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Abstract— Robotic surgical assistants (RSAs) have the po-
tential to facilitate surgeries and reduce human fatigue. In this
paper we focus on surgical retraction, the common surgical
primitive of grasping and lifting a thin layer of tissue to
expose an underlying area. Given a 2D cross-sectional model
of heterogeneous tissue with embedded structures (such as
veins) and a desired underlying exposure region, we present
an algorithm that computes a set of stable and secure grasp-
and-retract trajectories, and runs a 3D finite element (FEM)
simulation to certify the quality of each trajectory. To choose
secure candidate grasp locations, we introduce thecontinuous
spring method and combine it with the Deformation Space
(D-Space) approach to grasping deformable objects with a
linearized potential energy model based on the locations of
embedded bodies. Experiments show that this method produces
many of the same grasps as an exhaustive computation with an
FEM mesh, but is orders of magnitude cheaper: our method
runs in O(v log v) time, whenv is the number of veins, while the
FEM computation takes O(pn3) time, where n is the number
of nodes in the FEM mesh andp is the number of nodes on its
perimeter. Furthermore, we present a constant tissue curvature
(CTC) retraction trajectory that distributes strain uniformly
around the medial axis of the tissue, by moving the gripper such
that the tissue follows a constant-curvature, constant-lengtharc.
3D FEM simulations show that the CTC achieves retractions
with lower tissue strain than circular and linear trajectories.
Overall, our algorithm computes and certifies a high-quality
retraction in about one minute on a PC.

I. I NTRODUCTION

Robotic surgical assistants (RSAs) such as The Intuitive
Surgical’s daVinciTM system are increasingly being adopted
into the operating room because of their ability to enhance
a surgeon’s precision and dexterity in laparoscopic proce-
dures [8], [21]. But they are currently teleoperated directly
as slave devices completely under the surgeon’s control.
Computer assistance of commonplace surgical tasks could
alleviate the workload of the surgeon, allowing him or her
to focus attention on more critical components of the surgery.
It may also facilitate laparoscopic surgery with three or more
manipulators, which may enable surgeons to perform more
complex procedures than currently possible. Furthermore,
automation may enable RSAs to perform procedures in
battlefields, where trained medical personnel are in short
supply, as well as in remote locations, where large time
delays hamper direct teleoperation [22].

This paper describes initial steps toward automatingre-
traction in robotic surgery. In many surgical procedures, it

Fig. 1: The process of retracting a layer of tissue. The
surgeon identifies an area of interest and makes incisions
in order to retract the overlying tissue. Tool tips should be
optimally placed to minimize maximum strain.

is necessary to reveal an area of interest that is covered by
an outer layer (e.g. skin). In order to do so, incisions must
be made in the covering tissue. This will result in a layer
of tissue, attached to the remaining tissue at only one side.
A gripper may then be used to lift and retract the free end
of the tissue layer (Fig. 1). We assume the incisions have
been given, and we consider the problem of retracting a
thin layer of tissue using a 2 point-jaw. The grasp location,
jaw separation distance, and motion of the gripper must
be chosen to balance two competing objectives: providing
the surgeon with a clear view and good accessibility on
the underlying area of interest (the exposure objective),
while avoiding tissue damage (the strain objective). We set
a maximum permissible tissue strain as a tissue damage
criterion. Before executing a retraction on the real patient,
the objectives must becertifiedby simulating the retraction
with a 3D finite element model (FEM) of the tissue.

Although the tissue retraction takes place in 3D space, we
restrict the motion of the gripper to a 2D cross-section of
the tissue, as illustrated in Fig. 2. The gripper then has a 4D
configuration space, and our retraction problem seeks a path
in configuration space that achieves the specified objectives.
We consider homogeneous as well as heterogeneous tissue
containing veins, which we illustrate by embedding a number
of stiffer parts in the softer surrounding tissue. The main
objective of retraction is moving the tissue above the line-
of-sight AB.

Since RSAs should act responsively to the quickly chang-
ing environment, we seek to reduce the amount of time we
run relatively expensive FEM simulations. To do so, we



Fig. 2: 2D tissue retraction problem. The tissue is considered
heterogeneous and we are concerned with visibility and
accessibility of the area of interest.A denotes the position
of a camera andB the most distant location on the area of
interest. The RSA should move the tissue to lie completely
outside the shaded region, aboveAB, enabling visibility to
the camera.

decompose the 2D cross-section of tissue into orthogonal
1D components. Tangential to the layer, the tissue is treated
as a cantilever beam; perpendicular to the layer, the tissue
is modeled by an infinite number of linear springs. In the
perpendicular direction, thecontinuous spring modelis used
to quickly determine a set of candidate grasp locations that
make use of tissue heterogeneity to ensure locallystable
grasp. For homogeneous tissue, all locations are locally
equivalent, so we sample uniformly along the tissue. We
find locally securegrasps using a method similar to the D-
Space algorithm proposed by Gopalakrishnan and Goldberg
to compute deform closure grasps [7]. Along the tangential
direction, we use a cantilever beam model to derive an
analytical solution for theconstant tissue curvature(CTC)
retraction trajectory, given a grasp location.

Experiments show that the spring model is able to find
many of the same stable and secure grasps that would be
computed by the original D-Space algorithm, while improv-
ing running time by orders of magnitude. We also show the
CTC trajectory causes lower tissue strains than circular and
linear trajectories. Combining the candidate grasp locations
for heterogeneous tissue with the CTC trajectory, we certify
each candidate retraction using the FEM simulator, evaluate
the exposure and strain objectives, and pick the best retrac-
tion for execution. The combined algorithm can typically
produce and certify high-quality retraction trajectoriesin
about one minute on a PC.

II. RELATED WORK

A. Robotic surgical assistants

Several robots have been proposed for minimally invasive
laparoscopic surgery, for example by Cavusoglu et. al. [4],
Guthart and Salisbury [8], and Madhani et. al. [14]. The
Intuitive Surgical’s daVinciTM system has been used in
thousands of surgical procedures [8]. The surgeon uses a
console with visual and tactile feedback to teleoperate a pair
of manipulator arms that enter the body cavity. A variety
of methods address improving the precision of such robots,
including steady-hand systems [21] and motion scaling [8].
Nevertheless, these procedures remain under direct control of

the surgeon. Our work considers semi-supervised operation
of such robots. There has been some precedent for the use of
semi-supervised robots in specific medical applications, such
as neurosurgery [20], radiation therapy [23], and prostate
brachytherapy [6].

B. Grasping deformable objects

A large body of work has addressed grasping and fixturing
of rigid objects (see Bicchi and Kumar [2] for a survey),
and a number of researchers have looked into this work
to deformable objects. Cheong, et. al addressed fixturing
problems for an articulated chain of polygons [5]. Cai, et.
al. and Menassa et. al. investigated deformable sheet-metal
parts while minimizing part deformation [3], [16]. Howard
and Bekey used a learning approach to enable grasping
of deformable objects using tactile feedback [11]. Yu et.
al. studied the behavior of controllers for grasping soft
tissue [25].

The notion of D-Space was introduced by Gopalakrish-
nan and Goldberg [7], to characterize stability and release
resistance of deformable parts modeled by a FEM mesh.
A configuration in D-Space is represented by all DOFs of
the nodes of the mesh. The free space in D-Space consist
of topology preserving, collision free configurations. Stable
configurations require positive work to release the object
from its grasp. An algorithm for finding an optimal jaw sep-
aration distance was also introduced for a two-point gripper
that balances the energy needed to release the part against
the energy needed to compress it into plastic deformation [7].
We use a simplified version of this technique to select secure
grasps of a thin tissue layer.

C. Manipulating deformable objects

A number of researchers have addressed motion planning
for deformable linear objects such as ropes and cables.
Latombe et. al. describe a sampling-based motion planner
for rope manipulation with two cooperating robot arms [19].
Kavraki et. al. describe a method for computing energy-
minimizing curves subject to manipulation constraints, and
apply them to surgical suturing problems [17]. Holleman
et. al. and Lamiraux and Kavraki developed path planners
for elastic surface patches [10], [13]. The surface patch is
modeled as a Bezier surface with low bending energy, and a
sampling-based planner is used to plan the path.

Other work has addressed planning for volumetric defor-
mations. Rodriguez et. al. applied sample-based planning
to deformable objects in deformable 3D environments [18].
Alterovitz et. al. used a numerical optimization approach
to plan needle paths in 2D deformable tissue for prostate
brachytherapy [1]. Hirai et. al. used visual feedback to
control points in 2D deformable tissue [9]. This approach
has been considered for applications in breast biopsies [15]
and prostate brachytherapy [24].

III. PROBLEM STATEMENT

A. Tissue and Robot Modeling

We model the tissue as a 3D elastic deformable bodyE.
For simplicity we assume thatE is a thin layer of uniform



thickness having known material properties (and may be het-
erogeneous). For simulation purposes,E is represented into
a tetrahedral FEM mesh. Heterogeneous tissue is modeled
by a mesh with varying stiffness.

The robot gripper is modeled by two point contacts. We
restrict the motion of the gripper to a planar cross section
of 3D space. In the rest of this paper, we will take a frame
of reference such that the cross section is spanned by the
x-y plane, and gravity acts in the−y direction. The tissue’s
bottom edge coincides with the horizontal axis, and is fixed
at the right side.

We denote the space of all possible configurations of the
robot on the plane asC. Throughout the discussion, we will
describe a configurationc ∈ C of the robot as a vector
(x1, y1, x2, y2). Section IV-D will make use of a different
(x1, y1, θ, σ) representation, whereθ is the angle between
the two jaws (as measured relative to thex-axis) andσ is
the distance between the two jaws.

We denote the D-Space of all 3D FEM mesh configura-
tions asD. A configurationq ∈ D describes all positions of
the simulation nodes. We forward simulate FEM dynamics
using the method of Irving et. al. [12]. Our retraction
selection algorithms make the assumption that the tissue is
damped and velocities of the jaws remain low, such that the
tissue moves smoothly between time steps and its motion
can be approximated as a quasi-static process.

B. Retraction Trajectories

We describe a retraction with a robot trajectoryc(t) :
[0, T ] 7→ C, for some termination timeT . We assume that at
time t = 0, the jaws are instantaneously placed at points on
the perimeter of the tissue. In other words, we do not consider
how the robot moves before it makes initial contact. After
we contract the jaws a certain distance, the motion of the
tissue in response toc(t) can be computed by evaluating the
FEM simulation. Let this path be denotedqc(t) : [0, T ] 7→ D.
During the trajectory, we keep the distance between the jaws
fixed.

C. Visibility, Grasp Security, and Strain Objectives

Our problem is to produce a retractionc(t) and a termi-
nation timeT that meets the following objectives:

1) Visibility. Given the locationB on the area of interest
that lies farthest away from the camera, and the camera
positionA, we require that at timeT , all the tissue at
configurationqc(T ) lies above lineAB. This condition
is illustrated in Fig. 2.

2) Grasp security. We require that the grasp points stay
fixed relative to the tissue throughout the retraction
(i.e., do not break contact or slip). We assume the
friction coefficient µ between the gripper and tissue
is known.

3) Admissible strain. The “maximum strain” measure we
use in this paper is actually not the actual maximum
strain, but rather a variant that is less prone to noise and
discretization artifacts in the FEM mesh. Letε1%(q)
be the average strain of the 1% of volume elements

with the highest strain in tissue configurationq. Let the
“maximum strain”εmax(c) be the maximum ofε1%(q)
for all tissue configurations along the retraction. We
require thatεmax(c) does not exceed a strain limitεL.

We assume that if the robot computes a certificate that a
retractionc(t) satisfies these objectives in the FEM simula-
tion, thenc(t) is safe to execute. We also considerεmax(c)
as a soft objective function, such that given a number of
retractions to certify, and a sufficient amount of computation
time, we will pick the retraction that minimizes the maximum
strain.

IV. M ETHOD

A. Overview of Generate-and-Test Approach

We seek efficient solutions to the retraction problem.
Due to the high computational expense of FEM simulation,
general-purpose methods (e.g., numerical optimization or
sample-based motion planning) are prohibitively expensive.
Instead, our approach generates a number of candidate
retractions (up to a user-defined maximum), and tests the
objectives of Section III-C by evaluating the FEM simulation.

To generate the retractions, we first pick a set of contact
pairs pa and pb which are likely to be locally stable, using
a simplified linear spring model. Each contact pairpa and
pb defines a single candidate retraction, as follows. We first
close the jaws to a distance that trades off stability against
tissue strain. Then, holding the separation distance constant,
we move the gripper along a trajectory that is optimal if
the tissue layer is viewed as a homogeneous cantilever beam
under no gravity. The following sections will describe how
we generate each component of the retractions in more detail.

B. Choosing stable grasp locations

The first task in retraction is determining where to grasp
the tissue. The locations we choose are locally optimal with
respect to the grasp security and admissible strain objectives,
while we consider the visibility constrain at a later stage.
Gopalakrishnan and Goldberg [7] introduced the notion of D-
Space for deformable tissue modeled by a FEM mesh. Grasps
that are located at local minima in the elastic potential are
consideredstable, and they describe an algorithm that finds
an optimal jaw distance between 2 jaws at perimeter nodes,
by trading off stability against plastic deformation. Finding
the optimal distance for an-nodes mesh withp perimeter
nodes takesO(n3p2 + p6 log p) time.

We use the same concepts in our approach, but can
find stable grasp positions considerably faster because our
object is known to be a flat rectangular mesh. We further
simplify the problem by requiring that the jaws must be
directly opposite the mesh surface, as illustrated in Fig. 3.
Otherwise, the jaws would apply asymmetric forces to the
tissue after compression, and would compromise our grasp
security constraint. Thus, our problem is reduced to finding
a horizontal translationx along the length of the tissue.



Fig. 3: A continous model for representing heterogeneous
tissue. Darker shaded areas represent veins. Jaws as shown
in positions 1 and 2 (but not 3) are allowed, as they are
opposite from each other on the tissue. When considering
a line segment running from the upper surface to the lower
surface between the jaws, we regard it as a serial connected
spring with varying spring constants.

1) Stable grasps and escape energy:To find stable grasps,
we examine the tissue under compression as a function ofx.
We let keq(x) denote theequivalent spring constant, which
represents the amount of force atx needed to compress the
tissue a unit distance.

We characterize the stability of a grasp locationx by its
ability to resist shifting to a neighboring spring. That is,
a grasp atx is stable if positive work is needed to shift
the grasp fromx to x′. This is precisely the case where
x corresponds to a local minimum ofkeq(x). Escaping the
basin of attraction of a stable grasp requires sliding the
grasp past a local maximum ofkeq(x). We use the following
escape potentialmetric to characterize the stability of a stable
grasp locationx:

Escape(x) = min(keq(xr), keq(xl)) − keq(x)

where xr and xl are respectively the local maxima to the
right and left ofx.

Thus, to find all stable grasp locations and calculate their
escape potential, we must simply find the extreme points of
keq. Though, in principle, it would be possible to compute
keq using the FEM model, we use a much fastercontinuous
spring modelapproximation.

2) Locally stable grasp locations using a continuous
spring model: In this section we will use a model for the
tissue that approximates the tissue’s compression behavior
as a vertical linear spring along a slice through the tissue
(Fig. 3). This approximation decouples each slice from its
neighboring tissue, and therefore ignores interactions due to
shear stress. If the tissue is sufficiently thin, shear stresses
will not affect the compression behavior much.

Consider the line segmentscross(x) running vertically
through the tissue between the jaws placed atx. We can
decompose it into multiple line segmentssi with length
li(x), each of which has constant Young’s moduliEi. We’ll
consider thesi as infinitesimal small bars and according to
Hooke’s law, any forceF applied to such a bar having cross
sectional areaAi and lengthli(x) induces a displacement
∆L:

F =
EiAi

li(x)
∆L = ki(x)∆L (1)

Fig. 4: Above: The 2D model representing the heterogeneous
tissue. Below: A plot of the equivalent spring constant
function along the tissue and quality ranking for stable
grasps.

After eliminating the cross sectional area, which is con-
stant over all bars, we see that we can considersi as a
spring with spring constantki(x) = Ei

li(x) . Stringing all these
segments together, we treatscross(x) as a serial spring with
equivalent spring constantkeq(x):

keq(x) =
1

∑n

i=1
1

ki(x)

=
1

∑n

i=1
li(x)
Ei

(2)

whereli(x) describes the intersection length of veinsi with
scross(x). In practice, for a thin slab of tissue, only a small
number of veins are being intersected at any distancex along
the tissue.

Since the veins are represented as polygons, we can com-
pute the extreme points ofkeq using a sweep line algorithm.
We note that the extreme points ofkeq(x) are also extreme
points of 1

keq(x) , and 1
keq(x) is a sum of linear functions.

Considering vertices of polygons as event points, we find
when1/keq(x) changes slope for each vertex encountered in
the event queue. If the veins are represented byv vertices,
sorting the queue takesO(v log v) time, and each of thev
event points can be evaluated inO(1) time, which leads to
an O(v log v) running time overall.

Fig. 4 shows an example of the model and the equiva-
lent spring constant function constructed by the sweep-line
method using a fine polygonalization of the veins.

C. Choosing an optimal jaw distance

Once we have chosen a location to grasp the tissue, we
must choose a compression distanceσ. We use a criterion
similar to that used in Gopalakrishnan and Goldberg [7]
which balances the competing objectives of a secure grasp
and low strain, in particular, we chooseσ such that the
energy needed to release the grasp is equal to the energy
needed to exceed the strain limit. An important consequence
of this criterion is that jaw compression can be reduced when
the tissue is heterogeneous and the grasp location is locally
secure (i.e., bordered by relatively stiff veins). In turn,this
reduces the strain imposed on the tissue.

We chooseσ as follows. Let the tissue at the grasp point
have the equivalent spring constantkeq. Compressing the
jaws to distanceσ will achieve strain:

ε =
L − σ

L

whereL is the rest height of the tissue. The elastic strain
limit εL imposes the constraintσ ≥ (1 − εL)L. Given σ,



the amount of energy needed to compress the spring to the
strain limit is

UL(σ) =
1

2
keq(σ − (1 − εL)L)2 (3)

We also find the two locally stiffest parts of the tissue that
neighbor the grasp positions. Pick the least stiff of the two,
and letkn denote its equivalent spring constant. If the tissue
is locally homogeneous, we setkn = keq. The amount of
energyUn to compress the neighboring spring a distanceσ
equals:

Un(σ) =
1

2
knσ2 (4)

We chooseσ such that (3) and (4) are equalized. This value
is given by:

σ =

√

keq(1 − εL)L
√

keq +
√

kn

(5)

We useUn(σ) (= UL(σ)) as a grasp stability metric. Note
thatUn(σ) at grasp locationx is proportional toEscape(x).
Fig. 4 illustrates the ranking of several grasp points based
on this metric.

D. Choosing a Retraction Trajectory

After finding grasp locationspa, pb and a jaw separation
distanceσ, we must find a path of the manipulator to
retract the tissue. Some simple paths (e.g., straight linesand
circular arcs) can achieve the retraction objectives without
causing excessively high strains, because the largest strains
are usually caused by the squeezing of the gripper. But, they
do stretch the tissue unnecessarily. Therefore, we introduce
a constant tissue curvature(CTC) trajectory that keeps the
medial axis of the tissue stretch-free and bend with a constant
curvature.

To compute this trajectory, we treat the tissue as a ho-
mogeneous cantilever beam that can bend and stretch, and
ignore the effects of gravity. Since tissue is thin, the strain
caused by stretching is much higher than the strain caused
by bending. **** Our gripper will clamp the tissue on the
free end and as the tissue remains attached to remaining
tissue, we treat the fixed end as clamped as well. Given such
boundary conditions, the tissue will obtain a configuration
that minizes potential energy, which is comprised of bend
energy and stretch energy. Since the tissue is thin, the stetch
energy will be much larger than the bend energy. This entails
that strains caused by stretching is much higher than strains
caused by bending. Furthermore, our tissue needs to lie above
the line of sight. Since our fixed end of the tissue lies in
the same half-space, any curve that fullfills this contraint
and is stretched, can be unstretched and still fullfill the
constraint. As a result, stretching is unnecessary. *** Thus,
we aim to keep the length of the tissue constant. With the
length held constant, we also seek to minimize the maximum
bending strain. In order to achieve a uniformly distributed
strain, theories on beams prescribe that curvature should be
constant, so the beam should form a circular arc. We are
therefore interested in finding the retractionc(t) that bends
the tissue in a circular arc while keeping its length fixed.

Fig. 5: An optimal final configurationpg for the medial axis
pointp0 at distancex from the fixed end will lie on the circle
having radiusR, intersects the originO and is tangent to the
line-of-sight AB. Keeping each intermediate configuration
optimal, p0 must remain on the end of a circular arc with
curve lengthx, and intersecting the origin.

We place a coordinate frame with its origin at the lower-
right corner of the tissue. Let−L denote the position of
the grasp point. Alongc(t), the lower edge of the tissue
must describe a circular arc with constant lengthL but time-
varying radiusR(t) and center(0, R(t)), as illustrated in
Figure 5. At t = 0, we haveR(t) = ∞ and ast increases,
R(t) decreases, moving the center of the circle along they-
axis toward thex-axis. At the end timet = T , the arc must
lie to the right of the line-of-sight.

We compute the goal radiusRg = R(T ) to be tangent to
the line-of-sight. With a bit of algebra, this can be shown to
be:

Rg =
|A − B||bxay − axby| − (ax − bx)(axby − bxay)

(ay − by)2

(6)
where A = (ax, ay) and B = (bx, by). We linearly

interpolate curvature to determine tissue radiiR(t) in in-
termediate time steps:

R(t) = Rg

T

t

At the tissue configuration at timet, the medial axis of
the tissue will coincide with an arc of the circle with center
(0, R(t)), but with radiusR(t) − 1

2h. Sliding along this arc
with arclengthL, we compute the pointp(t):

p(t) = ((R(t) − 1
2h) cos θ, (R(t) − 1

2h) sin θ + R(t))
θ(t) = L

R(t)− 1

2
h

+ 3
2π

where the angleθ is chosen to keep the arclength fixed. At
c(t), the projections of the jaw locations on the medial axis
should coincide withp(t). Incorporating the jaw separations
σ, we present the equations of the final trajectory:

ppa(t) = (Ra(t) cos θ(t), Ra(t) sin θ(t) + Ra(t))
ppb(t) = (Rb(t) cos θ(t), Rb(t) sin θ(t) + Ra(t))
Ra(t) = Rg

T
t
− σ

Rb(t) = Rg
T
t

+ σ − h
θ(t) = L

Rg
T
t
−

1

2
h

+ 3
2π

whereppa andppb denote the location of the lower and upper
jaw respectively. An illustration of such a path is given in
Fig. 6



Fig. 6: The trajectoriespa(t) andpb(t) the jaw nodes follow
during the retraction.

This previous analysis did not account for gravity or
inhomogeneity. In either case, the tissue would no longer
form a circular arc, and the tissue may droop below the
line-of-sight. An ad-hoc solution might simply setRg lower
than (6). We take a more principled approach where we
generate an overly long retraction trajectory, and let the FEM
simulation run only until all objectives are met, or some
constraint is violated. *** As time increases, the radius of
R(t) will increasingly become smaller thanRg. Bending
strains in the tissue (which try to rectify the tissue to a
straight configuration) will play a more dominant part as
we increase and will eventually be able to compensate for
gravity. ***

V. EXPERIMENTS

All results in this section were obtained on a tissue model
having dimension of 5.0 cm in length and 0.44 cm in height
and depth, and density of 1 g/cm3. For 3D simulation, Young
Modulus and Poisson Ratio of 40 kPa and 0.45 respectively
for the tissue and 200 kPa and 0.45 respectively for the vein.
We setεL = 0.5, andµ = 0.5 throughout all experiments.
The gravity for the dynamic simulation is set to 9.8 m/s2

downward.

A. Assessment of Grasp Selection Quality

We compare our continuous spring method of finding
locally stable grasp locations to brute-force simulationswith
the commercial FEM package ANSYS. The FEM mesh
contains 10,000 nodes and 160 pairs of opposite perimeter
nodes. In ANSYS, we enumerated each pair of opposite
perimeter nodes, contracted a unit distance and solved for
the maximum strain in the tissue. The ANSYS simulation
took 16 minutes and 32 seconds on a 1.8 GHz processor and
2 GB of RAM, while the spring method took 0.1 seconds.
Fig. 7 shows the equivalent spring constant functionkeq,
and indicates the top15 grasp locations as computed by
brute-force simulation and by our spring model. The spring
model finds 8 out of 15 stable and secure grasp locations as
computed by ANSYS.

B. Assessment of Retraction Path Quality

In the following experiments, we use our in-house 3D
FEM simulator to compare the quality of our retraction
trajectories (as described in Sec. IV-D) against linear and

Fig. 7: The tissue model and graphs showing stable grasp
locations. The upper graphs was obtained by the spring
method. The lower graph shows the results obtained from
running brute-force simulations on all opposite perimeter
nodes.

(a) (b)

Fig. 8: Comparison between linear, circular and the CTC
trajectories for two lines-of-sight, starting at distance(a)
25% and (b) 15% from the fixed end of the tissue. Each
line-of-sight has 45◦ slope. Strain of0.5 means failure. The
CTC trajectories usually outperform the other trajectories,
but circular trajectories perform slightly better for somegrasp
locations when the line-of-sight approaches the fixed end of
the tissue.

circular paths, which are attractive for their relative sim-
plicity. We simulate the retraction by first compressing the
jaws towards each other for an optimal distance (as described
in Sec. IV-C) and then moving the jaws along the desired
trajectory until the tissue is above the line-of-sight. We
monitor the maximum strain during the simulation. For each
grasp location, we run linear paths with (1) 60◦ and (2) 75◦

slopes, (3) a circular path and (4) the CTC trajectory. In the
linear and circular paths, we adjust the jaw orientations such
that they are perpendicular to the line from the fixed end to
the jaws midpoint.

1) Experiments on homogeneous tissue:Fig. 8 plots the
strain during the simulation on homogeneous tissue with
gravity for two lines-of-sight for 10 uniformly sampled
grasping locations. We can see that the CTC path performs
better than the circular and linear paths in all cases, even for
suboptimal grasp locations.

Repeating the same experiment for other lines-of-sight,
we found that the CTC trajectory almost always outperforms
the other paths, except when the line-of-sight lies close to
the fixed end of the tissue (approximately 25% away from
the fixed end). In these cases, circular trajectories perform
slightly better for certain grasp locations near the free end
of the tissue.

2) Experiments on heterogeneous tissue:In this section,
we consider a heterogeneous tissue containing 10 veins



Fig. 9: A screenshot of our 3D simulation on a heterogeneous
mesh with 20 veins. The maximum strain is color coded. The
top image shows the triangles on the surface of the mesh.
Bottom image shows the strain on the veins. The depth is
expanded to3.5cm.

Fig. 10: Side view of 3D FEM mesh containing 10 veins.

(Fig. 10). For all candidate grasp locations found the continu-
ous spring method, we ran the 3D simulation using the linear,
circular and CTC paths. Results are shown in Fig. 11. Both
the CTC and the circular path are able to find the optimal
jaw location between veins 3 and 4.

For suboptimal jaw locations, the CTC path usually out-
performs other paths, except the circular path performs
substantially better at jaw location 5. (Even under further
scrutiny, we are unable to discern a clear cause for this
behavior.) Apart from these occasional anomalies, this and
other experiments suggests that the CTC trajectory still
works well with heterogeneous tissue, even a homogeneity
assumption was used in its derivation.

C. Optimal Grasp Locations for Varying Line-of-Sight

We also performed experiments to explore how the optimal
grasp location computed by our algorithm varies depending
on the lines-of-sight. We used homogeneous tissue, and
exhaustively simulated the retractions computed for50 grasp
points uniformly distributed along the tissue. Fig. 12 shows
that the optimal grasp locations vary, between 15% and 45%
from the open end of the tissue. As the line-of-sight gets
steeper or nearer to the fixed end of the tissue, the optimal
grasp location moves closer to the free end of the tissue. We
also found that the optimal jaw locations are insensitive to
the friction limit, and in fact, no friction is required in the
optimal retractions.

D. Efficient Simultaneous Certification and Selection Using
Pruning

To choose the best of all candidate grasp locations com-
puted by our spring model, we run the 3D FEM simulation
for each candidate grasp location and choose the one that

Fig. 11: Comparison between various linear, circular, and
constant-tissue-curvature (CTC) paths for heterogeneoustis-
sue containing 10 veins. A jaw index ofi means we contract
at a stable location between thei-th and(i+1)-th vein. The
CTC path slightly outperforms the other paths.

Fig. 12: Showing optimal jaw locations and the resulting
strains of our algorithm for various lines-of-sight in homoge-
neous tissue with strain limit of 0.5. The jaw location and the
line-of-sight position are specified as the fraction of length
from the open end of the tissue.

minimizes the maximum strain. Rather than run the simu-
lation in full for each grasp location, we make use of two
simple optimizations that improve the running time. Since
we seek the retraction that minimizes the maximum strain
εmax(c), we can prune a retraction simulation early if the
tissue strain exceeds the maximum strain computed for a
prior retraction. We also terminate a simulation as soon
as either the friction coefficient needed to hold the grasp
exceedsµ or when the strain induced by the motion exceeds
the plastic strain limitεL, which indicate failure.

Our experiments in the heterogeneous tissue of Fig. 10
suggest that this pruning technique reduces running time
from 286s to 76s for 10 veins. On a more complex mesh
with 20 veins, pruning reduces running time from 819s to
95s. In most cases, the simulation trials were pruned early
on, as strain is accumulated quickly during the compression
phase and at the beginning of retraction.

E. Optimal Retraction for a Wide Piece of Tissue

Fig. 9 shows a screenshot from a retraction computed by
our algorithm on a 3.5 cm wide heterogeneous tissue. The
full animation of this retraction accompanies this paper asa
supplemental video.

VI. CONCLUSION AND FUTURE WORK

This paper introduced a method to compute a trajectory for
a two-point gripper, moving in a plane, to retract a thin layer
of tissue under visibility and tissue strain constraints. We pro-
pose a set of locally stable candidate grasps, where stability is



characterized by the D-Space approach. Using a continuous
spring approximation, we present an algorithm for finding
candidate grasps that runs inO(v log v) time, whenv is the
number of veins embedded in the tissue. For each candidate
grasp location, we compute a retraction trajectory that causes
a cantilever beam model of the tissue to follow a constant
curvature arc. These retractions are then certified using a
3D finite element simulator. Experiments suggest that 1)
the continuous spring approximation computes many of the
same grasp locations as a far more expensive FEM-based
computation, and 2) constant-tissue-curvature paths produce
lower tissue strains than circular or linear paths. Because
our algorithm computes only a small number of candidate
retractions, we can certify and select a high-quality retraction
in about one minute on a PC.

In future work we hope to address more realistic manipu-
lator models, with geometric and kinematic constraints that
limit the accessibility of grasp points, as well as obstacles
that limit the tissue’s range of motion. With these constraints,
regrasping may be necessary. Currently we use a strain
metric as a proxy for tissue damage. *** Although our
model is tested under circumstances involving gravity, our
model does not take it into account. In terms of minimal
energy configurations, gravity would add height energy, and
minimization of the combination of bend energy and height
energy should be investigated. *** A more sophisticated
model would describes damage at the cellular level as a
function of strain and duration of applied load. Our method
also does not address retractions where the incision cuts
along a line, and the manipulator must spread the incision
to obtain a desired line-of-sight. Such retractions require a
more three-dimensional reasoning than the method presented
here. Simultaneous optimization of incision patterns and
retraction trajectories is another line of work that would
involve interesting tradeoffs: smaller incisions cause less
trauma, but at the expense of larger tissue strains during
retraction.
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