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Abstract— In the future, robotic surgical assistants may assist
surgeons by performing specific subtasks such as retraction and
suturing to reduce surgeon tedium and reduce the duration
of some operations. We propose an apprenticeship learning
approach that has potential to allow robotic surgical assistants
to autonomously execute specific trajectories with superhuman
performance in terms of speed and smoothness. In the first step,
we record a set of trajectories using human-guided backdriven
motions of the robot. These are then analyzed to extract a
smooth reference trajectory, which we execute at gradually
increasing speeds using a variant of iterative learning control.
We evaluate this approach on two representative tasks using the
Berkeley Surgical Robots: a figure eight trajectory and a two
handed knot-tie, a tedious suturing sub-task required in many
surgical procedures. Results suggest that the approach enables
(i) rapid learning of trajectories, (ii) smoother trajectories than
the human-guided trajectories, and (iii) trajectories that are 7
to 10 times faster than the best human-guided trajectories.

I. INTRODUCTION

Robotic surgical assistants, such as Intuitive SurgicalTM’s

(Sunnyvale, CA) da Vinci R© system are increasingly being

accepted in hospitals for endoscopic surgery. Existing hard-

ware is capable of performing delicate surgical procedures. In

fact, robotic surgical assistants enable surgeons to overcome

major barriers and limitations regarding scaling, accessibility,

distance and teamwork. However, many surgical tasks per-

formed with these robotic surgical assistants remain tedious

and time consuming because they are tele-operated in a

master-slave mode. Intelligent robotic surgical assistants that

enable the automation of selected surgical motions and

skills could improve patient health by enhancing surgeon

performance, reduce tedium and thus medical errors, and

reduce costs by reducing operation time.

This paper presents a first step towards the ultimate goal

of intelligent surgical assistants. In particular, we present an

approach that learns a task from multiple human demonstra-

tions, and learns to execute such tasks with superhuman per-

formance. Specifically, we aim to maximize the smoothness

and the speed with which the tasks are performed. Increased

smoothness reduces damage to human tissue and the robotic

mechanism, and increased speed reduces operation time.

We assume that the task can be described by a trajectory

that the robot should follow through its state space. It is

often difficult to mathematically define a unique optimal
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Fig. 1. The Berkeley Surgical Robots performing a knot-tie.

trajectory for a particular task or even to characterize the

set of effective trajectories. However it is possible to record

demonstrations of effective trajectories by monitoring the

trajectories generated by human experts operating the robotic

system. Even though a demonstrated trajectory may deviate

slightly from the trajectory the expert intended, we assume

that multiple demonstrations deviate in different ways, and as

such implicitly encode the intended trajectory. Using an ap-

prenticeship learning approach [11], combined with the prior

knowledge that the trajectory must be smooth, we extract the

intended trajectory from the human demonstrations and use

it as the reference trajectory specifying the particular task.

Subsequently, the obtained reference trajectory is a target

trajectory for our robots and our approach is able to increase

the execution speed significantly while maintaining accuracy.

Enabling the robots to execute the target trajectory faster

is challenging as it would require an accurate model of

the robots’ dynamics in the vicinity of the sped-up target

trajectory—whereas demonstrations are only available at the

original speed. One reasonable approach would be to build

a detailed model of the robots, which for accurate execution

would need to include trajectory specific properties such as

stiction and hysteresis effects [8]. In this paper we show

that, rather than going through this detailed modeling phase,

it is possible to learn to perform faster trajectories through

gradually speeding up the trajectory. This seems to work well

even with only an approximation of the true robot dynamics.

We implemented our approach on the Berkeley Surgical

Robots (see Fig. 1), and applied it to two representative tasks,

among which knot-tying. Our experimental results indicate

that we can increase the speed to up to 10 times the average

speed of the demonstrations, and perform executions with a

quality exceeding that of the demonstration trajectories.



II. RELATED WORK

There is a large body of literature on modeling human

movement and extracting human strategies for use by robots

(see [7] for a literature review). Human skill has been

modeled using hidden Markov models [14], [15], neural

networks [4], [18], and fuzzy sets [26], [31]. In [11], an

apprenticeship learning approach is introduced that has en-

abled a quadruped robot to traverse challenging, previously

unseen terrain [19] and helicopters to autonomously perform

aerobatic maneuvers. Also, there has been some foundational

work on the modeling of surgical skill [21], [29], [22].

In [24], [23], Mayer et al. demonstrated a surgical robot

learning knot-tying from a demonstration.

Other techniques plan medical motions without learning,

and have the robot perform them autonomously [2], [5], [32].

In the work of [33], a motion is carefully tuned to enable

a three-fingered robot to tie a knot at an extremely high

speed. In [8], the time-optimal motion along a specified path

is computed given an accurate model of the robot dynamics.

Our work extends the above learning-by-demonstration

approaches, as we aim to increase the execution speed even

though we do not have an accurate dynamics model of

the robot and the demonstrations are only available at the

original speed. We complement the work of [33], as our

approach can teach the robot new tasks without the need

for precise specification of the task trajectory.

Our approach builds off of [11] to learn a reference

trajectory specifying a task from human demonstrations. To

increase the execution speed, we use a variant of iterative

learning control [9]. ILC has been studied widely in robotics

[25]. The work of [20] suggests that only global knowledge

of the robot dynamics is necessary to be able to iteratively

improve control. The approach of [1] learns a local correction

to the dynamics model by adding a time-dependent bias

term. Our approach borrows from ideas of [9] by iteratively

adapting the target trajectory based on the observed error.

III. PROBLEM DEFINITION AND GLOBAL APPROACH

In this section, we formally define the problem we discuss

in this paper, and sketch the outline of our approach.

A. Problem Definition

The problem we discuss in this paper is formally defined

as follows. We are given a robotic system whose state is

described by a vector x and whose control input is described

by a vector u. We assume that the dynamics model of the

robot, which describes the state of the robot in the next time

step as a function of the state and the control input in the

current time step, is given in the linear form

xt+1 = Axt +But +wt, wt ∼ N (0, P ), (1)

where A and B and P are matrices of the appropriate

dimension, and wt is an independent noise term drawn from

a Gaussian distribution with zero mean and covariance P
that captures process noise and unmodeled physical effects

on the robot. The precise composition of the state, control

input and the matrices for the robotic system we use for our

experiments is discussed in Section VI.

Further, we are given M demonstration trajectories (ob-

tained by a human controlling the robot) of the robotic task

we wish to perform. Each trajectory yj , with j ∈ 1 . . .M ,

has duration T j , and is a function of time t ∈ [0, T j] to a

state xj(t) and control input uj(t):

yj(t) =

[

xj(t)
uj(t)

]

, (2)

Our goal is to “learn” a reference trajectory z from the

given demonstration trajectories that is consistent with the

dynamics model of Equation (1). We define this trajectory

as a discrete sequence of states x∗ and control inputs u∗ of

length N + 1 (such that there are N “steps”), and denote it

zt =

[

x∗

t

u∗

t

]

, (3)

where t ∈ 0 . . .N . Initially, we set the time step ∆t, which

denotes the actual difference in time between zt+1 and zt,

to some desired value and set N = 1

M∆t

∑M
j=1

T j , such that

the duration N∆t of the reference trajectory z is equal to

the average of the durations of the example trajectories.

Our objective is to (i) learn a smooth trajectory z from the

demonstrations, and then (ii) decrease ∆t (while keeping N
constant) to have the robot successfully execute trajectory z

at superhuman speeds.

B. Outline of our Approach

Our approach to the above problem can roughly be divided

into two steps, outlined as follows:

1. Learning from human demonstrations. First, we use

the demonstration trajectories y as observations to the (un-

observed) reference trajectory z in a Kalman smoother [28],

[17], which will produce (Gaussian) distributions of the states

along the reference trajectory z. The Kalman smoother is

used as part of the EM-algorithm [13], [17], which iteratively

and alternatingly infers the distributions of the reference

trajectory given the current model parameters, and updates

the model parameters by maximizing their likelihood given

the current distributions of the reference trajectory. As the

demonstration trajectories may not be perfectly temporally

aligned, we include a time-warping step [30], [27] in the

EM-algorithm that time-aligns the demonstration trajectories

as well as possible with the current reference trajectory. In

Section IV, we discuss learning from human demonstrations

in detail.

2. Trajectory execution at superhuman speeds. Sec-

ondly, we aim to execute the reference trajectory z on the

robot, and speed it up. We use an LQR controller [3], [6],

[16] to execute the trajectory, for it gives the optimal control

policy given a linear dynamics model and a quadratic cost

function (which penalizes deviations from the trajectory and

non-smoothnesses in its execution). However, due to the

inaccuracy of our dynamics model, the resulting execution

may not be perfect. Therefore, using a variant of iterative

learning control [9], [25], we adapt the target trajectory based



on the observed error, and re-execute the LQR controller on

this adjusted target trajectory. We repeat this until conver-

gence. Then, the execution speed is slightly increased, and

the aforementioned process repeats. Our algorithm continues

to increase the execution speed as long as the quality of

the execution remains above a pre-defined threshold. In

Section V, we discuss in detail how we achieve superhuman

execution speeds.

IV. LEARNING FROM HUMAN DEMONSTRATIONS

In this section we describe how we learn the reference

trajectory z from the demonstration trajectories y.

A. Stochastic Model

In our stochastic model, we the use the following dynamics

model for z:

zt+1 =

[

A B
0 I

]

zt +w∗

t , w∗

t ∼ N (0,

[

P 0
0 Q

]

), (4)

where matrices A, B and P are as given in Section III-A,

and w∗

t is a noise term drawn from a zero-mean Gaussian

distribution. This model extends the model of Equation (1),

and assumes that the control input u∗ does not change

between time steps. The only fluctuation allowed comes from

the noise term and is determined by matrix Q. The smaller

the fluctuation in control input, the smoother the trajectory.

Hence, to force the trajectory z to be smooth, we set Q as a

diagonal matrix with small (positive) values on the diagonal.

We use the demonstration trajectories y as (noisy) obser-

vations of the reference trajectory z, giving the following

observation model:






y1(τ1t )
...

yM (τMt )






=







I
...

I






zt + vt,vt ∼ N (0,







R1 0 0

0
. . . 0

0 0 RM






),

(5)

where vt a noise term drawn from a zero-mean Gaussian

distribution, and τ jt is the mapping of time t in trajectory z

to the corresponding time in trajectory yj .

We use the time mappings τ jt to temporally align the

demonstration trajectories to the reference trajectory z, as

the given demonstrations may contain temporal variations;

for instance not all parts of the trajectory are executed at the

same pace among the demonstration trajectories. The time

mappings τ jt are initially unknown, but we assume:

τ j0 = 0, τ jN = T j,
1

v
≤

τ jt+1 − τ jt
T j

N ≤ v, (6)

where T j is the duration of trajectory yj , N the number of

steps in the reference trajectory z, and v (with v > 1) is a

bound on how fast time progresses along the demonstration

trajectory relative to the reference trajectory. That is, the time

mapping is done such that the endpoints of the trajectories

match, and such that at any given point along the demon-

stration trajectory, time moves at least v times as slow and

at most v times as fast as along the reference trajectory.

The covariance matrices Rj encode the “weight” that

demonstration trajectory yj has in shaping the reference

trajectory z, and are initially unknown as well.

B. EM Algorithm

In the above model, the reference trajectory z, the matrices

R and the time-mappings τ are unknown. We compute them

using the EM (Expectation Maximization)-algorithm by opti-

mizing their joint likelihood. The EM-algorithm alternatingly

computes Gaussian distributions Z of the reference trajectory

using a Kalman smoother given the current values for R and

τ , and then updates R and τ by maximizing their likelihood

with respect to the most recently computed distributions Z
of the reference trajectory (see Algorithm 1). The Kalman

smoother constitutes the E-step of the EM-algorithm, and

updating R and τ constitutes the M-step.

Let Zt denote the unconditional Gaussian distribution of

the state zt of the reference trajectory z at time t (which can

be computed recursively using Equation (4) given an initial

distribution Z0). Then, assuming R and τ are given, the

Kalman smoother will compute the posterior distributions

Zt|y of the reference trajectory given the demonstration

trajectories y. This is done using Equation (5) in an efficient

two pass linear-time algorithm [28]. We will not describe the

Kalman smoother in full detail here, but refer to [17] for an

excellent treatise. For notational simplicity, we refer to the

posterior distributions computed by the Kalman smoother as

Zt in the remainder of this paper. The mean of posterior

distribution Zt is denoted z̄t. Note that the distributions

computed by the Kalman smoother depend on the values

of R and τ .

In the M-step, the matrices R and time mappings τ
are updated by maximizing the expectation of the (log-)

likelihood of R and τ , given the demonstration trajectories y

and the distributions Z computed by the Kalman smoother:

max
R,τ

EZ(ℓ(R, τ |Z,y)) = max
R,τ

EZ(log P(Z,y)) =

max
R,τ

M
∑

j=1

N
∑

t=0

EZ(logP(y
j(τ jt )|Zt)). (7)

As the “log” is eliminated against the “exp” in the Gaussian

probability-density function, the expectations can be brought

inside, and a closed form update rule for R (with fixed τ )

can be derived (see [17] for more details). To optimize τ
(with fixed R), we use dynamic time warping, which is a

dynamic programming algorithm that we will discuss in the

next subsection.

The above process repeats until convergence. The EM-

algorithm is guaranteed to converge to a local optimum for

any initialization of R, and for any initialization of τ . As

we have no prior knowledge about the relative quality of

the given demonstration trajectories, all Rj should initially

be equal. So, before performing the first E-step (the Kalman

smoother), we set Rj (for j ∈ 1 . . .M ) equal to the identity

matrix I . We can initialize τ by assuming that the time along

the reference trajectory z corresponds proportionally to the

time along the demonstration trajectories yj , i.e. τ jt = t
N T j .

C. Dynamic Time Warping

As part of the EM-algorithm, the time mappings τ are

updated by optimizing their likelihood given distributions



Algorithm 1 z← LEARNINGFROMDEMONSTRATIONS(y)

1: Initialize Rj = I , and τ
j
t = tT

j

N
.

2: while not converged do
3: Z ← KALMANSMOOTHER(y,R, τ ).
4: R← argmaxR EZ(ℓ(R|Z,y)).
5: τ j ← argmaxτj EZ(ℓ(τ

j|Z,y)). // dynamic time warping
6: return modes z̄ of distributions Z as reference trajectory.

Z of the reference trajectory, and fixed matrices R (see

Equation (7)). We compute the new τ jt for each trajectory

yj independently using Dynamic Time Warping, which is a

dynamic programming algorithm that has been used as well

for speech recognition [30], biological sequence alignment

[27], etc.

For the algorithm, the time-axis of the demonstration

trajectory yj is discretized into kN steps of duration ∆tj =
T j

kN , where k > 1 is an integer specifying the resolution of

the algorithm. Now, for each t ∈ 0 . . .N − 1, we let

τ jt+1 = τ jt + at∆tj , at ∈ {⌈k/v⌉, . . . , ⌊kv⌋}, (8)

where at determines how fast time progresses along the

demonstration trajectory relative to the reference trajectory at

time t; when at = k/v, the demonstration trajectory moves

“v times as slow” as the reference trajectory; when at = k
both trajectories have equal pace; and when at = kv, the

demonstration trajectory moves “v times as fast”. In general,

the demonstration trajectory moves “at/k times as fast” as

the reference trajectory at time t.
Equation (8) defines a graph in a 2-D grid of points (t, τ jt )

through which we have to find a “path” from point (0, 0) to

point (N, T j) that maximizes:1

max
τ j

N
∑

t=0

EZ(logP(y
j(τ jt )|Zt)) = max

τ j

N
∑

t=0

logP(yj(τ jt )|z̄t).

(9)

As the inner probability can be computed by evaluating

point yj(τ jt ) in the probability-density function of Gaussian

N (z̄t, R
j) (this follows from Equation (5)), the optimal

τ j can be found using dynamic programming (for instance

Dijkstra’s shortest path algorithm).

The time-complexity of the algorithm is O(N ·kN ·(⌊kv⌋−
⌈k/v⌉)) = O(N2k2v). To save computation time, we use

the smallest possible values of k = 2 and v = 2, which, as

experiments indicate, gives surprisingly good results.

V. EXECUTION AT SUPERHUMAN SPEEDS

In this section we describe how we execute the reference

trajectory z as learned above at superhuman speeds.

A. LQR Controller

Given a target trajectory x̂, we aim to control the robot to

follow trajectory x̂ as closely as possible. For this, we use an

LQR controller, which is a standard control technique that is

ideally suited for our context; given a linear(ized) dynamics

1The equality holds as Z only appears in linear form in the derivation.

model and a quadratic cost function, an LQR controller gives

the optimal control policy.2

As we wish the robot to closely follow the given target

trajectory x̂, and at the same time achieve smooth control,

the LQR controller should penalize the deviation from the

target trajectory, the magnitude of the applied control input,

as well as the fluctuation in the control input. To achieve this

using the standard LQR derivations, we adapt the dynamics

model of Equation (4) into an error dynamics model [3]:

The state vector of the adapted model is comprised of the

state error xt− x̂t, the control input ut, and the number 1 to

allow for intercept terms. And the control input vector of the

model is the change ∆ut in the actual control input applied

between the current time step and the next. We thus define:

z̃t =





xt − x̂t

ut

1



 , ∆ut = ut+1 − ut, (10)

where xt and ut are the actual states observed and control

inputs applied, respectively, during control at time t. This

gives the following dynamics model:

z̃t+1 =





A B ct
0 I 0

0T 0T 1



 z̃t +





0
I
0T



∆ut, (11)

where ct is a time-dependent intercept term defined as ct =
Ax̂t − x̂t+1.3

The optimal controls ∆ut are found by minimizing the

quadratic cost function

min
∆u

(

z̃TNGz̃N +

N−1
∑

t=0

(z̃Tt Gz̃t +∆uT
t H∆ut)

)

, (12)

for cost matrices G and H . This gives the control policy

∆ut = Ltz̃t, for feedback matrix Lt that is (pre-)computed

using standard LQR derivations (see [3], [6] for more de-

tails). Note that z̃t is fully observable during execution, as

long as the state xt is observable.

B. Improving Quality using Iterative Learning Control

As our dynamics model (see Equations (4) and (11)) is a

linear approximation of the true dynamics, the above LQR

controller, when run on the reference trajectory x∗ learned

from the demonstrations, may not give convincing results.

We see that the observed trajectory x, even though it globally

follows the reference trajectory x∗, sometimes significantly

deviates from the reference trajectory. To improve the quality

of the observed trajectory x (i.e. to make it more similar to

the reference trajectory x∗), we iteratively manipulate the

target trajectory x̂ on which the LQR controller is executed.

Initially, the target trajectory is the reference trajectory.

In particular, if the observed trajectory x deviates from the

reference trajectory x∗ by a vector x−x∗, we rerun the LQR

controller on a new target trajectory x̂− (x− x∗), such that

2We also experimented with a PID controller, but as it lacks lookahead
along the trajectory, we were unable to achieve good performance.

3Spelling out Equation (11) gives
[

xt+1
ut+1

]

=
[

A B
0 I

] [

xt
ut

]

+
[

0

I

]

∆ut.



if the deviation with respect to the target trajectory would

remain the same at each point along the trajectory, the new

observed trajectory would match the reference trajectory x∗.

In other words, we “mirror” the deviation of the observed

trajectory from the reference trajectory in the current target

trajectory to form a new target trajectory. We repeat this

process a number of times until the observed trajectory x

converges to the reference trajectory x∗. Algorithmically, this

looks as follows (with parameter 0 < α ≤ 1):

Algorithm 2 x̂← ITERATIVELEARNINGCONTROL(x∗, x̂)

1: repeat
2: x← EXECUTELQR(x̂).
3: x̂← x̂− α(x− x

∗).
4: until x ≈ x

∗

5: return x̂

The input of this algorithm is the reference trajectory

x∗ and an initial target trajectory x̂ (which should be the

reference trajectory x∗ if one has no prior information); the

output is the optimized target trajectory. The parameter α
determines the “learning rate” of the algorithm. The larger

α (i.e. the closer to 1), the faster the algorithm converges.

However, if α is too large, the resulting trajectories x may

oscillate around the reference trajectory x∗. Our experiments

suggest that a value of α = 0.4 works well in our case.

C. Speeding-up the Trajectory Execution

The execution speed of the trajectory x∗ is fully deter-

mined by the value of the time step ∆t, if we keep the

number of steps N in the trajectory constant. Let us denote

the speed-up factor by s. For s = 1, the time step ∆t has

its initial value for which the reference trajectory x∗ was

learned using Algorithm 1. Let us denote this initial time

step by ∆t0. So, to increase the execution speed s, the time

step is decreased (note that the trajectory x∗ itself, which is

a constant-length sequence of states, does not change when

the execution speed is increased):

∆t = ∆t0/s. (13)

When the time step is decreased, the matrices A and B of

the dynamics model of Equation (1) change. If the entries of

these matrices are clear functions of ∆t, these matrices can

be directly updated. Otherwise, let A0 and B0 be the given

initial matrices of the dynamics model for the initial time

step ∆t0. Then, one can compute A and B for increased

execution speed s as:

[

A B
0 I

]

=

[

A0 B0

0 I

]1/s

. (14)

Further, as we may expect the control input fluctuations to

increase (proportionally) with the execution speed, the cost

matrix H in the LQR penalty function of Equation (12)

should be updated as well. Let H0 be the initial cost matrix

for the normal speed trajectory, then for increased speed s:

H = H0/s
2. (15)

We use the above update rules to increase the execution

speed. In principle, we could set the execution speed at any

desired high value, and run the iterative learning control

algorithm (Algorithm 2) on trajectory x∗. However, as we

will show in Section VII, our experiments indicate that this

causes Algorithm 2 to converge poorly. Much better results

are obtained if we gradually increase the execution speed in

an iterative process:

Initially, the reference trajectory x∗ is used as target

trajectory, and the execution speed is set to the average of the

demonstration trajectories (i.e. s = 1). Then, Algorithm 2 is

executed, which returns the optimal target trajectory x̂ for

s = 1. In each subsequent iteration, the speed is slightly

increased and the optimal target trajectory x̂ of the previous

iteration is used as initial target trajectory for the current

iteration. This process continues as long as Algorithm 2

converges and produces trajectories that are of sufficient

quality when executed (see Algorithm 3).

Algorithm 3 SUPERHUMANEXECUTION(x∗)

1: x̂← x
∗.

2: do
3: x̂← ITERATIVELEARNINGCONTROL(x∗, x̂).
4: Increase execution speed: s← s+ 1.
5: Update matrices A, B, and H and ∆t for new speed s.
6: while resulting trajectory is of sufficient quality.

VI. IMPLEMENTATION DETAILS

In this section we describe how we implemented the above

approach on our specific robotic setup.

A. Robotic Setup

In our setup we use two identical Berkeley Surgical Robots

[10] that each provide an “arm” in a surgical workspace.

For each robot, the surgical arm is kinematically constrained

to pivot around a fixed point, which can be imagined as

the point where the robot enters a patient’s body. The tip

of the arm can freely be moved in 3-D space, and has a

fully controllable gripper attached to it (see Fig. 2 for the

kinematic model).

Each robot is controlled by seven servo motors; four

motors are mounted on the arm itself and control the pitch,

roll and gross rotation, as well as the jaws of the gripper.

Another three motors, called the base motors, control –

through a kinematic chain– the 3-D position in space of the

tip of the robot arm. The motors contain accurate sensors to

determine their current configuration, and each of the motors

can individually be controlled by applying a voltage to it. On

a higher level, the robots can be manually operated using a

pair of master controllers. The robots then copy the motions

that are applied to the masters.

B. Inferring a Dynamics Model

In order for our algorithm to work, we need a dynamics

model of the robot as given in Equation (1). As is the

case with any real-world system, a truly accurate dynamics



Fig. 2. The kinematic model of our robots (side view, front view and top
view – gravity points in the negative z-direction). Points A, B, C, F and J

are fixed points in space. Three base motors control the length of the sides
AD, BD and CD of the tetrahedron ABCD such that point D can freely
be positioned in space. The points D, E, F , G, H and I lie in a common
plane parallel to the z-axis. The point J is a fixed pivot point that can be
imagined as the point where the robot enters a patient’s body for surgical
tasks. The segment IK has constant length and can slide through point J .
Four motors placed at point I control the roll, pitch and gross rotation of
the tip K , as well as the jaws of the gripper. As a result the 6-D position
and orientation of point K can fully be controlled by the robot.

model is complex. Apart from the input voltage, many other

(external) effects influence the motion of the robot [1].

In our case it appeared that particularly the effect of

gravity is of substantial significance. Gravity is pulling at

all parts of the robot, which, through hinges and pivots in

the kinematics, has complex effects on the (base) motors

of the robot. In most configurations of the robot, voltages

need to be applied to the (base) motors in order to keep the

robot in its current configuration. We call this voltage the

gravity voltage and denote it g(q) for configuration q. To

approximate this function, we measured the voltages applied

to the motors in a dense sample of configurations of the

robot, and fitted a quadratic polynomial to the data using the

least mean squared error technique (we note that there are

other techniques for compensating gravity, see e.g. [12]).

With gravity factored out, it turns out that a linear dy-

namics model suffices for our purposes: The state x of the

robot is the vector q of the encoder positions of its motors

(i.e. the speed is not included in the state), and the control

input u (as used by the LQR-controller) is the vector of the

gravity-adjusted voltages applied to each motor:

x = q, u = v − g(q), (16)

where v is the vector of the actual voltages applied to the

motors. Further, we treat each motor independently with the

following dynamics:

xi
t+1 = xi

t + bi∆tui
t + wi

t, wi
t ∼ N (0, σ2

i ) (17)

where xi
t is the state (i.e. configuration) of motor i at time

t, ui
t the gravity-adjusted voltage applied to motor i at

time t, and wi
t a noise term. That is, we let the applied

voltage directly (and linearly) relate to the speed of the motor

through the coefficient bi. This means that in the form of

Equation (1), A is the identity matrix I , B is a diagonal

matrix with entry Bii = bi∆t, and P is a diagonal matrix

with entry Pii = σ2
i .

In order to estimate the parameters bi and σ2
i , we recorded

a trajectory [ xt
ut
] (for t ∈ 0 . . . T ) that is representative of the

robot’s dynamics, through human operation of the master

controls of the robot. Then, the coefficients bi are computed

by fitting the model as closely as possible to the data from

the recorded trajectory using the least mean squared error

technique, i.e. by minimizing

min
B

T−1
∑

t=0

‖xt+1 − (Axt +But)‖
2
. (18)

Subsequently, the variances σ2
i are computed as:

P =

T−1
∑

t=0

(xt+1 − (Axt +But))(xt+1 − (Axt +But))
T

T
.

(19)

VII. EXPERIMENTAL RESULTS

We implemented the approach on our robots and exper-

imented with it on two representative tasks. In the first

experiment, a magnetic pen is attached to the tip of the arm of

one of the robots such that the robot can write on a magnetic

write-board. The second experiment involves tying a knot

in a surgical thread. Knot-tying is a task that is frequently

performed during surgical operations.

A. Drawing Figures on a Magnetic Write-Board

To have the robot draw figures on a magnetic write-board,

we attached a magnetic pen to the tip of the robot. The pen is

attached on a slider such that gravity can pull the pen down

until it hits the writing surface. This relaxes the constraints

on the z-position of the tip of the robot arm.

The objective in this experiment was to write a per-

fectly symmetric figure ‘8’ on the writing surface (see Fig.

3(a)). Through manual control of the robot, we created 3

demonstration trajectories, which had an average duration of

12.5 seconds. Because manually controlling the robot is not

easy, these demonstration trajectories were far from perfect

(see Figs. 3(b-d)). Nonetheless, our learning from human

demonstrations algorithm is able to capture the essence of

the demonstration trajectories, and learns a trajectory that

would smoothly write the figure ‘8’ on the board (see Fig.

3(e)). Subsequently, we executed the learned trajectory at

gradually increasing execution speeds using our approach of

Section V (the execution speed was increased by one factor

in each iteration, i.e. s = s+ 1). For each execution speed,

it took on average 3 iterations of Algorithm 2 to converge to

an optimal target trajectory. As can be seen in Figs. 3(f-i),

even at 10 times the normal (i.e. human) execution speed,

the robot is able to draw a better figure than most of the

human demonstrations. If, on the other hand, we would not

gradually increase the speed, but run Algorithm 2 directly at

s = 10, the quality of the resulting trajectory is hardly better

than that of the demonstrations (see Fig. 3(j)).



(a) Intended trajectory (b) Demonstration 1 (c) Demonstration 2 (d) Demonstration 3 (e) Reference trajectory

(f) Execution at 1x speed (g) Execution at 4x speed (h) Execution at 7x speed (i) Execution at 10x speed (j) 10x without iteration

Fig. 3. Results of the first experiment. (a) The objective is to draw a perfectly symmetric figure ‘8’ on a magnetic write-board. (b, c, d) Three human
demonstrations. (e) The drawing that would result from the learned reference trajectory if executed perfectly. (f, g, h, i) The drawing resulting from
executing the reference trajectory for gradually increasing execution speeds — 1x, 4x, 7x, and 10x the average speed of the demonstrations, respectively.
(j) The drawing resulting when the execution speed is not gradually increased, but directly initialized at 10x.

Fig. 4. The knot tie consists of three stages. In the first stage (1), robot
A loops the thread around the gripper of robot B. In the second stage (2,
3), robot B grasps the thread and closes its grippers. In the third stage (4),
both robot arms are moved away from each other to tighten the knot.

B. Knot Tying

In the second experiment we let the robots tie a knot in

a thread around a ring. A similar procedure needs to be

performed frequently during surgical operations to affix a

suture to human tissue. In our experiment, the ring takes the

role of the tissue to which the thread is tied. Knot-tying is a

challenging task that involves both robots (let us call them A
and B). We assume that initially the thread is going through

the ring, and that robot A is holding one end of the thread

(see Fig. 4). The knot-tie task can be broken down into three

stages: in the first stage robot A loops the thread around the

gripper of robot B; in the second stage robot B grasps the

other end of the thread; and in the third stage the arm tips of

both robots are moved away from each other to tighten the

knot around the ring (unfortunately, in our experiments the

limited reach of each of the robot arms prohibited us from

fully tightening the knot). As we do not model the physical

behavior of the thread in our approach, we use another ring

and a weight to make sure that the thread is taut between the

two rings, such that the position where robot B must grasp

TABLE I

RESULTS OF ITERATIVE LEARNING FOR THE KNOT-TIE EXPERIMENT

Deviation in mm compared to reference trajectory

speed iteration 1 iteration 2 iteration 3

1x 1.143 1.306 1.226
2x 3.342 n/a n/a
3x 6.402 5.408 4.765
4x 7.685 6.615 6.442
5x 9.192 8.004 7.090
6x 9.772 8.161 6.920
7x 8.601 7.878 n/a

the thread is predictable.

Given that the grasp position is predictable, the motion

of robot B is simple compared to the motion of robot A;

it only needs to move back and forth. Therefore, we pre-

programmed the motion of robot B, and have it executed by

a PID controller. For the motion of robot A we generated

5 demonstrations through human control of the robot. Each

demonstration consists of two trajectories; one for the first

stage and one for the third stage. The average duration of

each of the parts of the demonstrations was 7.6 and 5.6

seconds, respectively. On each of the two parts we ran

our algorithm to learn a smooth reference trajectory, and

stitched them together afterwards with a pause in between

during which B can perform the second stage of the knot-tie.

Subsequently, we executed the learned trajectory at gradually

increasing execution speeds (the motion of B is not sped-up,

so the duration of the second stage is constant). As above,

we increase the speed by one factor in every iteration, and

it took on average 3 iterations of Algorithm 2 to produce an

optimal target trajectory for each execution speed.

In Table I, we show the average deviation (the square

root of the mean squared error) in mm of the resulting

executions with respect to the reference trajectory for each

execution speed and for each iteration of Algorithm 2. The

results suggest that the quality of the trajectory improves with

each iteration of Algorithm 2. After 3 iterations, the quality

improvement turned out to be insignificant. The quality

degrades when the execution speed is increased. However,

we note that the quality of the trajectories was better than



the numbers suggest; small temporal errors (the execution

lags a fraction of a second behind the reference trajectory)

inflate the apparent spatial deviation, particularly at high

speeds. In experiments with execution speeds up to 7x the

speed of the demonstrations, the robots were able to success-

fully execute the knot-tie task. In the video accompanying

this paper, we show footage of knot-ties performed at 1x

and 5x the average speed of the demonstrations (see also

http://rll.eecs.berkeley.edu/surgical/icra10/).

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a first step towards

autonomous surgical assistants. We have shown that using

human demonstrations, the robots can learn to execute

challenging tasks with a speed and quality beyond those

of the human demonstrations. Although our current results

were obtained in controlled and predictable environments,

we are continuing our research with more generally set-

up experiments. On the longer term, we plan to generalize

our approach by incorporating visual feedback such that

it can be applied to perform tasks in environments that

may be different each time. We envision that we can build

an extensive library of learned task “primitives”, which

can be executed in series to fully autonomously perform

complicated and lengthy procedures.

Also, we have shown that our approach works well even

with a linear approximation of the true dynamics of the

robots—augmented with an adjustment for gravity. However,

we believe that a more accurate dynamics model, which also

considers the surgical thread and the tissue, could further

improve the performance of our approach.
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