which may be
oriented inconsistently. The recent work of Su et al. [43]
addresses this issue by using CNN trained for ImageNet
classification as descriptors for the different views and aggre-
gating them with a second CNN that learns the invariance to
orientation. Using this method, the authors improve state-of-
the-art classification accuracy on ModelNet40 by 10%. We
use a max-pooling to aggregate views, similar to the average
pooling proposed in [1].

III. DEFINITIONS AND PROBLEM STATEMENT

We consider the robust grasp planning problem for a given
3D object model and parallel-jaw grippers using probability
of force closure (PF ) under uncertainty in object pose, gripper
pose, and friction coefficient as a grasp quality metric. We
assume the nominal object shape is given as a signed distance
function (SDF) f : R3 → R [30], which is zero on the object
surface, positive outside the object, and negative within. The
object is specified in units of meters with given center of
mass z ∈ R3. We assume soft-finger contacts with a Coulomb
friction model [48] and that the gripper jaws are opened to
their maximal width w ∈ R before closing on the object.

A. Grasp and Object Parameterization

The grasp parameters are illustrated in Fig. 2. Let g =
(x,v) be a parallel-jaw grasp parameterized by the centroid
of the jaws in 3D space x ∈ R3 and an approach direction,
or axis, v ∈ S2. We denote by S = {y ∈ R3

∣∣f(y) = 0} the
surface of an object for SDF f , and specify all points with
respect to a reference frame centered at the object center
of mass z and oriented along the principal axes of S. Let
G = {(x,v)

∣∣x ∈ R3,v ∈ S2} denote the space of all grasps
and H = {O = {z, f(·)}

∣∣z ∈ R3, f ∈ A} denote the space
of all objects, where A is the space of all SDFs for closed
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Fig. 2: Illustration of grasp parameterization and contact model. (Left) We
parameterize parallel-jaw grasps by the centroid of the jaws x ∈ R3 and
approach direction, or direction along which the jaws close, v ∈ S2. The
parameters x and v are specified with respect to a coordinate frame at the
object center of mass z and oriented along the principal directions of the
object. (Right) The jaws are closed until contacting the object surface at
locations c1, c2 ∈ R3, at which the surface has normals n1,n2 ∈ S2. The
contacts are used to compute the moment arms ρi = ci − z.

and compact surfaces. We denote by M = G ×H the Grasp
Moduli Space of all parallel-jaw grasps and objects [35].

B. Sources of Uncertainty

We assume Gaussian distributions on object pose, gripper
pose, and friction coefficient to model errors in registra-
tion, robot calibration, or classification material properties,
respectively. We denote by N (µ,Σ) a Gaussian distribution
with mean µ and variance Σ. Let υ ∼ N (0,Συ) denote a
zero-mean Gaussian on R6 and µξ ∈ SE(3) be a mean
object pose. We define the object pose random variable
ξ = exp (υ∧)µξ , where the ∧ operator maps from R6 to the
Lie algebra se(3) [2]. Let ν ∼ N (0,Σν) denote zero-mean
Gaussian gripper pose uncertainty with mean µν ∈ G. Let
γ ∼ N (µγ ,Σγ) denote a Gaussian distribution on friction
coefficient with mean µγ ∈ R. We denote by ξ̂, ν̂, and γ̂
samples of the random variables.

C. Contact Model

Given a grasp g on an object O and samples ξ̂, ν̂, and
γ̂, let ci ∈ R3 for i ∈ 1, 2 denote the 3D contact location
between the i-th gripper jaw and surface as shown in Fig. 2.
Each contact ci = x + (−1)i(w/2− t∗i )v where [30]:

t∗i = argmin
t>0

t such that f
(
x + (−1)i(w/2− t)v

)
= 0.

Let ni = ∇f(ci)/‖∇f(ci)‖2 denote the surface normal
at contact ci with tangent vectors ti,1, ti,2 ∈ S2. To
compute the forces that each contact can apply to the
object for friction coefficient γ̂, we discretize the friction
cone at ci [36] into a set of l facets with vertices Fi ={
ni + γ̂ cos

(
2πj
l

)
ti,1 + γ̂ sin

(
2πj
l

)
ti,2
∣∣j = 1, ..., l

}
. Each

force fi,j ∈ Fi can exert a corresponding torque τi,j =
fi,j ×ρi where ρi = (ci−z) is the moment arm at ci. Under
the soft contact model, each contact ci exerts an additional
wrench wi,l+1 = (0,ni) [48]. Thus the set of all contact

wrenches that can be applied by a grasp g under the model
is W = {wi,j = (fi,j , τi,j)

∣∣i = 1, 2 and j = 1, ..., l + 1}.

D. Quality Metric

In this work we use the probability of force closure (PF ),
or the ability to resist external force and torques in arbitrary
directions [30], as the quality metric. PF has shown promise
in physical experiments [23], [44] and is relatively inexpensive
to evaluate, allowing us to better study the effects of large
amounts of data.

Let F ∈ {0, 1} denote the occurrence of force closure. For
a grasp g on object O, PF (g,O) = P (F = 1 | g,O, ξ, ν, γ).
To compute force closure for a grasp g ∈ G on object O ∈ H
given samples of object pose ξ̂, gripper pose ν̂, and friction
coefficient γ̂, we first compute the set of possible contact
wrenches W . Then F = 1 if 0 ∈ Conv(W), where Conv(·)
denotes the convex hull [44].

E. Objective

We are interested in finding a grasp g∗ that maximizes
PF (g) [23], [26], [30], [44] over a budgeted maximum
number of samples T . To perform this as quickly as possible
we maximize over the sum of the PF for all sampled
grasps [26], [41]. Since the maximization over the continuous
space G is computationally expensive, past work has solved
this objective by evaluating a discrete set of K candidate
grasps Γ = {g1, ...,gK} with Monte-Carlo integration [20],
[44] or Multi-Armed Bandits (MAB) [26]. In this work, we
extend the 2D MAB model of [26] to leverage similarities
between grasps and prior 3D objects in Dex-Net to reduce
the number of samples [16], [34].

IV. DEXTERITY NETWORK

The Dexterity Network (Dex-Net) 1.0 dataset is a growing
set that currently includes over 10,000 unique 3D object
models annotated with 2.5 million parallel-jaw grasps.

A. Data

Dex-Net 1.0 contains 13,252 3D mesh models: 8,987
from the SHREC 2014 challenge dataset [29], 2,539 from
ModelNet40 [46], 1,371 from 3DNet [45], 129 from the KIT
object database∗ [19], 120 from BigBIRD∗ [39], 80 from the
Yale-CMU-Berkeley dataset∗ [7], and 26 from the Amazon
Picking Challenge∗ scans (∗ indicates laser-scanner data). We
preprocess each mesh by removing unreferenced vertices,
computing a reference frame with Principal Component
Analysis (PCA) on the mesh vertices, setting the mesh center
of mass z to the center of the mesh bounding box, and
rescaling the synthetic meshes to fit the smallest dimension
of the bounding box within w = 0.1m. To resolve orientation
ambiguity in the reference frame, we orient the positive z-axis
toward the side of the xy plane with more vertices. We also
convert each mesh to an SDF using SDFGen [3].
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B. Grasp Sampling

Each 3D object Oi in Dex-Net is labelled with up to 250
parallel-jaw grasps and their PF . We generate Ng grasps
for each object using a modification of the 2D algorithm
presented in Smith et al. [40] to concentrate samples on
grasps that are antipodal [30]. Let w be the maximal opening
of the gripper, γ̂ be a sampled friction coefficient, and S
be the set of points on the object surface for an SDF f as
described in Section III-A. To sample a single grasp, we first
generate a contact point c1 by sampling uniformly from S.
Next we sample a direction v ∈ S2 uniformly at random
from the friction cone and compute c2 = c1 + (w− t∗2)v and
x = 0.5(c1+c2), where t∗2 is defined as in Section III-C. This
yields a grasp gi,k = (x,v). We add gi,k to the candidate set
if the contacts are antipodal [30], or vTn1 6 cos(arctan(γ̂))
and vTn2 6 cos(arctan(γ̂)).

We evaluate PF (g) using Monte-Carlo integration [20]
by sampling the object pose, gripper pose, and friction
random variables Ns times and recording Si,k, the number
of samples for which grasp gi,k was in force closure. The
dataset of No objects and Ng candidate grasps per object is
D = {(Si,k,Yi,k)

∣∣i = {1, ..., No}, k = {1, ..., Ng}} where
Yi,k = (gi,k,Oi) ∈M is a grasp-object pair in Dex-Net.

C. Grasp Differential Heightmap Features

To measure grasp similarity, we embed each grasp g =
(x,v) on object O in Dex-Net in a feature space based on
2D projections of the local surface orientation at the contacts,
inspired by grasp heightmaps [15], [18]. Let δ ∈ R be the
pixel resolution in meters, and let r ∈ R be a minimum
projection distance. The heightmap hi at contact ci maps
points p ∈ R3 on the tangent plane vT (p− c1) = 0 to the
distance to the surface along v. To compute the value at
pixel u, v, we compute the location of the pixel on the plane
pi(u, v) = ci + δut1 + δvt2 and assign

hi(u, v) = min
t>−r

t such that f
(
pi(u, v) + (−1)itv

)
= 0

where f is the SDF of object O. We make hi rotation-
invariant by orienting its axes to align with the eigenvectors
of the weighted covariance matrix of the 3D surface points
that generate the heightmap as described in [38]. Fig. 3
illustrates local surface patches extracted by this procedure.
Since force closure depends on object surface normals at
contacts [36], we finally take the x- and y-image gradients of
hi to form differential heightmaps di,x and di,y . The feature
vector for each grasp-object pair in Dex-Net is η(g,O) =
(d1,x,d1,y,d2,x,d2,y).

V. DEEP LEARNING FOR OBJECT SIMILARITY

We use Multi-View Convolutional Neural Networks (MV-
CNNs) [43] to efficiently index prior 3D object and grasp data
from Dex-Net by embedding each object in a vector space
where distance represents object similarity, as shown in Fig. 4.
We first render every object on a white background in a total
of Nc = 50 virtual camera views oriented toward the object
center and spaced on a grid of angle increments δθ = 2π

5 and
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Fig. 3: Illustration of three local surface heightmaps extracted on a teapot.
Each heightmap is “rendered” along the grasp axis vi at contact ci and
oriented by the directions of maximum variation in the heightmap. We use
gradients of the heightmaps for similiarity between grasps in Dex-Net.

δϕ = 2π
5 on a viewing sphere with radii r = R, 2R, where

R is the maximum dimension of the object bounding box.
Then we train a CNN with the architecture of AlexNet [24]
to predict the 3D object class label for the rendered images
on a training set of models. We initialize the weights of the
network with the weights learned on ImageNet by Krizhevsky
et al. [24] and optimize using Stochastic Gradient Descent
(SGD). Next, we pass each of the Nc views of each object
through the optimized CNN and max-pool the output of
the fc7 layer, the highest layer of the network before the
class label prediction. Finally, we use Principal Component
Analysis (PCA) to reduce the max-pooled output from 4,096
dimensions to 100 dimensions. This yields the representation
ψ(O) ∈ R100 for each object.

Given the MV-CNN object representation, we measure the
dissimilarity between two objects Oi and Oj by the Euclidean
distance ‖ψ(Oi)− ψ(Oj)‖2. For efficient lookups of similar
objects, Dex-Net contains a KD-Tree nearest neighbor query
structure with the feature vectors of all prior objects. In
our implementation, we trained the MV-CNN using the
Caffe library [17] on rendered images from a training set
of approximately 6, 000 3D models from the SHREC 2014
dataset [29], which has 171 unique categories, for 500,000
iterations of SGD. To validate the implementation, we tested
on the SHREC 2014 challenge dataset and achieved a 1-
NN accuracy of 86.7%, compared to 86.8% achieved by the
winner of SHREC 2014 [29].

VI. CORRELATED MULTI-ARMED BANDIT ALGORITHM

The Dex-Net 1.0 algorithm (see pseudocode below) op-
timizes PF over a set of candidate grasps on a new object
O using Multi-Armed Bandits (MABs) with correlated
rewards [16], [34] and priors computed from Dex-Net 1.0. We
first generate a set of candidate grasps Γ for object O using
the antipodal grasp sampling described in Section IV-B and
predict a prior belief distribution for each grasp using the Dex-
Net database D. Next, we run MAB by selecting a grasp using
Thompson sampling [26], [33], sampling from the uncertainty
random variables, determining force closure for the grasp
on the sampled variables as described in Section III-D, and
updating a belief distribution on the PF for each grasp. Finally,
we rank the grasps in Γ by the maximum lower confidence
bound of the belief distribution, a conservative estimate of
the PF of each grasp, and store the ranking in the database.
We use Thompson sampling to study the scaling effects for a
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Fig. 4: Illustration of our Multi-View Convolutional Neural Network (MV-
CNN) deep learning method for embedding 3D object models in a Euclidean
vector space to compute global shape similarity. We pass a set of 50 virtually
rendered camera viewpoints discretized around a sphere through a deep
Convolutional Neural Network (CNN) with the AlexNet [24] architecture.
Finally, we take the maximum fc7 response across each of the 50 views for
each dimension and run PCA to reduce dimensionality.

fixed grasp selection method and plan to study other methods
based on confidence bounds [25], [33] or Gittins indices [26]
in future work.

A. Belief Distribution Model

Let O denote the test object to label with the Dex-Net
Algorithm, and let Γ be the set of Ng candidate grasps
generated for O. We define Fj = F (gj) ∈ {0, 1} as force
closure on an evaluation of any grasp gj ∈ Γ from samples
of object pose, gripper pose, and friction as described in
Section III-D. Under the model, Fj is a Bernoulli random
variable with probability of success θj = PF (gj). Since θj
is unknown, the algorithm maintains a posterior Beta belief
distribution on the Bernoulli parameter θj that is updated
with every new observation of F , assigning increasingly high
probability to the true PF . The Beta distribution [16], [26]
is specified by shape parameters α > 0 and β > 0:

Beta(α, β) = Z(α, β)θα−1j (1− θj)β−1

where Z(α, β) is a normalization constant.

B. Predicting Grasp Quality Using Prior Data

We use Continuous Correlated Beta Processes
(CCBPs) [11], [32] to model correlations between
the PF of grasps on different objects, which allows us to
utilize prior grasp and object data from Dex-Net. CCBPs
model correlations between Bernoulli random variables in
a Beta-Bernoulli process, which exist when the variables
depend on common latent factors. Two grasps on an object
may have similar PF when they contact the object at similar
locations, as evidenced by Lipschitz bounds on grasp wrench
space metrics [36].

A CCBP estimates the shape parameters for a grasp-object
pair Yj = (gj ,Oi) ∈M using a normalized kernel function
k(Yp,Yq) : M × M → [0, 1] that measures similarity
between a pair of grasps and objects from the Grasp Moduli
SpaceM. The kernel approaches 1 as the arguments become

increasingly similar and approaches 0 as the arguments
become dissimilar.

We measure similarity using a set of feature maps
ϕm : M → Rdm for m = 1, ..., 3, where dm is the
dimension of the feature space for each. The first feature
map ϕ1(Y) = (x,v, ‖ρ1‖2, ‖ρ2‖2) captures similiarity in
the grasp parameters, where x ∈ R3 is the grasp center,
v ∈ S2 is the grasp approach, and ρi ∈ R3 is the i-th
moment arm. To capture local surface geometry, the second
feature map ϕ2(Y) = η(g,O), where η is the differential
heightmap described in Section IV-C. To capture global shape
information, our third feature map ϕ3(Y) = ψ(O), where ψ
is our object similarity map described in Section V. Given
the feature maps, we use the squared exponential kernel

k(Yp,Yq) = exp

(
−1

2

3∑
m=1

‖ϕm(Yp)− ϕm(Yq)‖2Cm

)
.

where Cm ∈ Rdm×dm is the inverse bandwidth for ϕm
and ‖y‖Cm = yTCTmCmy. The bandwidths are set by
maximizing the log-likelihood [11] of the true PF under
the CCBP on a set of training data.

We form a prior belief distribution for each candidate grasp
in Γ based on its similarity to all grasps and objects from
the Dex-Net 1.0 database D as measured by the kernel [11]:

αj,0 = α0 +

No∑
i=1

Ng∑
k=1

k(Yj ,Yi,k)Si,k (VI.1)

βj,0 = β0 +

No∑
i=1

Ng∑
k=1

k(Yj ,Yi,k)(Ns − Si,k) (VI.2)

where α0 and β0 are prior parameters for the Beta distribu-
tion [26] and Ns is the number of times each grasp in D
was sampled to evaluate PF . In practice, we estimate the
above sums using the Nn nearest neighbors to O in the object
similarity KD-Tree described in Section V. Upon observing
F` for grasp g` on iteration t, we update our belief for all
other grasps on object O by [11]:

αj,t = αj,t−1 + k(Yj ,Y`)F` (VI.3)
βj,t = βj,t−1 + k(Yj ,Y`)(1− F`). (VI.4)

VII. EXPERIMENTS

We evaluate the convergence rate of the Dex-Net 1.0
algorithm for varying sizes of prior data used from Dex-
Net and explore the sensitivity of the convergence rate to
object shape, the similarity kernel bandwidths, and uncer-
tainty. We created two training sets of 1,000, and 10,000
objects by uniformly sampling objects from Dex-Net. We
uniformly sampled a set of 300 validation objects for selecting
algorithm hyperparameters and selected a set of 45 test
objects from the remaining objects. We ran the algorithm
with Nn = 10 nearest neighbors, α0 = β0 = 1.0 [26], and
a lower confidence bound containing p = 75% of the belief
distribution. We used isotropic Gaussian uncertainty with
object and gripper translation variance σt = 0.005, object
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1 Input: Object O, Number of Candidate Grasps Ng , Number
of Nearest Neighbors Nn, Dex-Net 1.0 Database D, Features
maps ψ and η, Maximum Iterations T , Prior beta shape α0,
β0, Lower Bound Confidence p, Random Variables ν, ξ, and γ
Result: Estimate of the grasp with highest PF , ĝ∗

// Generate candidate grasps and priors
2 Γ = AntipodalGraspSample(O, Ng) ;
3 A0 = ∅,B0 = ∅;
4 for gk ∈ Γ do

// Equations VI.1 and VI.2
5 αk,0, βk,0 = ComputePriors(O,gk,D, Nn, ψ);
6 A0 = A0 ∪ {αk,0},B0 = B0 ∪ {βk,0};
7 end
// Run MAB to Evaluate Grasps

8 for t = 1, .., T do
9 j = ThompsonSample(At−1,Bt−1);

10 ν̂, ξ̂, γ̂ = SampleRandomVariables(ν, ξ, γ);
11 Fj = EvaluateForceClosure(gj ,O, ν̂, ξ̂, γ̂);

// Equations VI.3 and VI.4
12 At,Bt = UpdateBeta(j, Fj ,Γ);
13 g∗

t =MaxLowerConfidence(At,Bt, p);
14 end
15 return g∗

T ;
Dex-Net 1.0 Algorithm: Robust Grasp Planning Using
Multi-Armed Bandits with Correlated Rewards

and gripper rotation variance σr = 0.1, and friction variance
σγ = 0.1. For each experiment we compare the Dex-Net
algorithm to Thompson sampling without priors (TS) and
uniform allocation (UA) [26].

The inverse kernel bandwidths were selected by maxi-
mizing the log-likelihood of the true PF under the CCBP
model [11] on the validation set using a grid search over
hyperparameters. The inverse bandwidths of the similarity
kernel were Cg = diag(0, 0, 175, 175) for the grasp param-
eter features, an isotropic Gaussian mask Cd with mean
µd = 500.0 and σd = 1.75 for the differential heightmap
features, and Cs = 0.001 ∗ I for the shape similarity features.

To scale the experiments, we developed a Cloud-based
system on top of Google Cloud Platform. We used Google
Compute Engine (GCE) to distribute trials of MAB algorithms
across objects and Google Cloud Storage to store Dex-Net.
The system launched up to 1,500 GCE virtual instances at
once for experiments, reducing the runtime by three orders
of magnitude. Each virtual instance ran Ubuntu 12.04 on a
single core with 3.75 GB of RAM.

A. Scaling of Average Convergence Rate

To examine the effects of orders of magnitude of prior data
on convergence to a grasp with high PF , we ran the Dex-Net
1.0 algorithm on the test objects with priors computed from
1,000 and 10,000 objects from Dex-Net. Fig. 5 shows the
normalized PF (the ratio of the PF for the sampled grasp to
the highest PF of the 250 candidate grasps) versus iteration
averaged over 25 trials for each of the test objects over 2,000
iterations. The average runtime per iteration was 16 ms for
UA, 17 ms for TS, and 22 ms for Dex-Net 1.0. The algorithm
with 10,000 objects takes approximately 2× fewer iterations
to reach the maximum normalized PF value reached by TS.
Furthermore, the 10,000 object curve does not fall below
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Fig. 5: Average normalized grasp quality versus iteration over 45 test objects
and 25 trials per object for the Dex-Net1.0 algorithm with 1,000 and 10,000
prior 3D objects from Dex-Net. We measure quality by the PF for the
best grasp predicted by the algorithm on each iteration and compare with
Thompson sampling without priors and uniform allocation. The algorithm
converges faster with 10,000 models, never dropping below approximately
90% of the grasp with highest PF from a set of 250 candidate grasps.

approximately 90% of the best grasp in the set across all
iterations, suggesting that a grasp with high PF is found
using prior data alone.

B. Sensitivity to Object Shape

To understand the behavior of the Dex-Net algorithm on
individual 3D objects, we examined the convergence rate
with a 3D model of a drill and spray bottle from the test
set, both uncommon object categories in Dex-Net. Fig. 1 and
Fig. 6 show the normalized PF versus iteration averaged
over 25 trials for 2,000 iterations on the spray bottle and
drill, respectively. We see that the spray bottle converges
very quickly when using a prior dataset of 10,000 objects,
finding the optimal grasp in the set in about 1,500 iterations.
This convergence may be explained by the two similar spray
bottles retrieved by the MV-CNN from the 10,000 object
dataset. Fig. 7 illustrates the grasps predicted to have the
highest PF on the spray bottle by the different algorithms
after 100 iterations. On the other hand, performance on the
drill does not increase using either 1,000 or 10,000 objects, as
the closest model in all of Dex-Net according to the similarity
metric is a phone.

C. Sensitivity to Similarity and Uncertainty

We also studied the sensitivity of the Dex-Net algorithm to
the kernel bandwidth hyperparameters described in Section VI-
B and the levels of pose and friction uncertainty for the test
object. We varied the inverse bandwidths of the kernel for the
grasp parameters and differential heightmaps gradients to the
lower values Cg = diag(0, 0, 15, 15), µd = 350.0, and σd =
3.0 as well as the higher values Cg = diag(0, 0, 300, 300),
µd = 750.0, and σd = 1.75. We also tested low uncertainty
with variances (σt, σr, σγ) = (0.0025, 0.05, 0.05) and high
uncertainty with variances (σt, σr, σγ) = (0.01, 0.2, 0.2) .
Fig. 8 shows the normalized PF versus iteration averaged
over 25 trials for 2,000 iterations on the 45 test objects. The
results suggest that conservative setting of similiarity kernel
bandwidth is important for convergence and that the algorithm
is not sensitive to uncertainty levels.
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Fig. 6: Failure object for the Dex-Net 1.0 algorithm. (Top) The drill, which
is relatively rare in the dataset, has no geometrically similar neighbors even
with 10,000 objects. (Bottom) Plotted is the average normalized grasp quality
versus iteration over 25 trials for the Dex-Net 1.0 algorithm with 1,000 and
10,000 prior 3D objects. The lack of similar objects leads to no significant
performance increase over Thompson sampling without priors.

PF = 0.60 PF = 0.67 PF = 0.78

Thompson Sampling Dex-Net 1.0 (N=1,000) Dex-Net 1.0 (N=10,000)

Fig. 7: Illustration of the grasps predicted to have the highest PF after only
100 iterations by Thompson sampling without priors and the Dex-Net 1.0
algorithm with 1,000 and 10,000 prior objects. Thompson sampling without
priors chooses a grasp near the edge of the object, while the Dex-Net
algorithm selects grasps closer to the object center-of-mass.

VIII. DISCUSSION AND FUTURE WORK

We presented Dexterity Network 1.0 (Dex-Net), a new
dataset and associated algorithm to study the scaling effects
of Big Data and Cloud Computation on robust grasp planning.
The algorithm uses a Multi-Armed Bandit model with corre-
lated rewards to leverage prior grasps and 3D object models
and Multi-View Convolutional Neural Networks (MV-CNNs),
a new deep learning method for 3D object classification, as a
similarity metric between objects. In experiments, the Google
Cloud Platform allowed Dex-Net 1.0 to simultaneously run
up to 1,500 virtual machines, reducing experiment runtime
by three orders of magnitude. Experiments suggest that prior
data can speed robust grasp planning by a factor of 2 and that
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Fig. 8: Sensitivity to similiarity kernel (top) and pose and friction uncertainty
(bottom) for the normalized grasp quality versus iteration averaged over 25
trials per object for the Dex-Net algorithm with 1,000 and 10,000 prior 3D
objects. (Top-left) Using a higher inverse bandwidth causes the algorithm to
measure false similarities between grasps, leading to performance on par
with uniform allocation. (Top-right) A lower inverse bandwith decreases the
convergence rate, but on average the Dex-Net Algorithm still selects a grasp
within approximately 85% of the grasp with highest PF for all iterations.
(Bottom-left) Lower uncertainty increases the quality for all methods, (bottom-
right) higher uncertainty decreases the quality for all methods, and the Dex-
Net algorithm with 10,000 prior objects still converges approximately 2×
faster than Thompson sampling without priors.

average grasp quality increases with the number of similar
objects in the dataset. We reported on sensitivity to varying
similarity metrics and pose and friction uncertainty levels.

In future work, we will develop metrics to pre-compute
grasps that adequately “cover” each object from a variety of
accessibility conditions (depending on pose and occlusions).
We will also explore how Deep Learning [24] can be used
in other parts of a grasp planning pipeline, for example to
recognize object pose and shape from images [1], to learn
grasp and object features robust to shape variation using
prior evaluations from bandit algorithms, and perhaps even to
determine motor torques based on images and precomputed
grasps [28]. We also hope to release subsets of Dex-Net 1.0
with an open-source API to explore robust grasping as a
service (RGaaS).
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