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Abstract— Recent progress in motion planning has made
it possible to determine homotopy inequivalent trajectories
between an initial and terminal configuration in a robot
configuration space. Current approaches have however either
assumed the knowledge of differential one-forms related to
a skeletonization of the collision space, or have relied on
a simplicial representation of the free space. Both of these
approaches are currently however not yet practical for higher
dimensional configuration spaces. We propose 2D topological
task projections (TTPs): mappings from the configuration space
to 2-dimensional spaces where simplicial complex filtrations
and persistent homology can identify topological properties of
the high-dimensional free configuration space. Our approach
only requires on the availability of collision free samples
to identify winding centers that can be used to determine
homotopy inequivalent trajectories. We propose the Winding
Augmented RRT and RRT* (WA-RRT/RRT*) algorithms using
which homotopy inequivalent trajectories can be found and
which depend on integer parameters that control the maximal
number of homotopy classes to be determined. We evaluate
our approach in experiments with configuration spaces of
planar linkages with 2-10 degrees of freedom. Results indicate
that our approach can reliably identify suitable topological
task projections and our proposed WA-RRT and WA-RRT*
algorithms were able to identify a collection of homotopy
inequivalent trajectories in all considered dimensions.

I. INTRODUCTION

Over the last two decades, sampling based motion plan-
ning approaches have enabled the planning of complex
motions even for robotic systems with a many degrees of
freedom. Algorithms such as Rapidly Exploring Random
Trees (RRT) [14], [13] and Probabilistic Roadmaps (PRM)
[12] proceed by incrementally constructing a sampling based
graph-representation G of the environment using which the
connectivity of the free configuration space Cf can be ap-
proximated as the number of samples increases. These algo-
rithms can determine feasible trajectories between an initial
and a terminal configuration in Cf and recent variants such as
RRT* and RRG [11] can asympotically determine a short-
est trajectory. While these methods approximate the path-
connectivity of Cf as the number of samples is increased,
they do not capture all topological information about the
space of continuous paths in Cf . More precisely, the graph G
does not capture higher order topological information about

Florian T. Pokorny and Ken Goldberg are with the Department of
Computer Science and Electrical Engineering, University of California,
Berkeley. Ken Goldberg is also with the Department of Industrial
Engineering and Operations Research, University of California, Berkeley.
Danica Kragic is with CAS/CVAP, KTH Royal Institute of Technology
and Lydia Kavraki is with the Department of Computer Science, Rice
University, ftpokorny@berkeley.edu, dani@kth.se,
kavraki@rice.edu, goldberg@berkeley.edu

0 0.5
0

0.5

Cf

Π1

Π2

Fig. 1: Illustration of our approach: The top left part of the figure
illustrates a configuration space Cf with two cylindrical obstacles. Collision
free samples X ⊂ Cf in black are projected along two task-projections
Π1,Π2 onto the (x, y) and (y, z) coordinates. Our persistent homology
approach determines that each projection carries non-trivial information
about homotopy classes in Cf by computing a persistence diagram for each
(red and blue points in the diagram in the bottom right). The projection of
Cf is approximated by a simplicial complex and winding centers lying in
the projection of the collision space are automatically found (red points in
the projections). Our WA-RRT* algorithm is initialized with these winding
centers and determines four homotopy inequivalent trajectories in Cf .

Cf which is contained in the first homology and homotopy
groups of Cf . These algorithms are hence currently not able
to distinguish homotopy classes of trajectories – where two
trajectories are called homotopy inequivalent if they cannot
be continuously deformed into one another (see Fig. 1).

We study the problem of finding a collection of several
homotopy inequivalent trajectories between pairs of points
in configuration space. Let us highlight two benefits of
being able to find such motions: Since continuous trajectory
optimization approaches can deform a given initial trajectory
only within its homotopy class, an initialization of these
algorithms with several sub-optimal trajectories in distinct
homotopy classes holds promise to avoid local minima.
Furthermore, the ability to reason about homotopy classes,
can be useful, for example to replan a trajectory in a different
homotopy class when a given trajectory becomes infeasi-
ble due to changing environment conditions as homotopy
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inequivalent trajectories provide a knowledge of alternative
motion classes to the robot. We propose the use of continuous
projections Πi : Cf → R2, i ∈ {1, . . . , n} to 2-dimensional
spaces for the purpose of determining homotopy inequivalent
trajectories between two points s, t ∈ Cf in a collision
free configuration space Cf . Our approach uses a finite set
of samples X ⊂ Cf that are mapped to Πi(X) ⊂ R2

and utilizes persistent homology to test whether nontrivial
topological information about the fundamental group π1(Cf )
is captured by Πi. We use persistent homology to determine
‘winding centers’ using which we formulate the topological
motion planning problem and we introduce an adaptation of
RRT and RRT*-based motion planners which we call WA-
RRT and WA-RRT* (Winding Augmented - RRT/RRT*).
These algorithms allow incorporating the determined topo-
logical information to find homotopy inequivalent trajectories
and we present an experimental evaluation in configuration
spaces of dimension 2-10 using planar linkages.

II. BACKGROUND

Homotopy-Aware Motion Planning: We consider the
problem of determining homotopy inequivalent trajectories
between two points in a configuration space Cf . Early
work on synthesizing homotopy inequivalent trajectories has
focussed on two dimensional configuration spaces for planar
robot motion planning. Jenkins [10] decomposed a 2D con-
figuration space using wedge-sectors around a central point
to describe trajectories as words classifying the transition of
a trajectory with respect to these wedges. Grigoriev et al [6]
considered planar cuts to construct homotopy inequivalent
trajectories in the plane while [19] suggested a PRM based
approach called Homotopy Preserving Roadmaps in 2D. In
[18], homology classes are advocated instead of homotopy
classes to plan homotopy inequivalent trajectories by means
of winding angles in 2D which was later generalized to to
higher dimensions [3]. This approach relied on an initial
graph representation of the free configuration space which
was then augmented by a topological signature integrating
a differential one-form along a given trajectory. This dif-
ferential one-form, capturing topological information about
the topology of the collision space, was assumed to be
given and in 2D corresponded to a winding angle and relied
on a representative given winding center in the interior of
each obstacle surrounded by free space. We build on these
prior works, but here only assume the ability to sample
collision free points in Cf . We furthermore propose the use of
continuous projections to 2 dimensional space Πi : Cf → R2

and a first method to automatically extract winding points in
a sampling driven manner by using persistent homology.

Topologial approaches have inspired the work of [20] uti-
lizing writhe to form a representation for motion planning to
efficiently plan twisting motions. This work has however not
studied the generation of homotopy inequivalent trajectories.
Our work [17] utilizes winding angles to plan enveloping
motions of a hand to cage an object, but homotopy classes
of motions are not the focus of this work. Our work is related
to these approaches in that we also use winding angles. Our

approach utilizes a winding augmented covering space on
which our RRT/RRT* based planners perform incremental
search resulting in homotopy inequivalent trajectories. A
further difference in our approach is that we only assume the
availability of collision free samples in Cf without analytic
information about the obstacles.

In [16], we used persistent cohomology and represented
the free configuration space of a robot in a sampling based
manner by means of a filtration of simplicial complexes to
plan trajectories in distinct homology classes in dimensions
up to 4. The construction of these simplicial complexes,
is however currently inpractical in higher dimensions since
these methods are based on Delaunay triangulations of
samples X whose complexity in dimensions higher than 4
quickly becomes infeasible for large sample sets. In this
work, we also utilize persistent homology, but only under
a projection to 2D task spaces. We thus avoid the ‘curse of
dimensionality’ of constructing high-dimensional simplicial
approximations of Cf itself and only rely on Delaunay tri-
angulations in 2D with a O(nlog(n)) worst case complexity
in the number of samples n.

Trajectory Homotopy Classes and Homology: In order
to identify whether two trajectories are homotopy inequiv-
alent, we require topological information about the free
configuration space Cf beyond the path-connectivity of Cf .
The fundamental group π1(Cf , x0), whose elements are given
by equivalence classes of closed trajectories based at a point
x0 ∈ Cf can distinguish homotopy classes of trajectories
because two trajectories γ1, γ2 : [0, 1]→ Cf between x0 and
another point x1 ∈ Cf yield a closed loop l = γ1 ◦ −γ2 :
[0, 1] → Cf following γ1 from x0 to x1 and then γ2 from
x1 to x0. The loop l corresponds to the identity element
in π1(Cf , x0) precisely if γ1, γ2 are homotopy equivalent.
When Cf is path-connected, π1(Cf , x0) is independent of the
base point [7]. Typically, the fundamental group has infinite
cardinality and forms a highly complex group that is typically
non-commutative. To avoid the complexity of π1(Cf ), we
consider consider a commutative version of π1(Cf ) which is
provided by the first homology group H1(Cf ) [18].

Simplicial Complexes and Persistent Homology: One
of the key problems we address in this paper is the detec-
tion of topologically non-trivial information as identified by
π1(Cf ). In order to detect that π1(Cf ) is non-trivial based
on collision free samples – and to therefore detect the fact
that homotopically distinct trajectories exist – we will utilize
persistent homology [4] which we review now.

Given a sample of points X ⊂ Rd, we can consider the
family of union of balls spaces Xr =

⋃
x∈X{y ∈ Rd :

‖x − y‖ 6 r}, for r > 0 as in prior work [16]. For
each r, Xr is homotopy equivalent to the Delaunay-Čech
complex DCr(X) [1], which is a simplicial complex defined
for the finite set X ⊂ Rd and a radius parameter r which
in this context is called the filtration value. Let us recall
here that a geometric k-simplex σ = [v0, . . . , vk] in Rd is a
convex hull of k + 1 ordered affinely independent elements
v0, . . . , vk ∈ Rd and a convex hull of an ordered subset of
these elements is called a face τ of σ, indicated by τ 6 σ.
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We call k the dimension of a k-simplex. A (finite) simplicial
complex K is a non-empty set of simplices such that if σ ∈ K
and τ 6 σ, then τ ∈ K and if σ, σ′ ∈ K then σ ∩ σ′ is
empty or an element of K. We write |K| for set of points
in Rd contained in the union of all simplices in K. The set
|K| is a topological space with the subspace topology from
Rd. Let D(X) denote the simplicial complex corresponding
to the Delaunay triangulation of X with simplices defined
by D(X) = {[v0, . . . , vk] : vi ∈ X,∩ki=0Vvi 6= ∅ for k ∈
{0, 1, . . . , d}}, where Vx denotes the Voronoi cell containing
x. For each k-simplex σ = [v0, . . . , vk] ∈ D(X), define
f(σ) = min{r :

⋂k
i=1 Br(vi) 6= ∅}, where Br(x) =

{y ∈ Rd : ‖x − y‖ 6 r}. The Delaunay-Čech complex
DCr(X), for r > 0 is the sub-complex of D(X) defined
by DCr(X) = f−1((−∞, r]). The key point about this
construction is that, since DCr(X) is homotopy equivalent to
Xr, we can now compute topological information about Xr

from DCr(X) at all scales r > 0 using persistent homology.
Persistent Homology: Whenever the first homology

group H1(Xr) is non-trivial, π1(Xr) is also non-trivial, since
homology yields an Abelianization of the fundamental group
π1 [7]. As a result, we can conclude that Xr contains distinct
homotopy classes if the first homology group H1(Xr) is
non-trivial (but the converse does not hold in general). Our
approach is to investigate H1(Xr) at all radii r > 0 by
means of the first persistent homology of DCr(X). We omit
the technical details of persistence here, more details can
be found in [4], [16]. Fig. 2 illustrates the output of the
persistence algorithm, called the first persistence diagram.
The diagram displays along the horizontal axis the birth
radius rb at which a given holes in Xr are first formed
(voids that are fully enclosed by Xr). Along the vertical
axis, the death ‘filtration value’ rd at which a given hole
disappear because it is fully covered by Xr is also recorded
(formally, this corresponds to rank changes in the first
persistent homology groups). Since rb 6 rd, all points in
the diagram lie above the diagonal and the number of voids
at radius r (formally the dimension of H1(Xr)) can be read
off by counting the number of points (rb, rd) with rb 6 r
and rd > r. In the example, there exists 1 such point in
the shown dashed quadrant for r = 0.1. A point (rb, rd) in
the persistence diagram is also referred to as a persistence
interval. The difference ε = rd− rb is called the persistence
of the topological feature corresponding to (rb, rd). Points
with large persistence have a large vertical distance to the
diagonal and are noise-robust [5]. Points close to the diagonal
can be considered as topological noise – e.g. small voids that
appear and disappear quickly as r changes. In the example, a
single large void exists in the point-cloud, corresponding to
the red point in the first persistence diagram. Corresponding
to each point in the diagram, the computation of persistence
also returns an associated closed curve of edges (1-simplices)
called a 1-cycle which represents a non-trivial element in the
first homology group H1(DCr(X)) with coefficients in Z2.
The 1-cycle is displayed in red in the figure to the left and
has the property that it surrounds the non-trivial hole which
is identified by the cycle. For more details, see [4], [16].
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Fig. 2: Persistent homology analysis for a point-cloud X ⊂ R2 where
samples are given by vertices (black dots) of the depicted simplicial
complex. The union of balls-space Xr for r = 0.1 as illustrated by blue
discs is approximated by the gray and black simplicial complex DCr(X).
We use the first persistence diagram shown on the right to identify a radius
parameter r = 0.1 such that Xr contains a single hole (there exists just one
point (x, y) in the diagram with x 6 r and y > r. The hole corresponds
to a computed collection of 1-simplices (a 1-cycle) displayed in red which
surround the identified hole.

Winding Numbers: Given a continuous curve γ :
[0, 1] → R2 − {0}, where (r(t), θ(t)) ∈ R>0 × R denote
continuous polar coordinates of γ, we define

W (γ) =
1

2π
(θ(1)− θ(0)).

If γ is a closed curve, W (γ) ∈ Z is called the winding
number and measures the total number ot times γ winds
around the origin (with sign). In Cartesian coordinates
γ(t) = (x(t), y(t)) and for differentiable γ, we can compute
W by the integral formula W (γ) = 1

2π

∫ 1

0
ẏ(t)x(t)−ẋ(t)y(t)
x(t)2+y(t)2 dt

while if γ is a piecewise-linear curve W (γ) can be computed
by an explicit formula involving tan−1 [8].

For a point w ∈ R2 and a continuous curve γ : [0, 1] →
R2−{w}, we define the winding around the winding center
w by W (γ,w) = W (γ − w), where γ − w denotes the
translated curve t 7→ γ(t) − w for t ∈ [0, 1]. For x ∈ R2,
π1(R2−{x}) = Z and W in fact provides an isomorphism,
mapping any closed curve in R2−{x} to an integer. Winding
numbers have been used classically, e.g. in complex analysis
(Cauchy’s residue theorem). We will use the following result:

Lemma 2.1: Let S = {w1, . . . , wk} ⊂ R2. And let α, β :
[0, 1] → R2 − S be continuous curves such that α(0) =
β(0) and α(1) = β(1). If there exists i ∈ {1, . . . , k} such
that W (α,wi) 6= W (β,wi), then α and β are homotopy
inequivalent.

Proof: We observe that the closed curve γ following
α from α(0) to α(1) and then β from β(1) = α(1)
backwards to β(0) = α(0) satisfies W (γ,wi) = W (α,wi)−
W (β,wi) 6= 0. Therefore γ is a non-trivial element of
π1(R2 − {wi}) and hence α, β are homotopy inequivalent
in R2 − {wi}. Since R2 − S ⊆ R2 − {wi} this implies that
α, β are homotopy inequivalent in R2 − S also.

III. METHODOLOGY

We now formalize the planning problem and propose to
determine a collection of homotopy inequivalent trajecto-
ries between given initial and terminal positions, x, y ∈
Cf by considering a purely sampling-driven approach. To
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accommodate high-dimensional spaces Cf , we propose to
utilize a finite collection of topological task projections
Π1, . . . ,Πk : Cf → R2 to identify non-trivial topological
information about the fundamental group πi(Cf ). We now
discuss how such projections Πi can be defined and identi-
fied by means of persistent homology before focussing our
Winding-Augmented RRT and RRT* algorithms.

Topological Task Projection and Winding Centers: We
observe that Lemma 2.1 is useful in order to distinguish
homotopy classes in a general 2D free configuration space
Cf ⊂ R2 if we can identify suitable representative points
S = {w1, . . . , wk} ⊂ R2 − Cf . In order to generalize this
idea to higher dimensions, we observe:

Lemma 3.1: Let X,Y be topological spaces and let Π :
X → Y be a continuous function. Consider two continuous
curves α, β : [0, 1]→ X such that α(0) = β(0) and α(1) =
β(1). Suppose that the curves Π ◦ α,Π ◦ β : [0, 1]→ Y are
homotopy inequivalent in Y . Then α, β must be homotopy
inequivalent in X .

Proof: Suppose there was a homotopy H : [0, 1] ×
[0, 1] → X , H(s, 0) = α(s), H(s, 1) = β(s) for all s ∈
[0, 1], then (s, t) 7→ π(H(s, t)) yields a homotopy between
π ◦ α and π ◦ β, which leads to a contradiction.
The above lemma opens a possibility to detect homotopy
inequivalence by means of continuous maps Π : Cf → R2.
However, this approach is only feasible if Π(Cf ) contains
non-trivial homotopy classes of curves which we can test by
considering π1(Π(Cf )):

Definition 3.2: For a path-connected topological space Cf ,
let Π : Cf → Rn be a continuous map such that π1(Π(Cf ))
is non-trivial. We call Π an n dimensional topological task
projection of Cf .
In the present work, we utilize 2-dimensional topological
task projections. Since H1(Π(Cf )) 6= 0, computed over finite
field coefficients implies that π1(Π(Cf )) is non-trivial, we
utilize the computationally more amenable first homology
group H1(Cf ) to test whether a map Π : Cf → R2 is in fact
a topological task projection. While it might be possible to
compute H1(Π(Cf )) when Π(Cf ) is analytically determined,
we will work under the assumption that we are only able to
obtain samples in Cf .

Topological Task Projection Identification: Given a
collection of samples X ⊂ Cf and a continuous candidate
map Π : Cf → R2, we would like to evaluate whether
H1(Π(Cf )) is non-trivial. We recall the following manifold
reconstruction result of Niyogi:

Theorem 3.3 (Niyogi [15]): Let X = {x1, . . . , xn} ⊂ Rd
such that X is r

2 -dense and let M ⊂ Rd be a compact
Riemannian manifold with condition number τ . Then for
any r 6

√
3
5τ , Xr deformation retracts to M . Therefore the

homology of M is isomorphic to the homology of Xr.
In the above, the condition number τ encodes the tame-

ness of M , quantified in local and global curvature condi-
tions. Thus, if we can obtain a sufficiently dense sample
X = {x1, . . . , xn} ⊂ Cf such that the projected sample
Y = Π(X) satisfies the conditions above, H1(Π(Cf )) =
H1(Yr) = H1(DCr(Y )) for appropriate r and Yr =

0 0.5
0

0.5

Fig. 3: Identification of winding centers with persistent homology. Top:
Collision free samples (in blue) and simplicial approximation of Xr at
r = 0.05 where two holes are identified by two points in the first persistence
diagram shown to the right. Each point of the two red points yields a 1-
cycle shown as a red closed curve in the bottom row. The 2-boundary
corresponding to each 1-cycle yield triangles in the interior of the 1-cycle.
The triangles in each 2-boundary with filtration larger than r yield green
approximations of obstacles. While 1-cycles may enclose more than a single
hole, there exists a unique triangle of maximal filtration index/filtration value
for each corresponding 2-boundary. For each 1-cycle this triangle is shaded
in dark green in the bottom figures. The barycenter of each is chosen as
a winding center for the corresponding obstacle (one blue point for each
figure in the bottom row).

∪ni=1Br(Y ). Since τ is however typically not computable
in practice, we rely on the identification of noise-robust
homological information and appropriate radii r > 0 by
means of the persistence diagram of H1(DCr(X) for all r >
0. Persistent homology generators with large persistence have
been proven to provide features that are robust to noise, see
[5]. In summary, to evaluate a candidate projection Π : Cf →
R2 in practice, we compute a sample X ⊂ Cf and determine
the first persistence diagram of Y = Π(X). Given a threshold
ε > 0, we deem the projection to be a topolological task
projection if there exist points in the persistence diagram
with persistence larger than ε. For example, if we obtain
samples Y ⊂ R2 and a persistence diagram with a single
point with large persistence as in Fig. 2, we empirically deem
the projection a valid topological task projection.

Winding Centers: Given a topological task projection
Π : Cf → R2, we will require representative winding points
w1, . . . , wk ∈ R2 such that Π−1(wi) lies in the collision
space for each i ∈ {1, . . . , k}. To identify such points, we
first attempt to identify a fixed filtration value r > 0 such that
only points of large persistence are alive in Yr ' DCr(Y ).
When H1(Yr) is n-dimensional, we compute a resulting
basis of 1-cycles c1, . . . , cn such that [c1], . . . [cn] form a
basis of H1(Xr). This basis can be extracted from the
standard matrix reduction algorithm for persistent homology,
for example. Since H1(XR) = 0 for sufficiently large R > 0,
we can furthermore extract a collection of 2-boundaries
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Fig. 4: Left: Planning problem from xstart to xend with central winding
point w and disc obstacle in blue. Right: Expansive Tree (our WA-RRT*)
in Winding Covering Space modulo 2. The z-coordinate coresponds to
the winding angle around w and is taken modulo 2, so that the ends of
the spiral are ‘glued’ together. The blue trajectory in the covering space
jumps from the top layer of the covering space to the bottom layer and
we can distinguish between the two red and green homotopy inequivalent
trajectories since they have differing terminal z-coordinate in the winding
augmented covering space. Path length in the winding augmented space
is given by the path length of the resulting projection onto Cf . Note that
geodesics between two points xstart, xgoal in the winding augmented
space project to geodesics in the original space only as long as the total
winding as long as the winding angle difference between xstart, xgoal does
not exceed ±0.5 (corresponding to an polar coordinate difference of ±π).

b1, . . . , bn, such that ∂bi = ci and ri > r [16], [16]. Each 2-
boundary intuitively corresponds to the triangulated surface
interior to each 1-cycle (see Fig 3).

By considering the subset of triangles in bi that have
filtration values larger than r, we obtain a geometric repre-
sentation of the holes in Yr as shown in green in Fig. 3. While
cycles can surround more than a single obstacle as in the
case of the bottom left cycle, each obstacle contains a unique
triangle of maximal filtration index whose barycentric center
we use as a winding point for the obstacle. This triangle is
shaded in dark green in the figure and the resulting winding
points are displayed in blue.

Planning with Winding Augmentation: Let us now
consider the topological motion planning problem. We first
discuss the 2-dimensional case before proposing our algo-
rithm utilizing topological task projections. Given a 2D-
configuration space Cf ⊂ R2 and a collection of points
w1, . . . , wk, Bhattacharya et al. [2] consider representing
Cf by a fixed graph representation and to plan trajectories
in a type of covering space over the graph in Cf to plan
homotopically distinct trajectories. For each trajectory γ :
[0, 1] → Cf , a point γ(t) = (x(t), y(t)) on the graph is
represented by an augmented topological coordinate: γ̂(t) =
(x(t), y(t),W1(t), . . . ,Wk(t)), where Wl(t) = Wl(γ([0, 1]))
mod mk denotes the winding angle from γ(0) to γ(1)
modulo a chosen integer mk > 2.

We observe now that this construction can be generalized
to higher dimensions by using topological task projections.
Furthermore, we observe here that we can utilize this repre-
sentation not just on a fixed graph, but for any curve in Cf .
We hence propose to instead dynamically explore a winding
augmented space based on task-projections with RRT-based
incremental algorithms:

Projections and Winding Augmentation: Consider a
configuration space Cf given by a topological space, and

a number of k topological task projections Π1, . . . ,Πk :
Cf → R2 and corresponding winding centers wi,1, . . . , wi,ni

for each projection Πi and consider integers mi,j > 2 for
each winding center. Denote by M =

∑k
i=1 ni the total

number of winding centers across all projections. Consider
an initial configuration x0 ∈ Cf and a continuous curve
γ : [0, 1] → Cf , and define Wi,j(γ, t) to be the total wind-
ing angle W (Πi(γ([0, t]))) of the projected curve segment
Πi(γ([0, t])) ⊂ R2 under the projection Πi : Cf → R2 mod-
ulo mi,j and with respect to the winding point wi,j ∈ R2.
We define the augmented winding coordinates of γ(t) ∈ Cf
to be γ̂(t) = (γ(t),W1,1(γ, t), . . . ,Wk,nk

(γ, t)) ∈ Cf × Z .
where Z = [0,m0,0)× . . .× [0,mk,nk

) ∈ RM . We observe
Lemma 3.4: Let α, β : [0, 1] → Cf be two curves such

that α(0) = β(0) = x0 and α(1) = β(1), but α̂(1) 6= β̂(1).
Then α and β are homotopy inequivalent.

Proof: We have Wi,j(α, 1) 6= Wi,j(β, 1) for some i ∈
{1, . . . , k} and j ∈ {1, . . . , ni}. But then, by Lemma 2.1, the
projections Πi(α) and Πi(β) are homotopy inequivalent. By
Lemma 3.1, this implies that α, β are themselves homotopy
inequivalent.
Note that since we consider the winding coordinates modulo
mi,j , our lifted coordinates can only distinguish between
curves winding up to mi,j−1 times around each correspond-
ing winding point wi,j – however, as a result, the space of
all possible lifting coordinates is bounded and of volume that
can be controlled by setting the size of mi,j .

From the above considerations, we now propose to use
winding augmented coordinates to perform incremental mo-
tion planning, using RRT based algorithms in dimension 2
and higher. Fig. 4 visualizes an example application of WA-
RRT* an RRT* based algorithm in the trivial case with a
2-dimensional space Cf and a single winding point and task
projection equal to the identity map, while Fig. 1 illustrates
a 3 dimensional case with two linear task projections.

IV. ALGORITHMIC DETAILS AND IMPLEMENTATION

Given Cf , we denote our winding augmentation by A =
(Π1, . . . ,Πk, (w1,1,m1,1), . . . , , (wk,nk

,mk,nk
)), where Πi :

Cf → R2 denote topological task projections, wi,j the jth
winding center for Πi and mi,j denotes the integer modulo
which we consider winding around wi,j . We consider an
initial state q0 ∈ Cf and a goal region Ω ⊂ Cf that we
would like to reach via a path from q0.

Winding Augmented RRT (WA-RRT): As for the stan-
dard RRT motion planner [13], WA-RRT consists of a main
for loop shown in Alg. 1 which incrementally constructs
a tree. However, our tree (V,E) consists of vertices V ⊆
Cf×Z and edges E ⊆ Cf×Z augmented by winding angles
with respect to all chosen winding centers wi,j in Z . Alg. 1
is similar to the RRT algorithm with goal set Ω and goal
bias PGoalBias but at each iteration, we sample both a state
qrand ∈ Cf , either from the goal set Ω or uniformly from
Cf and an appropriate winding coordinate tuple wrand ∈
Z . To sample winding coordinates for a new point qrand,
RandomWindingLayer(q0, qrand) determines, for each i, j
the winding λi,j of the straight line segment from Πi(q0)
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Algorithm 1 WA-RRT(q0, Ω, A = ({Πi}, {wi,j ,mi,j}))

1: E ← ∅; w0 ← 0 ∈ RM ; x0 ← (q0, w0); V ← {x0}
2: for i = 1 . . . N do
3: if with some probability PGoalBias then
4: qrand ← RandomElement(Ω)
5: else
6: qrand ← RandomState(Cf )
7: end if
8: wrand ← RandomWindingLayer(q0, qrand, A)∈ Z
9: xrand ← (qrand, wrand)

10: Extend-WA-RRT((V,E), xrand, A)
11: end for

Algorithm 2 Extend-WA-RRT((V,E), xrand, A)

1: xnearest ← Nearest((V,E), xrand, A)
2: xnew ← Steer(xnearest, xrand, A)
3: if CollisionFree(xnearest, xnew) then
4: V ← V ∪ {xnew};E ← E ∪ {(xnearest, xnew)}
5: end if

to Πi(qrand) with respect to wi,j ∈ R2 and adds a random
integer in [0,mi,j−1] (chosen with equal probability) to each
λi,j before returning the resulting tuple wrand of winding
coordinates modulo mi,j . The purpose of this procedure is
to yield random samples xrand = (qrand, wrand) covering
the winding augmented covering space. In the simplest case
of a single winding coordinate as in Fig. 4 and w1,1 = 2,
the procedure first selects a random sample from Cf and
then chooses a ‘height level’ in {0, 1} that is added modulo
2 to the winding from q0. The Extend-WA-RRT method is
structurally identical to the RRT extension method, however
since we are passing tuples xrand = (qrand, wrand) we need
to adapt the function calls to consider points in the winding
augmented covering space and in particular, the Nearest
function. The purpose of Nearest((V,E), xrand) is to return
a nearest vertex xnearest ∈ V to xrand = (qrand, wrand)
in the winding augmented space. Since a computation of
geodesic distances in the full winding space is challenging
between points whose winding difference exceeds 0.5, we
implemented this method instead by returning the Cf -nearest
neighbor only within a chart (see also Atlas RRT [9])
defined by the set N(qrand, wrand,A) of vertices that have
a winding difference smaller than 0.5 (i.e. < ±π in polar co-
ordinates) to any of the winding coordinates of qrand, where
N(qrand, wrand) = {(q, w) ∈ V : maxi,j |wi,j − wrandi,j | <
0.5}. The distance between xrand = (qrand, wrand) and any
point x = (q, w) in N(qrand, wrand) is then given by the
distance of qrand and q in Cf . The nearest neighbor query
when restricted to N(qrand, wrand) hence reduces to the
standard nearest neigbor problem in Cf . When no neighbor
exists within this set, the algorithm proceeds by resampling
a new xrand. For a returned nearest neighbor with winding
differences less than 0.5, Steer returns a new state by locally
steering towards xnew = (qnew, wnew) as in the standard
RRT Steer method but also returns the winding coordinates
wnew ∈ Z by adding the winding angle of the new trajectory
segment to the winding coordinates of xnearest in each
topological task projection. CollisionFree(xnearest, xnew),
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Fig. 5: Top: We display the mean ratio of identified winding centers (y-
axis) under the projection Π1 in C(r) corresponding to persistence intervals
with persistence of at least r/2 as the number of samples (x-axis) and radius
r is changed. Bottom: mean number of false positives under the projection
Π2 as defined by the ratio of times a persistence interval with persistence
larger than r/2 exists under the projection Π2. Both ratios converge as the
number of samples increases.

for xnew = (qnew, wnew), xnearest = (qnearest, wnearest)
returns True if the path segment from qnearest to qnew is
collision free.

Winding Augmented RRT* (WA-RRT*): WA-RRT* is
based on RRT* and also utilizes the WA-RRT main loop,
but then calls a modified Extend method that at the no-
tational level is identical Extend-RRT* of RRT* (please
see Alg. 4[11]). Instead of a state in Cf , our xrand
however lies in the winding augmented covering space
and we utilize the previously discussed modifications of
CollisionFree, Nearest and Steer. RRT* further requires a
method Near((V,E), xnew, |V |)) returning all nearest neigh-
bors within a ball of radius ε(|V |) depending on |V | [11].
We adapted Near to return all vertices of distance less than
ε(|V |) and lying within the set N(xnew). Recall here ε(|V |)
indicates a radius parameter that asymptotically tends to zero
as the number of vertices |V | is increased [11].

V. EXPERIMENTS

Topological Task Projections and Winding Centers

Sample and obstacle size dependence: We investigate
the reliability and parameter dependence of our topological
task projection and winding angle detection algorithm. De-
note by C(r) = {x = (x1, . . . , xd) ∈ [−1, 1]d : x21 + x22 >
r2} ⊂ Rd, B(r) = {x = (x1, . . . , xd) ∈ [−1, 1]d : ‖x‖ 6
1, x21 + x22 > r2} ⊂ Rd, the unit cube and ball with
a cylindrical hole of radius r along the x1, x2 axes. We
first considered d = 5, varied r ∈ {0.03, 0.05, 0.1, 0.2}
and sampled between n = 100 and n = 10000 samples
uniformly from C(r). We study the linear projections Π1,Π2

of C(r) to onto (x1, x2) by Π1 and onto (x2, x3) by Π2.
Note that Π1 reveals the cylindrical void, while Π2 can only
result in false positives as the hole is not revealed by Π2.
For 50 trials per parameter setting, Fig.5 displays the mean
fraction of times a winding center with persistence larger
than r

2 was correctly identified in the projection of C(r)
under Π1 as the radius r and the number of samples is
varied. The bottom part displays the analogous results for
Π2 as an approximation to the false positive rate. As the
number of samples increases to 10000 we obtain a success
rate of one and false positive rate of zero in both cases.
The mean computation time for computing the persistence
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Fig. 6: Success ratio of recovering a winding coordinate with persistence
larger than 0.1 by means of random orthogonal linear task projection from
C(r) (top figure) and B(r) (bottom figure) for dimensions 2 to 6 (x-
axis). While on average 26% of projections from C(0.9) still revealed the
cylindrical hole, none of the 100 trials per setting revealed the hole for B(r)
for dimensions larger than 4.

diagram and winding centers increases from 0.9ms for 100
samples to 0.36s for 10000 samples.

Choosing projection candidates: We now investigate
identifying a topological task projection by random linear
orthogonal projections from C(r) and B(r) to R2. For 10000
samples from C(r),B(r) and in 100 trials per parameter
setting respectively, Fig.6 displays the fraction of times a
persistence interval with persistence larger than 0.1 was re-
covered as the dimension d is varied. Since C(r) degenerates
to a thin ring as r tends to one, we can recover the hole even
for d = 6, while for C(r) many projections do not reveal the
cylindrical hole in higher dimensions (bottom figure), and
we were not able to find a projection with persistence larger
than 0.1 over 100 trials for dimensions larger than 4. This ex-
emplifies that the probability of determining topological task
projections in a randomized manner is highly configuration-
space dependent. In practice, the use of domain knowledge,
such as natural projections along the ith and jth joint-angles
of a robotic system as well as non-linear maps to end-effector
positions can serve as an alternative approach to random
search for finding an initial candidate set of projections.

Planning with multi-joint planar linkages

We evaluate our WA-RRT/RRT* algorithms using simu-
lated planar linkages that are attached to the origin and with
2 6 d 6 10 degrees of freedom. The linkages consist of a
segment of length 1.5 followed by a segment of length 1
and between 0 and 8 segments of length 0.5. The arm is
placed in an environment with the obstacles displayed by
disks in Fig.7 and arm self-collisions as well as collisions
with the obstacles are disallowed. Joint angles are denoted by
θ = (θ1, . . . , θd) and θj ∈ (−π, π). From an initial position
with θstart = (π4 , 0, . . . , 0) to θgoal = (−π4 , 0, . . . , 0), the
arm is required to move from a straight position just left of
the top obstacle to a straightened position just right of the
top obstacle. Fig. 7 illustrates one such arm for d = 6 and
30.000 samples from Cf are visualized.

Homotopy Classes for Planar Linkages: Note that even
for simple planar linkages, there exists a wealth of distinct
topological task projections and homotopy classes. Firstly,
if we consider a goal region defined by Ω = Π−1(x),
where Π : Cf → R2 denotes the map to the endeffector
position, winding coordinates around any winding point in
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Fig. 7: Planar 6DOF robot arm from our family of 2-10 DOF arms
and 30.000 sampled joint-configurations displayed by color coded end-
point positions of the resulting link placements (top left). Bottom left: first
persistence diagram for these samples reveals existence of three holes in the
(θ1, θ2) projection Π. The projected samples X correspond to vertices of
DC0.1(X) shown in the top right figure. The three large colored points in
the persistence diagram correspond to the corresponding identified colored
winding centers in the top right. Bottom right: Projections of WA-RRT*
trajectories in (θ1, θ2)-coordinates for a 2 DOF arm, illustrating different
found homotopy classes. Please see the supplementary video for animations.

the interior of an obstacle determines homotopy inequivalent
trajectories in end-effector space that wind differently around
the obstacle, as illustrated in the right part of Fig.9. Similarly,
if self-collisions are allowed and without joint-limits (e.g.
corresponding to a 3D robot with joints stacked along z-
coordinate), we can consider, for i 6= j the joint angles
(θi, θj) lying on a torus T2 which can be embedded in R3 by
the standard Euclidean embedding and then projected onto a
plane revealing the hole in the torus. The composed map
Πi,j : Cf → R2 is a topological task projection with a
winding center at the origin and trajectories planned with
Πi,j allow us to control the number of times the i-th link
rotates around the the j-th link when moving between two
points in Cf . For animations of some examples of homotopy
inequivalent motions planned with our approach, please see
the supplementary video.

For our main experimental evaluation, we focus on the
complexity of our approach in various dimensions and chose
to investigate the projection Π : Cf → R2 onto (θ1, θ2)
(Fig.7). For this projection Π, each hole corresponds to one
of the three obstacles in Cf and a trajectory traversing the
hole to the top in (θ1, θ2) corresponds to rotating the second
link to the left as we pass the narrow passage created by
the obstacle while passing below moves the second link
to the right as the obstacle is passed. Winding around a
hole clockwise corresponds to passing the narrow passage
near the obstacle with the second link angled to the right
and then returning, passing the passage with the second
link angled to the left. Fig.7 displays found examples from
different homotopy classes in the 2DOF case, for higher
DOF, the remaining links fold to avoid the obstacles, but the
topological winding under Π only depends on the (θ1, θ2)
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Fig. 8: Left: We investigated the mean time in seconds (y-axis) to find
k homotopy inequivalent solution trajectories (x-axis) with WA-RRT for
mi,j = 2 (left) and the three found winding centers for planar linkages
with 2 to 10 DOF and averaged over 5 trials. While, for d = (2, 3, 4, 5),
all 8 classes were found in (0.36, 0.55, 0.48, 1.97) seconds on average, for
d = 6, 8, 10 (black, blue, red) we obtain the performance shown in the left
plot for the chosen maximal step size of 200 and goal bias 0.01. Middle
figure: For mi,j = 3, the winding augmented search space increases in
volume and there are up to 33 = 27 homotopy classes. The figure displays
the mean time over 5 trials to find k homotopy inequivalent trajectories in
dimensions d = 2, 3, 4, 5, 6, 8, 10 with plots steapening with the dimension.
Right: A projection of a found 10DOF arm trajectory for mi,j = 3 which
winds more than once around the rightmost winding point.
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Fig. 9: Left: Typical incremental path length (y-axis) reduction of WA-
RRT* against runtime in seconds (x-axis) illustrating how paths in separate
homotopy classes can converge to distinct path lengths under WA-RRT*.
In this experiment, we considered a 4DOF linkage, ε(1) = 0.005 and our
three winding centers resulting in 23 = 8 homotopy classes (mi,j = 2).
Right: Our approach can also be applied to obtain homotopy classes under
forward-kinematics. A 4DOF planar linkage and a winding center w in R2

corresponding to the cross in the smallest obstacle and a goal set Ω =
Π−1(x) is used. Here, x denotes the blue point to the right of the red cross
and Π denotes the end-effector forward kinematics map. Using Π, w and
m1,1 = 2, we obtain two solution trajectories of the arm that are homotopy
inequivalent in R2 as visualized by end-effector trajectories in red and blue.

coordinates.
Complexity of WA-RRT: For a maximal RRT stepsize of

200, collision tests in steps of 0.1, a linear steering function
in joint space and with a goal bias of 0.01, we studied the
mean time to determine the k homotopy classes for the three
winding points for our robot arms for various dimensions
using our C++ implementation of WA-RRT/RRT* on an Intel
i7 laptop with 8GB RAM. Fig. 8 (left) displays the result
for m1,1 = m1,2 = m1,3 = 2 winding layers per winding
center (23 = 8 classes). For mi,j = 3, we obtain at most
33 = 27 classes in the middle part of of Fig.8. In this cases
some classes are more difficult to find due to the increased
volume of the winding augmented space for mi,j = 3.

Convergence of WA-RRT*: WA-RRT* discovers trajec-
tories at the same iteration as WA-RRT for identical samples,
but additionally optimizes the trajectory incrementally. Fig.9
displays convergence of the length of various homotopy
classes for a 4DOF planar linkage and with an initial RRT*
neighborhood radius of ε(1) = 0.005.

VI. CONCLUSIONS

We have introduced topological task projections (TTPs)
and a persistence based approach to detect winding centers
for high-dimensional homotopy aware motion planning. We
introduced two incremental algorithms, WA-RRT and WA-
RRT* which enable us to plan for homotopy inequiva-
lent trajectories and demonstrated our approach with 2-
10 DOF planar linkage resulting in a novel demonstration
of topological motion planning in configuration spaces of
dimension higher than 4. In future work, we will investigate
the probabilistic completeness of the proposed algorithms.
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