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Abstract

For many industrial parts, their natural resting
pose differs from the orientation desired for as-
sembly.  We have found that it is possible in
many cases to compensate for this difference
using a parallel-jaw gripper with fixed orienta-
tion.  The idea is to arrange contact points on
each gripper jaw so that the part is reoriented
as it is grasped. We analyze the mechanics of
compensatory grasping based on a combination
of toppling, jamming, accessibility, and form
closure and describe an algorithm for the design
of such grasps based on the constrained top-
pling graph.

1 Introduction

Industrial parts on a flat work-surface will natu-
rally come to rest in one of several stable orien-
tations, but it is often necessary to rotate a part
into a different orientation for assembly [1]. This
paper proposes an inexpensive (minimalist)
method for compensating for these differences
in orientation by rotating the part to a desired
orientation during grasping. As illustrated in
Figure 1, the part is initially in stable orientation
(a); it then is rotated by the gripper to orientation
in (b) for assembly onto the peg. We refer to this
as a compensatory grasp. We achieve this using
a simple parallel-jaw gripper with four tips as
shown in Figure 2. First, toppling tip A and con-
straining tip A’ make contact with the part and
topple it from the initial stable orientation to the
desired orientation.

COM

(a) (b)

Figure 1. A compensatory grasp.

This process is referred to as “constrained
toppling”.  Then, as soon as the part reaches the
desired orientation, left fixturing tip B’ and right
fixturing tip B make contact, stop the part’s ro-
tation, and securely grasp it. This process is
simply referred to as grasping. Note that the
pivot point, C, maintains contact with bottom
surface at all times.

These four tips and the parallel jaw gripper
are designed to be easily reconfigurable to han-
dle different industrial parts, and low in cost,
footprint and weight.

Figure 2. Terminology.
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2 Related Work

Grasping is a fundamental issue in robotics; [2]
provides a useful review of research on the
topic.

The two most important classes of grasps
are known as force closure and form closure.
The difference between these two is that the lat-
ter is stable regardless of the external wrench
applied to the object. In 1990, Markenscoff et al.
[3] proved, by infinitesimal perturbation analy-
sis, that four hard fingers are necessary and suf-
ficient to achieve form closure of a 2-D object in
the absence of friction. The parallel jaw grippers
we propose provide four contact points but the
location of tips B and B’ are dependent on the
locations of A and A’ respectively.

 Mason [4] was the first to study the role of
passive compliance in grasping and manipula-
tion. Brost [5] applied Mason’s Rule to analyze
the mechanics of the parallel-jaw gripper for
polygonal parts moving in the plane.  He showed
that it is possible to compensate for errors in part
orientation using passive push and squeeze me-
chanics. Our paper considers grasp mechanics in
the vertical plane.

  Trinkle and Paul [6] studied grasps that lift
parts while reorienting them in the vertical
plane. Based upon the geometry of a grasp and
quasi-static analysis, the authors generated
liftability regions, which defines the qualitative
motion of a squeezed object. They predicted the
motion by solving the forward object motion
problem that is the dual of a nonlinear program
employing Peshkin’s [7] minimum power prin-
ciple. The pre-liftoff phase analysis of Trinkle
and Paul’s paper is related to our constrained
toppling phase analysis in that we both applied
graphic method to analyze the interaction among
a planar object, a supporting surface, and a grip-
per in the plane containing gravity. One impor-
tant difference is that we focus on the parallel-
jaw gripper and consider how jaws can be de-
signed to facilitate grasping using only transla-
tional motion.

Another approach to reorienting parts is
dextrous manipulation, where the part is reori-
ented as it is held in force closure using con-
strained slip. Rus [8] proposed a finger tracking
technique to generate rotation of grasped objects
with sliding.  Hong et al. [9] developed a plan-

ing algorithm to acquire a desired grasp by using
a finger gait technique, which allows reposition
of fingers while maintaining a grasp. Fearing
[10] considered both sliding and rolling ma-
nipulation, and developed grasp planning based
upon local tactile feedback, geometry, and fric-
tional constraints. Bicchi and Sorrentino [11]
analyzed the effect of rolling. Compensatory
grasps combine rolling and sliding. Another ap-
proach was studied by Rao et al. [12]. They pro-
posed picking up a part using a parallel gripper
with a pivoting bearing, allowing the part to
pivot under gravity to rotate into a new configu-
ration.

Our work was motivated by recent research
in toppling manipulation. Lynch [13] gave suffi-
cient mechanical conditions for toppling parts on
a conveyor belt in term of constraints on  contact
friction, location, and motion. In [14], we de-
scribe the toppling graph to represent the me-
chanics and the geometry of toppling
manipulation. In this paper, we combine top-
pling mechanics with an analysis of jamming,
accessibility and form closure.

3 Problem Definition

Given the planar projection of an n-sided convex
polyhedral part P, how can we rotate the part to
a desired orientation and grasp it securely?
There are two phases involved in this process:
constrained toppling and grasping.  We are
given as input: the part’s center of mass (com),
uncertainty in vertex location, ε, the coefficient
of friction between the part and the surface, µb,
and the coefficient of friction between the part
and the gripper, µt.  Let θ denote the orientation
of the part from the +X direction; initially θ =0.
Let θd denote the angle at the desired orienta-
tion.

During the constrained toppling phase, only
gripper tips A and A’ make contact with the
part. We require that these two tips cause the
part to rotate counter-clockwise without causing
C to lose contact with the surface.  From the
toppling analysis in section 4 we are able to
show that on a given edge, the rolling conditions
are more easily satisfied if A’ is lower, i.e. dA’ is
smaller.  This will in general produce a finite set
of possible dA’ candidates for the part. The
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height of A, dA, can then be determined by the
graphical analysis described in section 4.

The grasping phase occurs when the part has
been toppled to θ = θd. During grasping the fix-
turing gripper tips, B and B’, make contact with
the part.  We require that the contacts corre-
sponding to A, A’, B, and B’ create form-closure
on the part, even when friction is disregarded.
Since dA and dA’ are already know, we must de-
termine dB and dB’ such that form-closure is
achieved.  We additionally require that the tips B
and B’ do not make contact with the part before
θ = θd.  This requirement is essentially a form of
accessibility constraint and further limits the
possible values of dB and dB’.  Finally, because A
and B are fixed on the same jaw of the gripper
(and likewise A’ and B’) the geometry of the
part along with the relative heights of A and B
will determine the relative x offset between A
and B, which we denote xAB.

The final output of the analysis is the height
of each of the four tips, dA, dA’, dB, and dB’, as
well as the relative x offset between tips on each
jaw, xAB, xA’B’ (see Figure 2). This set of vari-
ables determines the gripper design that will ro-
tate the part to the desired orientation.
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Figure 3.  Notation.

Figure 3 shows the notation used in our con-
strained toppling analysis.  The part sits on a flat
worksurface in a stable orientation. The work-
surface friction cone half-angle is αb = tan-1µb,
and the gripper tip friction half-angle is αt = tan-

1µt.  The contact point between the part and the
worksurface is called a pivot vertex, denoted C
in figure 2, and taken to be at (0,0).  The COM is
a distance ρ from the origin and angle η from

the +X direction at its initial orientation. The
constraining tip, A’, is a distance dA’ from the
bottom surface.  We denote the vector at the left
edge of the toppling tip friction cone as fl and
the right edge as fr.

We consider P as shown in Figure 3. Start-
ing from the pivot, we consider each edge of the
part in counter-clockwise order, namely e1, e2,
… , en. The edge ei, with vertices vi at (xi, zi) and
v(i+1) at (x(i+1), z(i+1)), is in direction ψ i from the
+X axis.

We assume that the part and the gripper are
rigid, and also that the part’s geometry, the lo-
cation of the COM, and the position of the jaws
are known exactly. We also assume that the con-
straining tip and the toppling tip of the gripper
contact the part simultaneously, and the motion
of the part and is slow enough that we can ig-
nore inertial effects.

4 Constrained Toppling Analysis

We first consider the constrained toppling of the
part.  We divide constrained toppling into a
rolling phase and a settling phase. Our analysis
involves the graphical construction of a set of
functions that represent the mechanics of these
phases.  In [14], we introduced the “constrained
toppling graph”, which includes the radius func-
tion, vertex height functions, constrained rolling
height functions, and constrained jamming
height functions.

The radius function, R(θ), is the height of
the COM above the surface as the part is rotated
through θ =0 ~2π.  The local minima of the ra-
dius function indicate the stable orientations of
the part [15], while the local maxima are unsta-
ble equilibrium orientations. In this paper we
will consider only the range of angles corre-
sponding to rotation from one single stable ori-
entation to the next. We assume that the part can
be toppled into that orientation before grasping.
This range consists of the angles θ = 0→ θn

where θn is the angle of the ext stable orienta-
tion. Additionally, θt represents the unstable
equilibrium angle in that range.

The vertex height function, Vi, gives the
height of vertex i above the surface as the part
rotates. Each vertex of the part has a vertex
height function. We truncate Vi in two functions,
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Vir and Vil, representing the height of vertex i
viewed from the +X and -X directions respec-
tively.  Using the vertex height functions we can
determine which edge a gripper tip is in contact
with for any θ and height.

The constrained rolling height function,
Hi(θ), is the minimum height at θ that the top-
pling tip, A, in contact with edge ei must be in
order to roll the part given the height of A’.
Hi(θ) is determined on the range θ = 0→ θt.  At
θ = θt the part is no longer being rolled, but
rather is now settling under its own weight.  The
constrained jamming height function, Ji(θ), indi-
cates a range of dA values that may cause jam-
ming during the settling process. Ji(θ) is
determined on the range θ = θt→ θn.

All of these functions are dependant on θ
and map from part orientation to distance:
S1→ ℜ +, where S1 is the set of planar orienta-
tions. The combination of these four functions
forms the constrained toppling graph from
which we can height of the toppling tip A re-
quired to guarantee toppling.

4.1 Constrained Rolling Height Function
During rolling, the part rotates about C.

Friction between the part and the bottom surface
must not prevent C from sliding to the right, and
friction between the part and the tips must not
prevent the part from slipping relative to the tips.
Additionally, the system of forces on the part:
the contact force at the bottom surface, the con-
tact force at the tips, and the part’s weight, must
generate a positive moment on the part with re-
spective to C.

The constrained rolling height function,
Hi(θ), is the minimum height at θ and a given d
that A in contact with edge ei must be in order to
roll a part. This height is determined as a func-
tion of θ based on the rolling conditions derived
using a graphical method from Mason [16].

As the part rolls, A’ could switch edges if a
contact edge is not long enough. In this paper,
we consider the situation that A’ keeps contact
with ei during the entire rolling phase, and the
same methodology can be applied for the case
where the contact switches edges (see [17] for
details).

Under the assumption that A’ keeps contact
with en, relative motion direction between the

part and A’ is uncertain, and it depends on an
angle, (ω+θ), where ω denotes the interior angle
of a part at C as shown in Figure 4. We study the
constrained rolling conditions based upon differ-
ent (ω+θ) ranges.

Let wi be the distance along edge ei as
shown in Figure 4.  Any point on ei can be ex-
pressed as (xi + wi cosψ i, zi + wi sinψ i).

fl
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Figure 4. Rolling Conditions (π > ω+θ > π/2).

Consider the case where π > ω+θ > π/2. In
such a case, rotation causes the contact between
the part and A’ to move away from C. To deter-
mine the constrained rolling height function, we
begin by constructing a triangle as shown in
Figure 4 with vertices P0, P1, and P2. P0 is deter-
mined by the intersection of the left edge of the
bottom friction cone and the left edge of the
constraining tip friction cone, and is at (xp0, zp0).
P1 is the intersection of the vertical line through
the com and the left edge of the bottom friction
cone, and is located at (xp1, zp1). P2 is the inter-
section of the vertical line through the com and
the left edge of the constrained tip friction cone,
and is located at (xp2, zp2).  From these defini-
tions we have:

xp0  = g – 
10PP  sinαb,                                 (1)

zp0  = - g/µb + 
10PP  cosαb,                      (2)

xp1 = g,                      (3)

zp1 = - g/µb,                                      (4)

xp2 = g,                      (5)
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zp2 = (d/tan(θ +ω) -g) / tan(ω+θ+αt),       (6)

where  g = ρ cos(η+θ),         (7)

10PP  = ( zp2 + ρ cos(θ +η)/µb) sin(ω + θ+αt)/
sin(ω + θ +αt - αb).         (8)

Consider a region of the X-Z plane defined
by linear edges. Let a primary region denote a
region such that toppling is guaranteed if every
force in the toppling tip friction cone makes a
positive moment about every point in the pri-
mary region. Therefore, the P0P1P2 triangle is the
primary region in this case.

For all forces in the toppling tip friction
cone to generate a positive moment about the
triangle, the left edge of the friction cone must
pass above the triangle; all other vectors in the
friction cone will pass higher. We find the height
sufficient to roll the edge by projecting lines
from P0, P1, and P2 at the angle of the left edge
of the pin friction cone, fl, until they intersect the
edge of the part. The intersection with the
maximum height of those three is the minimum
height sufficient to roll the part. Notice that such
a height also guarantees that C keeps touch with
the bottom surface.

Let 2wi denote the edge contact on ei where fl

passes exactly through point P2. We can show
through geometric construction that

2wi (θ) = ( xi sinθ +zi cosθ - zp2 - (xi cosθ - zi sinθ
- xp2)  tan(βil+ θ)) /(cos (θ+ψ i) tan(βil+θ) - sin
(θ+ψ i)),  (9)

where βil = ψ i + π/2 + αt.
Similarly, the edge contacts for fl passing

through P0 and P1 are given by 0wi(θ) and 1wi(θ).
The constrained rolling height function,

Hi(θ), is based on wi  which is the maximum of
0wi, 2wi, and 3wi in the rolling region 0 < θ < θt. wi
can be shown  to be
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Thus, the constrained rolling height function
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where Hi
*(θ) = xi sinθ  + zi cosθ  + wi sin(ψ i+ θ).

                                                               (14)

Following the same methodology, we find
Hi(θ) under the condition ω+θ = π/2 and π/2
>ω+θ > 0 (see [17] for details).

Figure 5. R(θ) vs. H2
*(θ), V2r(θ) and V3r(θ).

Figure 5 illustrates the functions R(θ), H2(θ),
V2r(θ) and V3r(θ) for the part in Figure 3 with
αt = 5°, αb = 10° and dA = 0.9cm. The disconti-
nuity point (θ =37°) of R(θ) represents the ori-
entation where e6 is on the bottom surface.
Notice that H2(θ), V2r(θ) and V3r(θ) are also dis-
continuous at θ =37°. When θ < 37°, V1 is C
and x2=4.1, z2=0, ψ 2=56°, η=46°, ρ=2.2, and
ω=143°-(180°-90°)=53°; When θ > 37°, V6 is C
and x2=4.6, z2=2.4, ψ 2=92°, η=55°, ρ=2.7, and ω
=89°. At angle θ any toppling tip at a height, h,
such that max(H2(θ),V2(θ)) < h < V3r(θ) will
instantaneously rotate the part. The graph indi-
cates that A can roll the part at any contact on e2

when 0<θ <θt.
Given a certain contact edge, a lower A’ re-

sults in a smaller primary region; thus, a lower A
will be able to topple the part. Therefore, the
best location of A’ on a contact edge is ε above
the lower vertex, i.e. A’ is as low as possible.
This reduces dA’ candidates to a finite set for the
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part. For each dA’, we may employ the graphical
analysis to find the feasible dA.

4.2 Constrained Jamming Height Function
We allow the part continue to rotate after it

has reached θt if θd > θt. We call this process
settling, and intend to determinate whether jam-
ming may occur in this process. The part may
jam while settling due to the frictional contact at
the toppling tip. We will be conservative and
eliminate any toppling tip height where jamming
may occur even though we cannot be certain it
will jam without further information. Note that
we consider the statics (not full dynamics) of the
settling process.

We only consider the situation where A’
keeps contact with ei during the entire settling
phase. More general cases can be derived from
the same methodology.

To determine the constrained jamming
height function we begin by constructing a pri-
mary region as shown in Figure 6. Notice that
there is no jamming if the constrained tip contact
is left of the part gravity line, i.e.,

      d tan(θ +ω) < ρ cos(η+θ).       (15)

 Otherwise, the primary region quadrilateral
with vertices P0, P1, P2 and P3.  P0 is the inter-
section of the vertical line through the part’s
com and the right edge of the constrained tip
friction cone, and is located at (xp0, zp0).  P1 is the
constrained tip contact at (xp1, zp1).  P2 is the in-
tersection of the left edge of the constrained
friction cone and the left edge of the bottom
friction cone, located at (xp2, zp2).  And P3 is the
intersection of the vertical line through the part’s
com and the left edge of the bottom friction
cone, located at (xp3, zp3).

xp0 = g,                                             (16)

zp0 = d – (d tan(θ +ω) - g)/tan(αt -θ -ω), (17)

xp1 = d tan(θ +ω)                                 (18)

zp1 = d,                                    (19)

xp2 = -d cosαtsinαb / (sin(θ+ω)sin(θ +ω+αt-αb)),
                                       (20)

zp2 = d cosαt cosαb / (sin(θ+ω)sin(θ +ω+αt-αb)),
                                                                 (21)

xp3 = g,                                                      (22)

zp3 = - g/µb.                                              (23)

Figure 6. Jamming Conditions

To guarantee that no jamming occurs, any
force in the toppling tip friction cone must make
a positive moment about the critical primary
region then the left edge of the friction cone
must make a positive moment.  In other words,
the left edge of the toppling tip friction cone de-
termines the height at which jamming may oc-
cur.

Similar to the analysis of the toppling height
function, we have 2wi (θ), 0wi (θ), 1wi (θ), and wi,
which is min (2wi, 0wi, 1wi) at a given θ. These
functions are given by:
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where it ψαπθ −−=32                     (25)

The constrained jamming height function,
Ji(θ), with θt < θ < θn is given by

Ji(θ) =  




>
≤

)()(
)()()(

*

**

θθφ
θθθ

ii

iii

JV
JVJ               (26)

where Ji
*(θ) = xi sinθ  + zi cosθ  + wi sin(ψ i+ θ).

                                                                       (27)

fl
fr

θ

P0

P1

P2

P3



7

Therefore, for given θ and dA’, jamming
occurs if the heights of A is lower than Ji(θ).

4.3 The Constrained Toppling Graph
Figure 7 illustrates the entire constrained

toppling graph that combines the vertex height,
constrained rolling height, and constrained jam-
ming height functions to represent the full me-
chanics of toppling. From the constrained
toppling graph the necessary toppling height for
A can be determined or shown to be non-
existent. Note that Hi(θ) must be bounded by the
Vir(θ) and Vi+1,r(θ) and is truncated where it in-
tersects them.

For toppling from an initial orientation to
the desired orientation to be successful, there
must exist a horizontal line from the angle of the
initial orientation to the angle of the desired ori-
entation at height h that has the following char-
acteristics:

1: h > Hi(θ) for all θ; if Vir(θ) < h < Vi+1,r(θ);
2: h >Ji(θ)  for all θ; if Vir(θ) < h < Vi+1,r(θ);
3: h < max(Vi(θ)) for all i at any θ  < θt.

Figure 7. Constrained Toppling Graph

The first two criteria can be described as A
must be above both the rolling height and the
jamming height on the edge it is in contact with
for all θ.  Note that when the pin crosses a vertex
height function it contacts a new edge and must
then be above the rolling height and jamming
height functions for that edge. The third criterion
is that the pin must not lose contact with the part
by passing over it during the rolling phase.

Figure 7 demonstrates the constrained top-
pling graph of the part shown in Figure 3. From

the graph we can determine a toppling tip at dA’

= 2cm is capable to topple the part to any orien-
tation with 0 < θ < θn. Notice that A switches
contact edge from e2 to e1 at θc.

5. Grasping

Once the part has been rotated to θ = θd, the
fixturing tips, B and B’, must make contact with
the part.  Additionally, we require that the com-
bination of the contacts corresponding to A, A’,
B, and B’ generate a form-closure grasp on the
part.  There also exists an accessibility constraint
on the locations of B and B’ due to the require-
ment that they not make contact with the part
until θ = θd.  Therefor, we divide the grasping
analysis into two sections corresponding to de-
termining the accessibility constraint and meet-
ing the form-closure requirement.

5.1 Accessibility
The accessibility constraint will limit the

possible heights of the fixturing tip, B or B’, for
a given height of A or A’. In order to determine
the accessibility constraint we must consider the
relative motion between the part and a jaw of the
gripper. The rest of the accessibility discussion
will be in a frame of reference fixed to the top-
pling tip A and will consider a contact B on edge
ej.  The accessibility constraint requires that as
the part rotates to the desired final orientation,
that it is moving out towards the fixturing tip
and that at no previous angle has the part been as
far out as the fixture tip and made contact.

final
orientation

v3

e2

inaccessible
region

initial
orientation

toppling
tip, A

Figure 8.  Rotation of a part relative to the
toppling tip A.

To illustrate this situation, Figure 8 shows
the rotation of a part with respect to the toppling
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tip.  Note that at any height within the inaccessi-
ble range on edge e2 indicated in the figure, the
location of vertex v2 would have contacted the
fixturing tip before the part reached the desired
orientation. Since this would prevent the part
from reaching the desired final orientation, these
heights are considered inaccessible.

By examining the inaccessible region more
closely, as shown in Figure 9, we can see that
there are two factors to be considered when de-
termining the accessibility of an edge.  The first
factor is whether any portion of the edge in the
final orientation is blocked from visibility in the
positive X direction by the part as it rotates.  The
second factor is what portion of the edge is
moving forward, in the +X direction, at the final
orientation.

The first factor is taken into account by cal-
culating a vertex function for the vertex at the
top of edge ej.  The vertex function gives the
location of the vertex with respect to the top-
pling tip as a function of rotation angle.  The
vertex function is given by

i

iA
ij

yd
xxx

ψtan
−−−= , (28)

and jyy = , (29)

where (xj,yj) is the location of the vertex in the
fixed frame of reference, (xi,yi) is the location of
the vertex at the bottom of the edge that the top-
pling tip contacts, and ψ i is the angle of that
edge. We must check what portion of the edge is
visible from the +X direction without being
blocked by the combination of the vertex func-
tion and the initial orientation of the edge. Note
that it is possible that lower edges and vertices
may also block part of the final orientation of the
edge, and must be checked as well. This check
insures that the contact point is not blocked by
the part during rotation.

The second consideration insures that the
edge is moving out to the fixturing tip at θ = θd.
In other words, the relative X displacement be-
tween A and B, denoted xAB, must be greater
than the X location (with respect to the toppling
tip) of the part at dB for any θ < θd. We will de-
note the location of the part at a height dB and
angle θ as (xc,dB). Note that this is a different
physical point at each θ.

vertex
function

e3, final
orientation

e2, final
orientation

e2, initial
orientation

curve separating
proceeding from
receding of edge

Figure 9.  A portion of the edge in the final ori-
entation may be blocked in the positive x direc-
tion before the part reaches the final orientation.
Additionally, a curve shows the separation be-
tween where the part is moving forward and
where it is receding.

At some critical height, hc, the derivative of
xc with respect to θ is 0. All of the physical
points on that edge below hc will meet the re-
quirement of moving out to the part while those
above will be receding. The accessibility con-
straint for this consideration is therefore, dB ≤ hc

on a given edge.
The relative X displacement of a point of the

part at height dB can be shown geometrically to
be

i

iAjB
ijc

yd
j
yd

xxx
ψψ tantan
−−

−
+−= , (30)

where (xi,yi) and (xj,yj) are the locations of the
vertex at the bottom of the edge in contact with
A and the edge in contact with B respectively,
and ψ i and ψ j are the angles of those edges.
Therefore the derivative of xc with respect to θ is
given by

j

jc

j

jc

j
j

iA

i

iA
i
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yhxh

y
ydxd

y
d

dx

ψψ

ψψθ

2

2

sintan

sintan

−
−

−
+

−−+−−=
, (31)

and must be 0 at hc.  Setting (31) equal to 0 and
solving for hc yields
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. (32)

       For a given edge, indicated by xj, yj, and ψ j,
only heights less than hc can be considered when
determining the height for B in the form closure
analysis. A corresponding procedure is used to
determine a range of possible dB’ for a given dA’.

5.2 Form-Closure
At the end of the accessibility considerations

we now know dA and dA’, as well as ranges of
possible values for dB and dB’. From these ranges
we must determine values such that the four tips
generate form-closure on the part.  This is easily
done using the method described in van der
Strappen [18].  This method would entail deter-
mining the point at which the edge normals
through A and A’ meet, then selecting the loca-
tions of B and B’ such that the edge normals
through B and B’ create opposite moments about
that point.  We omit the precise details for lack
of space.

6. Experiment

We conducted a physical experiment using an
AdeptOne industrial robot and a parallel jaw
gripper with tips designed using the methodol-
ogy described in this paper. The part is a small
lever from a standard videotape (FUJI serial
number: 7410161160). Its planar projection is
shown in Figure 1, and its planar convex hull is
shown in Figure 3.

As illustrated in Figure 1, the part begins at
stable orientation (a).  Its desired orientation is
(b) where θ =37°. We choose A and A’ at dA =
0.9 cm and dA’ = 2.0 cm, respectively. The corre-
sponding friction cone half angles are αt = 5°
and αb = 10°. When θ < 37°, C is V1 and x2=4.1,
z2=0, ψ 2=56°, η=46°, ρ=2.2, and ω=143°-(180°-
90°)=53°; When θ > 37°, C is V6 and x2=4.6,
z2=2.4, ψ 2=92°, η=55°, ρ=2.7, and ω =89°. The
analysis yields the following tip values: dB = 2.7

cm, dB’ = 3.0 cm, xAB = 0.0 cm, and xA’B’ = 2.1
cm. Figure 10 illustrates the compensatory
grasp.

Figure 10. Compensatory grasp experiment.

7. Discussion and Future Work

In industrial practice, gripper jaw geometry is
often custom-designed and machined for each
part. Design has been ad-hoc and particularly
challenging when the part's natural resting pose
differs from the desired grip/insertion pose. In
this paper we describe compensatory grasps, a
new approach to this problem where 4 contact
points on the jaws guide the part into alignment
and hold it stably. The next step is to develop
more sophisticated jaw shapes based on part
trajectory (see Figure 11) and to address shape
and position uncertainty, friction, and ultimately,
3D geometry. We are also interested in more
efficient algorithms and knowing under what
conditions a compensatory grasp exists.

1

2 3

4 5
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Figure 11. Gripper Jaws based on Compensatory
Grasp Tips and complement of swept volume.
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