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ABSTRACT
As established by Herlocker et al. and Ekstrand et al., recom-
mender systems that consider diversity and novelty as well as ex-
pected ratings when selecting sets of items to recommend can in-
crease user engagement and exposure to a broader base of inven-
tory addressing the Pigeonhole and Blockbuster problems. Novelty,
diversity, and expected rating define a multi-objective optimiza-
tion problem that is difficult to solve. Existing approaches rely
on iterative optimization techniques like evolutionary algorithms
or simulated annealing. In this paper, we present MCDC, an al-
gorithm for approximately solving this problem as an eigenvector
problem, solving a graph partition problem on a weighted dissim-
ilarity graph. MCDC efficiently exploits the local-global structure
of the problem (novelty is a global property and diversity is a local
property) to approximate a Pareto-optimal balance between nov-
elty, coverage (which is related to diversity), and the recommen-
dation score. Results with several datasets, including Jester and
the latest Movielens data, show that MCDC provides recommenda-
tions sets with up to 21% higher combined geometric mean values
and that MCDC is up to an order of magnitude faster than previ-
ous methods. MCDC can be easily applied to any recommender
system based on a user-item ratings matrix. Code is provided at:
https://github.com/sjyk/mcdc

1. INTRODUCTION
The recommendation problem is traditionally defined as select-

ing the top-k items that maximize expected rating (i.e., most likely
to be purchased by the user). Recent research argues that there are,
in fact, numerous other important considerations. For example, the
top-k formulation can lead to a lack of diversity, where items in
the top-k are overly similar to each other [8, 22, 21, 6, 22, 7]. A
related issue is recommending “novel items" [6, 7, 15, 8], ones in
the long tail whose ratings do not correlate well with others in the
system. In the seminal work of Herlocker et al. [8] on evaluating
recommender systems, diversity and novelty were established as
important metrics when evaluating the performance of recommen-
dation algorithms.

Novelty and diversity have the potential to increase user engage-
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ment while exposing more items in the inventory to rating. How-
ever, the key challenge is balancing these metrics. Recommending
a set of items that is very diverse or novel, but not relevant to the
user, can have a negative effect. Recently, in Ekstrand et al. [7],
these metrics have been evaluated in a controlled user study. Ek-
strand et al. [7] found that an overzealous maximization of novelty
actually has a negative effect on user satisfaction and trust in a sys-
tem as it leads to irrelevant recommendations. While, there is a
growing consensus that balancing metrics, when done sensibly, has
the potential to improve user engagement and expose more inven-
tory, the community still lacks a computational framework for in-
creasing the both novelty and diversity of recommendations while
selecting items that are still likely to be rated highly.

In this paper, we propose the Minimum Conductance Dissimilar-
ity Cut (MCDC) algorithm that increases the novelty and diversity
of recommendations from any recommendation algorithm given a
partial set of similarities between items. To do this, we notice that
the metrics, novelty and diversity, have a special structure, where
novelty is a global property (each item has a novelty value) and di-
versity is a local property (each set of items has a diversity value).
This structure can be represented as a graph connectivity property
called conductance which is the ratio of a local property (edges
across a cut) and global property (weighted in-degree of vertices in
the cut). The problem of increasing novelty and diversity of a rec-
ommendation set can be formulated as finding a low-conductance
cut on a dissimilarity graph. However, we must ensure that this cut
still extracts highly recommended items from the recommendation
algorithm, and we do this by weighting conductance by “scores"
from the recommendation algorithm.

To illustrate MCDC, consider an example movie recommender
system. The first problem that MCDC mitigates is what we call
the Pigeonhole problem, where a recommender learns that you like
comedies from a few initial ratings and then, subsequently, repeat-
edly recommends comedies. While the first few comedy recom-
mendations may be welcome, eventually, you will tire of the lack of
variety. The other problem that MCDC addresses is the Blockbuster
problem, where a recommender may favor the most-popular, high-
budget movies excluding the less-popular independent movies. To
make this challenging, novelty and diversity, are potentially com-
peting objectives. Consider a corpus of ten movies where eight are
dramas and two are nearly identical comedies. In this example,
the most novel recommendation set of size two is selecting the two
comedies which is also the least diverse recommendation set. It
is also easy to a construct the converse example, where two popu-
lar movies that are representative of their genres are recommended
leading to high diversity but poor novelty. However, it is not enough
to address both the Blockbuster and Pigeonhole problems, we also
have to ensure that the recommendations are movies that the user



will likely rate highly.
Simultaneously optimizing for these three objectives is challeng-

ing as they are limited by computational hardness results. Optimiz-
ing for diversity, even without novelty, is NP-Hard. We address this
problem by relaxing diversity to a metric called coverage, which
essentially constrains that not only is the recommendation set is di-
verse but also is “similar" to its complement. In other words, cov-
erage is a measure of representativeness which, when maximized,
naturally leads to higher diversity. This relaxation allows us to pose
the problem as a spectral problem (solving for eigenvectors), which
can be solved at scale with fixed-point iteration which is a common
programming model for many large-scale graph analytics frame-
works [20].

Existing solutions to this problem have been explored in a line
of work called hybrid recommender systems [15], that study ag-
gregating the results from multiple recommendation algorithms.
For general recommendation criteria, this problem is hard and one
state-of-the-art solution (Ribeiro et al.) relies on evolutionary al-
gorithms to iteratively move towards a Pareto-optimal ranking by
weighting each algorithm differently. In this work, we find that the
global-local structure of the novelty-diversity problem allows us to
approximate Pareto-optimal solutions as a linear algebra problem
faster than hybrid recommenders which model the recommenda-
tion algorithms as black boxes. While we do not address the same
generality of problems as in hybrid recommendation, in fact only a
specific definition of novelty and diversity, we argue that this spe-
cial case is an important one for many domains.

To evaluate MCDC, we run a series of experiments on three
datasets: the latest MovieLens dataset 1, Jester [13], and CAFE
[14]. For each of these datasets, we have a base recommendation
algorithm, and we improve the diversity and novelty of its recom-
mendations. We show that MCDC provides recommendations sets
with up to 20% higher combined geometric mean values (of nov-
elty, diversity, and score) and that MCDC is up to an order of mag-
nitude faster than previous methods.

To summarize our contributions:

1. We propose the MCDC algorithm. Given any base recom-
mendation algorithm, it improves the novelty and the diver-
sity of the recommendation set by solving a graph partition
problem on the dissimilarity graph.

2. Recognizing that the problem is NP-Hard, we use a real-
valued eigenvector relaxation to approximate a Pareto-optimal
balance between novelty, coverage (which is related to diver-
sity), and the score from the base algorithm.

3. We evaluate this algorithm on datasets from three recom-
mender systems (Movie Lens, Jester [13] and CAFE [14])
and find that it out performs the hybridization approach [15],
and a recently proposed submodular coverage approach [21].

2. RELATED WORK
The earliest formalizations of novelty and diversity were stud-

ied in the informational retrieval (IR) community [4, 23, 24, 22,
6]. In IR, the problem is studied from the perspective of search
results. The most relevant search results may be highly redundant.
In recommender systems, these metrics are now well established as
desirable [8]. Presenting users diverse recommendations has been
long argued to have many benefits including increased user satis-
faction, and it exposes more products in the long-tail [1, 16].

Recently, the prevalence of news recommendation sites (e.g., Ya-
hoo news, Google news) has been a significant motivating factor for
1Dataset Released April 01, 2015, http://grouplens.org/
datasets/movielens/

the development recommendation algorithms that diversify [21].
News articles are often highly clustered with multiple articles re-
lating to exactly the same topic/event. Yue et al. [21] looked at the
problem of diversification in the Multi-arm Bandit Setting. In par-
ticular, they studied a problem called linear submodular contextual
bandits. Each item in the recommender system corresponds to a
Bandit arm, and there is a diminishing reward for pulling arms that
are too similar. When you can pose an optimization criterion, such
a diversification, as a submodular problem, they showed this could
be applied in the MAB setting with guarantees. In this work, we do
not consider the problem of “exploration" as in [21] and are eager
to investigate this in future work. However, we do compare against
the diversification algorithm used in [21] without the bandit reward
evaluation.

There are a variety of emerging recommender system domains,
such as online civic engagement, MOOCS, and discussion systems,
where this research can be applied [14, 11]. In these applications,
the goal of the recommender system is often to select comments
from other users to present to a new user. Recent research suggest
that novelty and diversity can catalyze group creativity [2, 12, 18,
19]. In this work, we actually evaluate against data in one such
recommender system, CAFE, that adaptively presents comments to
users to rate. We use MCDC to increase the novelty and diversity
of these recommendations.

In terms of user studies, Ekstrand et al. [7] presents the most
comprehensive results where they designed an experiment in which
they presented users with different lists of movie recommendations.
They had a “control" recommendation set using a standard Collab-
orative Filtering algorithm, and presented alternative sets with di-
verse ideas. They then asked users which list they prefer, their sat-
isfaction, and their trust of the recommender system. They found
diversity (defined in that work as lack of redundancy in recommen-
dations) had a positive effect where users were more satisfied with
diverse recommendations. Interestingly enough, Ekstrand et al.
found that overly novel recommendations actually had a negative
effect where the recommendations become increasingly irrelevant.
This motivates the problems studied in this work and in Ribeiro et
al. [15] about balancing criteria.

Ribeiro et al. [15] proposed a model for balancing potentially
competing objectives from many recommendation algorithms. The
meta-algorithm (that optimizes weighting between the various con-
stituent recommendation algorithms) used in this work is the Strength
Pareto Evolutionary method [25]. In this model, each recommen-
dation algorithm independently scores an item, and then in each
iteration the solver hybridizes and evaluates the “fitness" of the
hybridization in terms of its distance to Pareto-optimality. This
model is very general and treats each recommendation algorithm
as a black box, and as a result is often very computationally in-
tensive. In this work, we explore the case of specific definitions
of novelty and diversity that allow us to exploit the structure of
the problem. Our formulation allows us to solve this problem with
linear algebra which is much more amenable to large scale imple-
mentation. We evaluate MCDC against this algorithm and find that
it optimizes the problem in an order of magnitude less time, and
with higher novelty/diversity in 5 out of the 6 datasets on which we
experimented.

We posed the multi-objective optimization problem as a ratio ob-
jective. The seminal work of Shi and Malik on the NCUT problem
[17] shows that hard combinatorial ratio objectives can be relaxed
as a spectral problem when they have a local-global structure. The
work by Kannan et al. [9] looked at this in detail. They found
that the quality of a clustering could be measured by a property
called conductance; the ratio of edges across the cut over the total



connectivity within the cut. Kannan et al. proposed many different
methodologies to find low-conductance clusterings/cuts including a
variation of Shi and Malik’s NCUT using a spectral decomposition
of the graph.

3. PROBLEM DESCRIPTION
We first characterize the problem of novelty and diversity, and

then describe the problem statement.

3.1 Definitions
Recommender System Model: Let I be the set of items, and U
be the set of users. Each user u ∈ U rates an item i from the set I
on a scale from [0, 1]. There is a base recommendation algorithm,
R, such that it assigns a real-valued score to each i ∈ I for every
user u ∈ U . We denote this score asR(i, u) which we also model
on a scale from [0, 1]. R abstracts the choice of recommendation
algorithm from the subsequent definitions. At the minimum, if we
have a rating matrix of users and items, and a recommendation al-
gorithm, our methodology can apply.

Item-Item (Dis)similarity: For the set of items I , we define a
function

S : I × I 7→ [0, 1]

S is called a similarity metric, if it defines a semi-metric space over
I . Since S is bounded between [0, 1], we define the dissimilarity
between two items as 1 − S(i, j). In many settings, we may not
have the similarity between all pairs of items. We say that our
similarity metric S is partially observed if it is only defined for a
subsetM ⊂ (I×I). For example, if our similarity metric measures
the correlation between ratings given by users who rated both item
i and j, we may not have corresponding ratings for all pairs.

Weighted Dissimilarity Graph: The partially observed semi-
metric defines a graph where items are vertices and edges are sim-
ilarity relations. We weight the edges on this graph by the product
of the dissimilarity between two items and the sum of their base al-
gorithm recommendation scores. Therefore, this graph, which we
denote as Gu is personalized for a given user u.

We can model I × I as a graph, and in particular, we will look
at one such graph called the dissimilarity graph for the user u, Gu.
Each item in I is a vertex of the graph. For each (i, j) ∈ M , we
add an edge with weight:

Wij = (1− S(i, j))(R(u, i) +R(u, j))

3.2 Recommendation Set Properties
Let L be a recommendation set, that is, a subset of I that is

recommended to a user. Let N be the number of items and k be
the number of items in the recommendation set. We define the
following properties of the recommendation set L.
Novelty: Novelty for an item is defined as total dissimilarity of an
item with all other items in I . For an item j in L:

novelty(j) =
∑
∀i∈I

(1− S(i, j))

Therefore, the mean novelty of L is defined as:
1

k

∑
∀l∈L

novelty(l)

We will use the notation novelty(L) to denote the mean novelty of
set L.

Diversity: The diversity the set L is defined as the average dis-

similarity of all pairs of items within L.

diversity(L) =
1

k(k − 1)

∑
∀i,j∈L,i 6=j

(1− S(i, j))

Compared to novelty, diversity is a local property of the recom-
mended set that does not require information about the corpus.
Given this definition, finding the most diverse set is equivalent to
maximal independent set [10], i.e., we can construct a partially ob-
served similarity metric that implies a solution to the most-diverse
problem implies a solution to the independent set problem. This
problem is not only known to be NP-Hard, but is also known to
be APX-Hard which means there does not exist a polynomial time
bounded approximation. In part due to this hardness result, many
current algorithms such as [21] relax diversity to a quantity called
coverage, which instead measures representativeness (See Section
5.1.1).

Coverage: We define “coverage" in terms of our partially ob-
served similarity metric. This definition is inspired by the defini-
tions using Rn in [21], but are instead, defined on a graph. Let L
be a subset of I , and I−L be the complement. The coverage of the
subset L is defined as the amount of similarity in I − L accounted
for by the set L. In other words, on average, how similar is the set
L to its complement:

coverage(L) =

∑
r∈L,j∈(I−L) S(i, j)

N(N − k)
Due to the normalization the scale of coverage is independent of
the size of the recommendation set. We can also define the inverse
coverage, which measures the amount of similarity not accounted
for by L:

coverage−1(L) = 1− coverage(L)
The inverse coverage is related to diversity in the following way:

coverage−1(L) ∝ N2diversity(I)−
(k2diversity(L) + (N − k)2diversity(I − L))

The inverse coverage measures the average diversity of both sides
of the partition L and I − L weighted by their sizes and how this
compares to the diversity of the base set. Coverage is a measure of
representativeness and intuitively a subset that represents a set of
items well will naturally have low-redundancy and be diverse.

Score: Finally, for the subset L, we can also define the score.
We define this as the mean value of the scores given by the base
recommendation algorithmR. For a user u,

score(L, u) =
1

k

∑
∀l∈L

R(l, u)

3.3 Problem Statement
Suppose, a user is given a recommendation score for each item
R(i, u) using the base algorithm. We want to find a set of items L
such that it simultaneously maximizes novelty, coverage, and score.
However, while we can optimize each criterion individually, these
objectives are potentially competing. We pose it as the following
optimization problem. Let I be a set of items. We have a partially
observed similarity metric defined on a subset of the pairs of items
M .

We select a subset L ⊂ I of size k such that it approximates a
Pareto-optimal [5] balance between novelty, coverage, and score.
The Pareto-optimal solution is a set L of size k such that there does
not exist another L′ of size k with a higher value on any one of
the three criterion, without at least one of the other criterion being
lower.



4. GRAPH CUT FORMULATION
In this section, we address the problem from the previous section.

We first describe how we can model the items as a graph. Then, we
describe a property called conductance which is proportional to a
ratio of novelty and inverse coverage. We then describe a spectral
algorithm to find a low-conductance cut.

4.1 Graph Conductance
The property that we will leverage is called graph conductance

that has been well studied in the context of clusterings and random
walks [9]. Conductance describes the convergence rate of a random
walk on a graph, where random walks on graphs with higher con-
ductance converge faster. Intuitively, graphs that have large cliques
connected by only a few edges will have low conductance; that is
random walks will get “stuck" in the cliques. In our setting, these
are sets of mutually dissimilar items that are very similar to the
other items (few edges in the dissimilarity graph).

DEFINITION 1. Let C ⊂ V be a cut of the graph. The conduc-
tance of C, φ(C) is defined as follows:

φ(C) =
‖∂C‖
‖C‖

where ‖∂C‖ is the sum of edge weights across the cut:

‖∂C‖ =
∑

i∈C,j∈V \C

W (eij)

and ‖C‖ is total in-degree of all of the vertices in c:

‖C‖ =
∑
i∈C

∑
j∈V

W (eij)

The lowest conductance cut (see [9]) is defined as the cut C.
arg min

C∈G
φ(C)

There have been numerous algorithmic techniques to find these
cuts. What is relevant to us is that conductance is a ratio that bal-
ances the weight of the cut with the connectivity of the vertices
inside the cut. In other words, the numerator measures the rela-
tionship with the complement, and the denominator measures the
relationship with the vetrex set. These are exactly the local-global
relationships that novelty and coverage measure.

4.2 Novelty
We can show that optimizing novelty for a fixed coverage and

expected score:
arg max

L∈2I ,|L|=k
novelty(L)

is equivalent to optimizing the denominator of conductance, if L is
a cut on the dissimilarity graph:

arg max
L∈2I ,|L|=k

‖L‖

PROPOSITION 1. Let L ⊂ I be a cut on the graph Gu. ‖L‖ is
proportional to the novelty(L).

PROOF SKETCH. ‖L‖ is the sum of all the weighted edges that
connect to the vertices in L. On the dissimilarity graph, this is∑
i∈L,j∈I 1 − S(i, j). Up to the normalization by the size of L

this is proportional to novelty(L).

4.3 Coverage
Next, if we fix novelty and expected score, we can minimize the

inverse coverage:
arg min

L∈2I ,|L|=k
coverage−1(L)

This is equivalent to minimizing the numerator term of conductance
if L is a cut on the dissimilarity graph:

arg min
L∈2I ,|L|=k

‖∂L‖

PROPOSITION 2. Let L ⊂ I be a cut on the graph Gu. ‖∂L‖
is proportional to the coverage−1(L).

PROOF SKETCH. ‖∂L‖ is the sum of all the weighted edges
that go across the cut. coverage−1(L) is defined as 1−coverage(L).
If we scale this by size of the cut:

λ = (N − k)k
Then we can show that the inverse coverage scaled by λ is:

λ · coverage−1(L) = λ− λ ∗ coverage(L)

λ · coverage−1(L) =
∑

(i,j)⊂M :i∈L,j∈I−L

1− S(i, j)

Up to the normalization by the size of λ, the inverse coverage is
proportional to:

λ · coverage−1(L) =| ∂L |

4.4 Score Weighting
Next, we analyze conductance with the score weighting when the

other two criteria are fixed. Each edge in the dissimilarity graph has
weight:

Wij = (1− S(i, j))(R(u, i) +R(u, j))
Therefore, this weighting increases the expense for cutting edges
between highly scored items (‖∂L‖). Also, whenL contains higher
scored items ‖L‖ is larger. As a result, with this weighting φ(L) is
larger when the cut has higher scored items.

4.5 The Pareto-optimal Solution
What we have shown is that finding the lowest conductance cut

in the graph:
arg min

C∈G
φ(C)

Is equivalent to solving this problem, that optimizes the ratio of
novelty and diversity, scaled by the score.

arg max
L∈2I ,|L|=k

score(L, u)
novelty(L)

coverage−1(L)

When solved exactly, this problem yields a Pareto-optimal solution.
From this formulation, we can clearly see that the naive solution is
to try all of the

(
N
k

)
subsets. However, we will see that a relaxation

of this problem can give us an approximate solution in O(| M |)
time.

5. GRAPH CUT RELAXATION
In this section, we discuss how to solve a relaxation of the for-

mulation in the previous section.

5.1 Finding Low-Conductance Cuts
Kannan et al. showed that the problem of finding low conduc-

tance cuts could be posed as Minimum Normalized Cut proposed
by Shi and Malik. Let N be the total number of vertices. Let p
be an binary indicator vector in {−1, 1}N that indicates whether
which side of the partition a vertex is on. We represent the edge
weights W as an N × N matrix, where component (i, j) is the
weight of the edge between i and j. We normalize W such that
each row sums to 1. It follows that the NCUT can be solved by



minimizing2:

min
p

pT (I −W )p

pT p

subject to: pT 1 = 0

p ∈ {−1, 1}
This problem was proven to be NP-Hard in its integral form [17].

However, it can be solved in PTIME if we relax p to be real valued.
This relaxation leads to a spectral formulation, i.e the optimal value
is an eigenvector. If we relax p to be real-valued, it becomes a
eigenvector system:

(I −W )p = λp

The eigenvector corresponding to the second smallest eigenvalue
(p∗), is optimal solution for the relaxed problem 3. The implica-
tion is that if we rank the comments by p∗i that indicates a stronger
chance that the comment is included in the un-relaxed normalized
cut. The top components of this ranking gives us the dissimilar
subset L.

5.1.1 Complexity
There are many interesting complexity theoretical properties of

novelty, diversity, and coverage. We highlight some of the impor-
tant results that motivate why we need the proposed relaxations
proposed.

Diversity: Given a dissimilarity graph, finding the most diverse set
for any size k is APX-Hard, that is, there does not exist a polyno-
mial time algorithm that can even approximate this problem within
a constant factor. To prove this, we can show that solving this prob-
lem implies solving the APX-Hard maximal independent set prob-
lem; where we find the maximum set of vertices that do not have
an edge between them. We can see that on an unweighted similar-
ity graph, independent set is the most diverse set. Therefore, if we
construct a graph with a maximal independent set of size k (which
by the definition of “NP" we can do in PTIME), the most diverse
set of size k is the maximal independent set.

Coverage: Coverage can be interpreted as a relaxation of diver-
sity, avoiding the APX-Hard result. For example, in Yue et al. [21],
the submodular optimization algorithm lends itself to a provable
1 − 1

e
≈ 63% bound which is independent of the data. Similarly,

our definition of coverage lends itself to Minimum K-Cardinality
Cut reduction that gives a bound that is essentially k

k−1
, which is

independent of the data and dataset size.

Novelty: Since novelty is a global property it can be optimized in
PTIME. In fact, at worst, novelty requires O(N2) time where you
compare all pairs.

MCDC Time Complexity: Modern large scale analytics frame-
works are well suited to solving eigenvector problems at scale, the
most notable of which is PageRank. Power-iteration can be used to
solve this problem iteratively. Since the graph is sparse, each iter-
ation will require | M | multiplications. The convergence rate of
power-iteration in this problem is governed by the ratio of the 2nd
and 3rd smallest eigenvalues c = 1−λ

1−λi−1
. Thus, the complexity of

the problem is O(c | M |). | M | is at most N2 when the sim-
ilarity metric is fully observed. What is fascinating about MCDC
is that we can optimize, albeit approximately, for both novelty and
coverage in at most N2 time.

On the other hand, the existing hybrid recommender system al-

2Here I refers to the identity matrix not the set of items
3The smallest eigenvalue corresponds to the trivial cut (taking the
entire graph) which has cost 0.

ternatives are much less efficient. If we analyze the SPEA-2 algo-
rithm used in [15], for the partially observed similarity metrics the
time complexity for one iteration is O(MN2), which is quadrati-
cally more than our method. Our approach exploits sparsity in the
problem, and exploits the local-global nature of the objective to
make these improvements.

5.2 Pruning Low-Score Items
While more efficient than the general hybrid recommender sys-

tem alternatives [15], the number of edges in the graph |M |might
be very large (quadratic in the items), which makes running this op-
timization for each user relatively expensive. To avoid this cost, we
can prune low score items. More precisely, if R(i, u) is the score
that the base recommendation algorithm gives to each item, let T
be the top-k′ scored items. We can run our optimization on T in-
stead of I . Of course, this will add additional approximation error
to the result and we evaluate sensitivity to k′ in our experiments.

5.3 Summary and Algorithm

Algorithm 1: MCDC
Data: I := set of items
Data: R(u,I) := scores for each item for user u
Data: M := set of pairs of items with similarity weights
Data: S(i,j) := similarity metric
Data: k’ a low-score pruning threshold
Result: A subset L of size k, that has high coverage, novelty,

and score
1. Create graph G, where each vertex is one of the top k’
scored items and add an edge for each m ∈M with weight:

(1− S(i, j))(R(u, i) +R(u, j))

2. Represent this graph as an adjacency matrix W with each
weighted edge as a component (i, j).
3. Transform the adjacency matrix W by normalizing each of
its rows to sum to 1.
4. Find the second smallest eigenvector of I −W .
5. Rank each element i by the component of the eigenvector.
6. Return the top k items.

To summarize the last two section, we show that the Pareto-
optimal solution to balancing novelty, coverage, and score is the
lowest conductance cut on a weighted dissimilarity graph. Finding
the lowest conductance cut is NP-Hard, however, there is a polyno-
mial time approximation algorithm based on the Normalized Cut
that can give a solution. This solution is a spectral approximation
that can be solved at scale and in distributed environment. How-
ever, if we wish to run this algorithm online, even this solution
might be too slow. Therefore, we can prune low-score items first
and optimize on the subset. This algorithm, Minimum Conduc-
tance Dissimilarity Cut (MCDC), is listed in Algorithm 1.

6. RESULTS
We evaluate the efficacy of MCDC to increase the novelty and

diversity of a recommendation set. The organization of the results
is as follows: (1) we describe the experimental setup including the
datasets and the similarity metrics used, (2) we evaluate our algo-
rithm against alternatives in terms of optimizing for novelty, diver-
sity, and score, (3) we illustrate the benefits of this optimization in
an end-to-end experiment, and (4) we describe the sensitivity of the
algorithm to the choice of parameters.



Algorithm CRCV1 MCAFEV1 MCAFEV2 CRCV2 OSL JESTER MoveLens

Base 0.693 0.695 0.687 0.672 0.715 0.680 0.583
TopNovelty 0.809 0.803 0.746 0.802 0.767 0.736 0.444
Submodular 0.707 0.708 0.689 0.726 0.676 0.695 0.571
Hybrid 0.796 0.801 0.818 0.780 0.770 0.792 0.599
MCDC 0.895 0.858 0.792 0.884 0.820 0.855 0.725

Table 1: For each of the algorithms, we list the geometric mean of the novelty, diversity, and score of the recommendation sets. We
find in all but one dataset, MCDC gives improved performance compared to the alternatives.

6.1 Experimental Setup
We evaluate our method with three recommender system datasets,

MovieLens, Jester [13] and CAFE [14]. Our goal is to show that
MCDC increases the novelty and diversity of recommendations on
these datasets given a base algorithm. Jester is a joke recommender
system which uses the Eigentaste algorithm to recommend jokes,
for this dataset we use the Eigentaste algorithm as a base algo-
rithm. We use the latest MovieLens (small) dataset, in which we
also apply the Eigentaste algorithm as the base recommendation
algorithm. CAFE is an online discussion tool that suggests com-
ments from other users current using a VarianceSampling algo-
rithm [14]. We evaluate our method on one dataset from Movie-
Lens, one dataset from Jester, and five CAFE datasets. Each CAFE
dataset is from a different instance of CAFE with a different main
discussion topic. Furthermore, each dataset has a different sparsity
of similarities.

Domain No. Items Sim Pairs

CAFE: CRC-V1 Politics 656 100790
CAFE: MCAFE-V1 Education 74 830
CAFE: MCAFE-V2 Education 53 104
CAFE: CRC-V2 Politics 286 23044
CAFE: OSL Education 231 11234
Jester Jokes 100 8650
MovieLens Movies 8570 1446210

6.1.1 Similarity Metrics
In our evaluation, the similarity metric S is defined as the squared

correlation of two item’s ratings. We list ratings for each item i and
j for which the same user rated both. Then, we take the correla-
tion of these ratings. In this work, we handle positive and negative
correlations symmetrically, and since the correlation is between
[−1, 1], the square correlation is between [0, 1] satisfying our as-
sumptions on the similarity metric. Since we will not always have
ratings for all pairs, this metric is partially observed.

6.1.2 Alternative Algorithms
For comparison, we look at the following alternative techniques:

Base Algorithm: We select the top-k items using the base recom-
mendation algorithm either Eigentaste or VarianceSampling.
Top Novelty: We directly compute the novelty for each idea based
on the metric discussed in Section 3. Then, we select the items with
the highest novelty.
Submodular Coverage: We apply a submodular representative
subset selection as proposed in Yue et al [21]. The objective func-
tion we used is a coverage objective, ie. select a subset that maxi-
mizes the number of items in the corpus that are within β similarity
with at least one member of the subset.
Hybrid Recommender: We apply the methodology of Ribeiro et
al. [15] to balance the three optimization criteria using their param-
eter choice but our metrics. The hybrid algorithm uses a hybridiza-
tion of the base algorithm, top novelty, and submodular coverage.

To evaluate the novelty, diversity, and base algorithm score, we
use each of these techniques to recommend items to all of the users

in the dataset and then average their novelty, diversity, and score.

6.2 Experiment 1. Novelty, Diversity, Score
In the first experiment, we compare the performance of each of

the algorithms. For each dataset, we recommend a set of 10 items
and evaluate the metrics: novelty, diversity, and score. Our ideal
result is that an algorithm should have a high value for each of
the metrics. In Table 1, we list the geometric mean of each of the
algorithms on the metrics. For multi-objective optimization, the
geometric mean is preferred to the arithmetic mean since it mea-
sures the area spanned by the frontier [3]. We find that MCDC
has the highest geometric mean in all but one dataset (MCAFEV2).
MCAFEV2 is the smallest dataset and in this case the evolution-
ary algorithm used in the hybrid recommender was able to con-
verge quickly to a better optimum. On the other hand, if we look at
the larger datasets CRCV1 and CRCV2, we see that our technique
gives a 12% improvement and 13% improvement respectively. For
the MovieLens dataset, there was a 17% improvement. The key
difference is that the hybrid strategy treats each of the recommen-
dation algorithms as a black box, which can give good results when
the dataset is small. However, when the dataset is larger, thus in-
creasing the degrees of freedom for the recommender, our results
suggest that MCDC is able to exploit the structure of the problem.

6.2.1 Novelty
To better understand where MCDC makes its gains, we can com-

pare the algorithms on each of the criteria. We first look at novelty
in Figure 1. Clearly, the TopNovelty algorithm will give us the
largest possible novelty for recommendation set. However, we find
that novelty of the recommendations given by MCDC are 87% of
this maximum value. In fact, for all but one dataset MCDC gives
the second highest novelty value. As before, MCAFEV2 is the ex-
ception. On average MCDC gives a novelty value that is 6% higher
than that given by the hybrid recommender system.

Figure 1: While directly optimizing for novelty gives the high-
est novelty value for the recommendation set, MCDC gives the
second highest value in all but one of the datasets.

6.2.2 Diversity
The next criterion that we will explore in more detail is diversity

(Figure 2). The submodular coverage technique proposed in Yue
et al [21], greedily optimizes for diversity. As with novelty, we
compare MCDC to the technique that individually optimizes this
metric. We find that as before in all but one of the datasets, MCDC
gives the second highest value (92%) of the submodular coverage.



However, with diversity, our gains w.r.t the hybrid recommender are
not as significant. We find that MCDC gives recommendations that
are only 3% more diverse than the hybrid recommender. We believe
this is due to the definition of coverage optimized in MCDC which
is the amount of similarity accounted for in the complement. In a
datasets where there are conflicting transitive relationships (i.e., a is
similar to b, b is similar to c, c is dissimilar to a), this definition may
lead to cuts that encourage conflicts on one side of the partition.
However, this problem seems to be mitigated when the graph is
sparse, as in the MovieLens dataset with a larger gain of 10%. We
hope to explore this problem in more detail in future work.

Figure 2: Submodular coverage greedily optimizes for diver-
sity. In all but one of the datasets, MCDC gives a recommenda-
tion set that has 92% of the diversity of the direct optimization

6.2.3 Score
Finally, we evaluate how well do the algorithms respect the scor-

ing of the base algorithm. In Figure 3, we evaluate the scores of
each of the algorithms. We find that compared to the base al-
gorithm, MCDC gives a recommendation with 90% of the mean
score. On this metric, we find that MCDC makes its largest gains
compared to the hybrid recommender of 10%.

Figure 3: We normalize the highest score in the algorithm to 1,
and plot the scores of the recommendation sets for the alterna-
tive algorithms. MCDC gives recommendations that are only
10% lower than the base algorithm

6.2.4 Exposure
We also explore how MCDC increases the exposure of less pop-

ular items in the corpus. Recall, that for each user in the dataset, we
recommend 10 items. We explore the recommendation frequency
of different items in the Jester dataset. To measure this frequency,
we look at the number of times an item is recommended per 1000
users. Over all the items, there is a distribution of recommendation
frequencies. We list the 90th percentile (Most Exposed), the me-
dian, and the 10th percentile frequency (Least Exposed). We find
that when MCDC is applied with Eigentaste it distributes expo-
sure of items for ratings more evently than Eigentaste alone.

Most Rec/1000u Median Rec/1000u Least Rec/1000u

Eigentaste 360 140 72
MCDC 280 220 120

6.3 Experiment 2. Efficiency and Scalabilty
In the next experiment, we compare three algorithms from re-

lated work (Yue et al., Ribeiro et al., and ours) on run time. In
Figure 4, we plot the running times of the algorithms on a loga-
rithmic scale. MCDC gives a running time between submodular
coverage and the hybrid recommender. We find that hybrid rec-
ommender requires an order of magnitude more time to achieve its
results (14.2x).

On the other hand, the submodular optimization is 2.5x faster
than MCDC on average. These gains increase for larger datasets
such as MovieLens, where it is 6.4x faster. This is understandable
from our complexity result in the previous section. Multicriteria
optimization is markedly harder than optimizing for a single cri-
terion. Submodular coverage only optimizes for coverage thus is
faster.

Figure 4: We compare the running time of our algorithm
against submodular coverage and the hybrid recommender sys-
tem. We find that our algorithm is an order of magnitude faster
than the hybrid recommender, yet also gives improved recom-
mendations.

6.4 Experiment 3. Pruning
In the previous section, we described an optimization to MCDC

by pruning the recommendation set to a fraction p of highest scored
items first and then running the optimization in the subset. We eval-
uate the performance degradation of MCDC when we apply this
optimization as a function of p in Figure 5. We plot the geomet-
ric mean of the three criteria: novelty, diversity, and score for the
CRCV1 dataset and vary p from the full dataset to 10% to the full
dataset 100%. On this dataset, for all of the values that we exper-
imented with, we found that that this technique gives a result that
is never worse than the base algorithm (though theoretically possi-
ble). In fact, we find that we can run the algorithm on only 22% of
the data and retain 90% of its benefits.

Figure 5: The novelty of the initial two ideas affects the number
of ratings a user will subsequently give and the quality of an
idea that the will subsequently submit.

6.5 Discussion
These results are promising and an open question is how increas-

ing novelty and diversity will ultimately affect participation and
engagement. We present some preliminary results from an online
experiment by applying the recommendation technique in January



Before After P-Value

Ratings/User 3.35 (N=12482) 4.59 (N=112) <0.001

2015 on the California Report Card 4. The California Report Card
is part of the CAFE family (datasets we used in this paper) and is
a similar online comment recommendation platform. We evaluated
this on 112 participants from January 2015 to March 2015. We
compare the statistics of these participants to those who visited the
application prior to January. We found that indeed there was a sta-
tistically significant increase in the number of ratings/user (3.35 to
4.59, p < 0.001 Wilcoxon Rank-Sum). These results suggest further
investigation with an A/B test to confirm these effects.

7. CONCLUSION
A number of recent works have argued that recommendations

that are more novel and diverse lead to increased user participa-
tion, engagement, and satisfaction. While, there is a growing con-
sensus that these metrics have a potential to improve recommen-
dation quality and user engagement, the community still lacks a
computational framework for increasing the novelty and diversity
of a recommendation set from a general algorithm. In this paper,
we propose MCDC an algorithm that given a base recommendation
algorithm improves the novelty and the diversity of the recommen-
dation set by solving a graph partition problem on the dissimilarity
graph. We show that problem approximates a Pareto-optimal bal-
ance between novelty, coverage (which is related to diversity), and
the score from the base algorithm. MCDC applies to any base rec-
ommendation algorithm and addresses the Pigeonhole and Block-
buster problems.

The existing approach to this problem is to use a hybrid recom-
mender system that aggregate multiple recommendation criteria.
The problem is that these techniques model these recommenda-
tions as black-boxes and often rely on iterative (and very expensive)
optimization techniques like evolutionary algorithms or simulated
annealing. MCDC outperforms an existing hybrid recommender
approach to this problem in both computational efficiency and in
the novelty, diversity, and score of the recommendations; which
we argue is due to how it exploits the global-local structure of the
novelty-diversity trade-off. Another important contribution of this
work was to evaluate the benefits, in terms of user participation
and engagement, of increasing novelty and diversity in a real sys-
tem. These results are promising and suggest numerous avenues
for future work. We are also interested in exploring other similarity
metrics, i.e., using tags to compare the similarity between items,
and also other datasets. We also will explore the question of time-
liness and making recommender systems robust to “fad" problems,
and weighting our graph conductance terms accordingly. Our code
is available at: github.com/sjyk/mcdc.
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