
 

 

  

 Abstract — The initial resting pose of many industrial 
parts differs from the orientation desired for assembly. 
We show that it is possible to align parts during 
grasping using a standard parallel-jaw gripper. A 
solution is an arrangement of four gripper point 
contacts that will align the part in the vertical plane as 
the jaws close. Given a n-sided polygonal part and k 
uniformly distributed sample points on each side, we 
present an O(n4k4) numerical algorithm to compute a set 
of solutions or a report that no solution exists. The 
algorithm combines toppling, accessibility, and form-
closure analysis. We have implemented the algorithm 
and report sensitivity data from physical experiments. 
 
Index Terms — 

  

  Robot grasping, toppling manipulation, 
gripper design, part feeding. 

I. INTRODUCTION 
“Grippers can be the most design-intensive components of 
an assembly system” [15]. Although grippers are widely 
used for automated manufacturing, assembly, and packing, 
designing gripper jaws is usually ad-hoc and remains a   
limiting factor in industrial applications. This paper 
proposes a new approach based on mechanics and part 
geometry. 

(b)(a)  
Fig. 1. Gripper contacts align the part for assembly. 
 

Industrial parts on a flat worksurface will naturally 
come to rest in one of several stable orientations [12], but it 
is often necessary to rotate parts into different orientations 
for assembly. Fig. 1 illustrates how parts can be aligned 
using a standard parallel-jaw gripper. The part is initially in 
stable orientation (a); as the jaws close, the part is passively 
rotated into orientation (b) for assembly onto the peg.  
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Given part geometry, we study how to compute the position 
of four gripper contacts. We illustrate notation in Fig. 2. 
Pushing tip A’ and toppling tip A make contact with the part 
to rotate it from the initial stable orientation to its desired 
orientation, and then fixturing tips B’ and B make contact 
with the part, stop its rotation, and securely grasp it. The 
gripper with four jaw tips is low in cost, footprint, and 
weight, and can be rapidly reconfigured to handle different 
parts.   
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Fig. 2. Contacts A and A’ rotate the part into its desired orientation.  It is 
then grasped with contacts B and B’. 

II. RELATED WORK 
There is a substantial body of research on robotic grasping.  
Useful surveys can be found in [13], [24], [16], [26], [34], 
[27], [3], and [4]. 

Final grasp configurations can be analyzed with 
classical screw theory. Markenscoff et al. [21] prove, by 
infinitesimal perturbation analysis, that four (seven) hard 
contacts are necessary and sufficient to achieve form 
closure of a 2D (3D) object in the absence of friction. 
Trinkle [39] presents a quantitative test for form closure 
grasps in term of linear programming. Ponce et al. [28] 
address the problem of stable grasps of 3D parts and derive 
necessary and sufficient conditions for equilibrium and 
force-closure. Rimon and Burdick [33] provide exact 
decision process for immobilization based on higher order 
derivatives of part motion in C-space. Han et al. [14] 
formulate grasping problems as a set of convex 
optimization problems involving linear matrix inequalities.  
Liu [18] presents an O(n3n/2) algorithm to compute all n-
contact form closure grasps on a polygonal object.  

A number of papers consider part motion in the 
horizontal plane. The motion of parts during grasp 
acquisition is analyzed by Mason [22], who studies push 
mechanics as a role of passive compliance in grasping and 
manipulation. Erdmann and Mason [9] explore the use of 
motion strategies to reduce uncertainty in the location of 
objects. They describe a systematic algorithm for sensorless 
manipulation to orient parts using a tilting tray. Brost [6] 
analyzes the mechanics of the parallel-jaw gripper showing 
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that it is possible to align parts using passive pushes and 
squeeze mechanics. Goldberg [11] proves that a modified 
parallel-jaw gripper can orient any polygon up to symmetry 
by a sequence of normal pushes. Akella et al. [2] introduce 
a minimalist manipulation method to feed planar parts using 
a one-joint robot over a conveyor belt. Qiao and her 
colleagues apply the concept of attractive regions to peg-in-
hole insertion operations [29] and to pushing and grasping 
in 3D C-spaces [30]. 

Several authors address motion of parts in the vertical 
(gravitational) plane during grasping. Erdmann [10] studies 
nonprehensile manipulation in C-space and develops an 
algorithm for sensorless part orienting. Abell and Erdmann 
[1] study how a planar polygon can be rotated while stably 
supported by two frictionless contacts. Zumel and Erdmann 
[46][47] analyze nonprehensile manipulation using two 
palms jointed at a central hinge. Rao et al. [31] give an 
analysis for picking up polyhedral parts using 2 hard-point 
contacts with a pivoting bearing, allowing the part to pivot 
under gravity to rotate into a new configuration. Blind et al. 
[5] present a “Pachinko”-like device to orient polygonal 
parts in the vertical plane. It consists of a grid of retractable 
pins that are programmed to bring the part to a desired 
orientation as the part falls. Moll and Erdmann [25] orient 
parts by dropping them on specially designed surfaces. 
They adjust the shape of the surface and the drop height to 
obtain a combination that yields a minimal entropy 
distribution of the part’s final orientation. 

Perhaps closest to the current paper, which addresses 
multiple-contact toppling and grasping, is the work of 
Trinkle et al. [37][38], which analyzes lifting parts off a 
work-surface using a planar gripper with two pivoting jaws.   
They generate liftability regions corresponding to the 
contacts causing the object to: slide, jam, break either of 
two contacts with the surface, or break both contacts with 
the surface. One important difference is that we focus on 
part alignment using only translational motion of gripper 
jaws. Kaneko et al. [17] derive a sufficient condition to 
move an enveloped part using a set of torque commands.  
To efficiently predict the dynamic behavior of a grasp, 
Song et al. [36] provide a hybrid approach by switching to a 
compliant model when a rigid body model has no unique 
solution.    

Wallack and Canny [40] develop an algorithm for 
planning planar grasp configurations using a modular vise. 
Brown and Brost [7] turn the vise upside down to form a 
modular parallel-jaw gripper. Each jaw consists of a regular 
grid of precisely positioned holes. By properly locating 
(inserting) four pins on each grid, the object can be grasped 
reliably in the desired orientation. They give an efficient 
algorithm for computing optimal positions for pins 
depending on a planar fixture model and additional 3-D 
geometry analysis.  

Our work is also motivated by recent research in 
toppling manipulation. Zhang and Gupta [42] study how 
parts can be reoriented as they fall down a series of steps. 
The authors derive the condition for toppling over a step 
and defined the transition height, which is the minimum 
step height to topple a part from a given stable orientation 
to another. Yu et al. [41] estimate the center of mass 

(COM) of objects by toppling. Lynch [19] [20] derives 
sufficient mechanical conditions for toppling parts on a 
conveyor belt in term of constraints on contact friction, 
location, and motion. For pin design, we introduce a set of 
geometric functions to describe the mechanical property of 
toppling [43]. 

The approach described in this paper is consistent with 
the guidelines proposed by Causey and Quinn [8] for the 
design of grippers for manufacturing: include functionality 
in gripper jaws, use jaws to align parts, and design for 
proper gripper-part interaction. We combine toppling 
mechanics with an analysis of jamming, accessibility, and 
form closure in the gravitational plane. A preliminary report 
on this approach appeared in [44]. 

III. PROBLEM DEFINITION 
Given a part, we want four contacts that will rotate it into a 
desired orientation and grasp it securely. The input is: the 
vertices of an n-sided convex projection of an extruded 
polygonal part, its center of mass (COM), initial and 
desired orientations, a vertex clearance radius ε, and bounds 
on the part-surface friction coefficient [0, µs_max] and on the 
part-gripper friction coefficient: [µt_min, µt_max]. The output 
of the algorithm is a report that no solution can be found or 
a set of solutions, each given as the position of four jaw tips 
(see Fig. 2).  
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Fig. 3.  Convex hull of the part in Fig. 2. 
 

Fig. 3 shows the convex hull of the part sitting on a flat 
work-surface in its stable orientation. We define a frame 
originating at P with X-axis on the surface pointing right 
and Z-axis pointing up. This frame translates to the right as 
the part is pushed. 

Consider the part at its initial orientation.  Its COM is a 
distance ρ from P and an angle η from the +X direction. 
Starting from P, we consider each edge of the part in 
counter-clockwise order: e1, e2, …, en. The edge ei, with 
vertices vi at (xi, zi) and vi+1 at (xi+1, zi+1), is in direction ψi 
from the +X axis. Let wi be the distance along edge ei as 
shown in Fig. 3. Any point on ei can be expressed as (xi + wi 
cosψi, zi + wi sinψi). 

Let θ denote the rotational angle of the part as 
measured from the X-axis.  Initially θ = 0; θd is the part’s 



 

desired orientation and θ1 is its next stable orientation in the 
counter-clockwise direction. We assume θd < θ1. We say an 
edge ek is visible if it can be seen from +X direction; 
invisible, otherwise. Thus, ek is visible if 0 < ψk +θ < π; ek 
is invisible if π < ψk +θ < 2π. Note that A can only make 
contact with visible edges and that A’ can only make 
contact with invisible edges. 

Our analysis involves the graphical construction of a 
set of geometric functions that represent the mechanics of 
part alignment including the vertex function and the rolling 
function. These functions are dependent on θ and map from 
part orientation to height: S1→ℜℜℜℜ+, where S1 is the set of 
planar orientations.  

We assume that the part and the gripper are rigid, and 
that the part’s geometry, the location of its COM, and the 
position of the jaws are known exactly. We also assume 
that inertial effects are negligible during part motion.  
Without loss of generality, we assume that the part will be 
rotated counter-clockwise. Jaw tips for clockwise rotation 
can be computed using a mirror image of the part.  

IV. TOPPLING  
Toppling tip A and pushing tip A’ make contact with the 
part and rotate it counterclockwise during toppling. The 
part maintains contact with the work-surface at pivot point 
P. We assume the toppling tip A’ keeps contact with edge en 
in this paper (see [45] for general cases). 
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Fig. 4. θT: critical angle where part is going to rotate about A’ and lose 
contact with P. 

The part is rotated from initial orientation θ = 0 to the 
desired orientation θd. Let θT denote the critical rotational 
angle where the COM is directly above A’. Let ω denote the 
interior angle of the part at pivot point P. As shown in Fig. 
4, we have: 
 

dA’ / tan(θT+ω ) =ρ cos(η+θT). (1) 
 
Thus the desired orientation of the part must be within the 
range θd ∈ [0, θT], otherwise the part will rotate about A’ 
and lose contact with P. 

Let θC denote the critical transition angle where the 
COM is directly above P. We divide toppling into two 
phases: rolling and settling, where 0 < θ  < θC and θ >θC  
respectively.  

The radius function, R(θ), is the height of the COM as 
the part is rotated [22]. The local minima of the radius 

function correspond to stable orientations of the part; the 
local maxima correspond to the critical angle θC’s. Each 
vertex of the part defines a vertex function, Vi(θ), which 
gives the height of vertex i as the part rotates. The vertex 
functions define which part edge a jaw tip at a given height 
will touch. Given dA’, the range of friction coefficients, and 
the toppling tip A in contact with edge ei, the rolling 
function Hi(θ) is the minimum height of A guaranteed to 
cause the part to rotate at orientation θ.  

We assume that part-worksurface and part-gripper 
friction coefficients µs and µt (their corresponding friction 
cone half-angles are αs = tan-1µs and αt = tan-1µt 
respectively) are given precisely in section A and B. We 
then relax this assumption to define Hi(θ) given bounds 
onµs and µt. 

A.  Rolling Phase 
During the rolling phase, the part has three contacts at 

A’, A, and P with corresponding pushing, toppling, and 
surface friction cone as shown in Fig. 5. The part rotates 
and translates relative to these contacts. The system of 
forces on the part, including the contact force at the work-
surface, the contact force at the tips, and the part’s weight, 
must generate a counterclockwise moment on the part with 
respect to pivot point P. The contact force at P is along the 
left edge of the surface friction cone, but the direction of the 
contact force at A’ depends on angle ω +θ.  

Consider the case where π > ω +θ > π/2. Rotation 
causes the contact between the part and A’ to move away 
from P. Thus the contact force at A’ is along the left edge of 
the pushing friction cone.  

We use a graphical method, “moment labeling”, to find 
the rolling function. This method was first presented by 
Reuleaux [32]. Mason [23] applied it to study multiple 
planar contact problems. Van der Stappen et al. [35] gave a 
polynomial-time algorithm to compute all form closure 
grasps on a polygonal part using this method.  
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Fig. 5. Rolling phase (π > ω +θ > π/2): the part maintains contact with A’, 
A, and P. Vectors at each contact represent the left and right edges of the 
corresponding friction cones. 



 

We construct a triangle P0P1P2 as shown in Fig. 5. 
Each edge of the triangle corresponds to a contact force or 
gravity force. P0 is at (xp0, zp0), which is the intersection of 
the left edge of the surface friction cone and the left edge of 
the pushing friction cone. P1 is at (xp1, zp1), which is the 
intersection of the vertical line through the COM and the 
left edge of the surface friction cone. P2 is at (xp2, zp2), 
which is the intersection of the vertical line through the 
COM and the left edge of the pushing friction cone. Let r01 
denote the line segment between P0 and P1 and let |r01| 
denote its length. We denote r02, r12, |r02|, and |r12| similarly. 
Thus we have: 

 
xp0  = t – |r01| sinαs,  (2) 
zp0  = - t/µs + |r01|  cosαs, (3) 
xp1 = t,  (4) 
zp1 = - t/µs, (5) 
xp2 = t, (6) 
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The locations of P0, P1, and P2 are a function of θ. As θ 

increases, P1 shrinks to P along r01, r02 sweeps 
counterclockwise, and P2 moves up while r12 remains 
parallel to the Z-axis. Triangle P0P1P2 exists if and only if 
ω +θ +αt < π, i.e. θ  <π -ω -αt. 

If every force in the toppling friction cone makes a 
positive moment about every point in the P0P1P2 triangle, 
the only part motion possible is rotation about P as the jaws 
are closed. For all forces in the toppling friction cone to 
generate a counterclockwise moment about the triangle, the 
left edge of the friction cone must pass above the triangle; 
all other vectors in the friction cone will pass higher. We 
denote the vector at the left edge of the toppling friction 
cone as fl and the right edge as fr. We find the height of A 
sufficient to roll the part by projecting lines from P0, P1, 
and P2 along angle fl into the edge contacting A. The 
maximum of these projections is the minimum height of A 
sufficient to roll the part. Note that this is also the minimum 
height of A to keep the part on the worksurface. 

Let wi,2 denote the distance from vertex vi to A along 
edge ei where the left edge of the toppling friction cone 
passes exactly through point P2. Let Xi and Zi denote the 
location of vertex vi after the part undergoes pure rotation 
by angle θ, i.e., Xi = xi cosθ - zi sinθ and Zi = xi sinθ + zi 
cosθ.  We can show through geometric construction that: 
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where ξ i = θ +ψi and γil = θ +ψi  + αt + π/2 . 
The distances wi,0 and wi,1 are defined similarly, where 

the left edge of the toppling friction cone intersects P0 and 
P1 respectively. 
 The rolling function, Hi(θ), is based on wi(θ) that is 
max (wi,0(θ),wi,1(θ),wi,2(θ)). wi(θ) can be shown  to be: 
 









∞
≥<<
<<<

=
otherwise

andw
andw

w imi

imi

i ωψθθ
ωψθθ

0
0

0,

2,

,  (11) 

 
where θm = min (θC, π -ω -αt). Thus, the rolling function is 
given by: 
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where Hi

*(θ) = Zi + wi sinξ i.     (13) 
 

Following the same methodology, we find Hi(θ) under 
the condition π/2 >ω+θ > 0. 
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Fig. 6. Vertex functions and rolling function. 

 
Fig. 6 illustrates function R(θ), H2*(θ), V2(θ) and V3(θ) 

for the part in Fig. 3 with  αt = 5°, αs = 10° and dA’ = 9. The 
kink (θ =37°) of R(θ) represents the orientation where e6 is 
on the surface. At a certain angle θ, any A at height h will 
instantaneously rotate the part if max (H2(θ),V2(θ)) < h < 
V3(θ). The toppling function indicates that A can roll the 
part at any contact on e2 when 0 < θ  < 20°. 

B. Settling Phase 
If the desired final orientation of the part θd is greater 

than θC, the part will enter the settling phase. It is important 
to guarantee that the part remains in contact with A, A’, and 
the worksurface. Since the part rotates counterclockwise, 
the contact force at A’ is in the direction of the left edge of 
the pushing friction cone and the contact force at P is in the 
direction of the left edge of the surface friction cone.  



 

We now define another critical angle, θE, beyond 
which the part may accelerate under gravity and lose 
contact with A. To avoid this, we require that θd < θE. 
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Fig. 7. θE: critical angle where sliding starts. 

 
To solve for θE we find the critical angle at which the 

part remains stationary with only contacts at A’ and P. This 
corresponds to the angle where P2 is on the left edge of the 
surface friction cone, i.e., the vertical line through the 
COM, the left edge of the surface friction cone and the left 
edge of the pushing friction cone intersects at the same 
point. As shown in Fig. 7, tan αs = | xp2 / zp2 |. Therefore, we 
have  the following equation to solve for θE: 

 
[dA’ + ρ tanαs cos(η+θE)] tan (ω+θE) tan (ω 

+θE+αt) - ρ cos(η+θE) tan (ω+θE) + dA’ = 0. (14) 
 
To find the minimal height of the toppling tip that is 

guaranteed to roll the part, we construct the triangle P0P1P2 
(see Fig. 8) and compute the rolling function as described in 
the last section. 
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Fig. 8. Settling phase. 

C. Bounded Friction Coefficients 
In the previous section we assumed exact friction 

values were given. In this section we relax that assumption 
and derive the rolling function given upper and lower 
bounds on the friction coefficients.  
 For each value of θ, the geometric functions can take 
on a range of values depending on the range of friction 
coefficients. To guarantee toppling for all the friction 
values in the range, we take the maximum values of 

Hi(θ)over the given bounds. At each rotational angle θ, the 
maximum Hi(θ) corresponds to the critical friction 
coefficients denoted by µs*(θ) and µt*(θ). We first consider 
the function at each rotational angle θ to derive µs*(θ); then 
we find µt*(θ) for given µs*(θ) and θ.  

As illustrated in Fig. 5, during rolling, P0 moves up 
along r02 as µs decreases. Then, wi,0 decreases while wi,2 
remains unchanged. Therefore Hi(θ) is guaranteed not to 
increase as µs decreases. It is sufficient to consider only the 
upper bounds of µs, i.e. µs*(θ) = µs_max, to get the maximal 
Hi(θ) over the given range of µs. 
 Given θ and µs*(θ) = µs_max, the rolling function is a 
function of µt. In Fig. 5, P2 moves down along r12 as µt 
decreases. Therefore, wi,2 decreases and µt*(θ) = µt_max if wi 
is determined by wi,2. But P0 moves up along r01 as µt 
decreases, so µt*(θ) = µt_min if wi is determined by wi,0.  

As illustrated in Fig. 8, during settling, P0 moves up 
along r02 and P1 moves up along r12 as µs decreases. So 
µs*(θ) = µs_max. P2 moves down along r12 and P0 moves 
down along r01 as µt decreases. Thus µt*(θ) = µt_max. 
 In summary, we find Hi(θ)over the range of µs and µt 
by determining µs*(θ) and µt*(θ) at each θ, where µs*(θ) = 
µs_max in both rolling and settling phase and µt*(θ) = µt_max 
in settling phase. For  µt*(θ) in rolling phase, it is shown to 
be µt_min if ψi > ω and µt_max if ψi < ω.  

D. Toppling Function 
The toppling function is a vector function that 

combines the vertex functions and the rolling functions for 
the visible edges over the range θ ∈ [0, min (θT, θE)]. The 
rolling functions correspond to µs*(θ) and µt*(θ). From the 
toppling function, we can either determine or show to be 
non-existent the range of toppling tip heights that are 
capable of rotating the part to the desired orientation.  
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Fig. 9.  Toppling function. 

 
Fig. 9 illustrates the toppling function for the part in 

Fig. 5. We consider the toppling tip at height h (shown as 
height = 2 in the figure). θ0 is the rotational angle where h 
intersects V2, where contact A will move from edge e2 to e1. 
θC is the critical angle where the center of mass is exactly 
above the pivot point. H1 is the rolling function, which 
gives the minimum height of A that is in contact with e1. H1 
is bounded by V1 and V2 and is truncated where it intersects 
them. H2 is 0 in the range θ ∈ [0, θ0]. Since h is above H1 



 

and H2, a toppling tip at height h will rotate the part from a 
stable initial orientation with θ = 0 to θ = θC  = 71°. 

A toppling tip at height h will achieve this if we can 
draw a horizontal line corresponding to height h in the 
toppling function beginning at θ = 0 and ending at θd with 
the following characteristics: 

 
1: h > Hi(θ), if Vi(θ) < h < Vi+1(θ); (15) 
2: h < 

i
max (Vi(θ)), if θ  < θC.  (16) 

where i is the index for the visible edges.  
The first criteria are satisfied when the toppling tip is 

above the rolling function of the edge it contacts. When h 
crosses a vertex function, the part switches contact edges 
and then h must be above the rolling function for the new 
edge. The second criterion is that the toppling tip must not 
lose contact with the part by passing over it during the 
rolling phase. 

From the toppling function we can determine that the 
toppling tip at dA’ = h = 2 will topple the part to θC.  

V. ACCESSIBILITY 
During toppling, the part is constrained by three contacts: 
the toppling tip A, the pushing tip A’ and the pivot point P 
on the work-surface. Once the part has been rotated to the 
desired orientation θd, the fixturing tips, B and B’, must 
terminate its rotation and achieve a form closure grasp with 
A and A’.  

The accessibility constraint insures that B and B’ do not 
collide with the part before it reaches its desired orientation. 
It will limit the possible heights of B and B’ for given dA’ 
and dA. 
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Fig. 10.  Rotation of a part relative to the toppling tip A. Dotted/solid lines 
indicate the initial/final orientation of the part and dashed lines represents 
the motion trajectory of vertices.   

 
To insure accessibility from B, the point on the part at 

height dB can only move towards tip B. A similar condition 
applies for fixturing tip B’. The inaccessible range shown 
in Fig. 10 indicates heights of B that would collide with the 
part before its desired orientation. 

To compute the inaccessible range for B, we note that 
as the part rotates, the horizontal velocity of points on the 
part edges relative to tip A can be positive, negative and 
zero. There may be a point on each visible edge that has 
zero velocity as the part rotates through angle θ. Let Bθ be 
this point on edge ej and hθ be its height. Below hθ, the 

relative velocity of the points on ej is positive and Bθ moves 
towards tip B; above hθ, the relative velocity is negative and 
Bθ moves away from tip B. The accessibility constraint 
requires dB ≤ hθ for all visible edges at all θ. 

 To solve for hθ, we derive an expression for the 
horizontal distance between A and Bθ  using the fact that the 
part is constrained by A and P: 
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where i and j are the indexes of the edges in contact with A 
and B respectively and ξ i = θ +ψi  as defined in Equation 
(10). To find the point with zero horizontal velocity relative 
to tip A, we take the derivative of xθ with respect to θ: 
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We set (18) equal to 0, and then solve for dB to yield: 
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       For a given visible edge, we consider heights less than 
hθ for the fixturing tip B.  

Accessibility constraints for B’ on the part’s the 
invisible edges can be obtained similarly. Given dB , dB’ and 
the final orientation of the part, we can then compute the 
offset between tips along +X-axis (see xAB and xA’B’ in Fig. 
2) to get the location of the fixturing tips. 

VI. FORM-CLOSURE 
We also require that the set of four tip contacts generate a 
form closure grasp. We construct a 3×4 wrench matrix W 
based upon the X (Z)-axis projection and the torque of the 
unit normal inward vectors at the contacts. Let λλλλ denote a 
4×1 vector. The four contacts achieves a form closure grasp 
if and only if ∃ λλλλ > 0, s.t. Wλλλλ = 0. Given W, we can 
determine whether there exists such a λλλλ in time O(1). We 
compute the 3×3 minors Wi obtained by removing the ith 
column from W. There exists a λλλλ > 0 satisfying Wλλλλ = 0 if 
all the minors Wi have the same sign and none of them is 
zero [40]. The four tips achieve a form closure grasp on the 
part if this condition is satisfied.  

VII. ALGORITHM COMPLEXITY 
We give a polynomial-time numerical algorithm to solve 
the gripper contact problem. An asymptotic upper bound of 
its running time can be derived as follows.  



 

Given an n-sided polygonal part, we sample its 
invisible edges to obtain the height of the pushing tip, dA’, 
and sample its visible edges to obtain the height of the 
pushing tip, dA. Let k be the number of uniformly 
distributed sample points on each edge. 

For each dA’, we construct the corresponding toppling 
function. It takes O(1) time to compute each geometric 
function for a visible edge. There are O(n) visible edges in a 
graph, so the time to compute each toppling function  is 
O(n). The toppling function allows us to identify in time 
O(n) if a toppling tip at height dA can rotate the part to the 
desired orientation with the given dA’. So it takes time 
O(n)+O(kn)O(n) to find all the feasible dA for each dA’. 
Therefore, the running time to find all the feasible (dA, dA’) 
pairs is O(k2n3). 

Given a pair of feasible (dA, dA’), we apply an O(n) time 
accessibility analysis to generate the accessible ranges for 
the fixturing tips. We can then identify the fixturing tips 
within the accessible ranges in time O(kn). Next we check 
if each four-contact set achieves form-closure in time O(1). 
Since there are O(k2n2) feasible pairs of (dA, dA’) and there 
are O(kn) left and right fixturing tips with in the accessible 
ranges respectively, the algorithm takes time O(k4n4) to find 
the solution or to show no solution exists. 

VIII. IMPLEMENTATION AND EXPERIMENTS 
We implemented our jaw contact design algorithm as an 
application using the Java programming language. Mouse 
input allows a user to draw a part, define its COM and 
friction, and select its initial and final orientations; the 
program then computes and displays the resulting solutions 
or reports that no solution exists.  

 

25°

(a) (b)
 

Fig. 11. An example: part alignment. 
 

An example is illustrated in Fig. 11. The part is defined 
by the vertices at (0,0), (51.2, 0), (64.1, 57.2), (37.5, 96.2), 
(-32.2, 44.6), and COM at (21.9, 42.3). It is initially in 
stable orientation (a) and we desire to rotate it 25º into final 
orientation (b) for assembly.  

 
 

A’ 

A 
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Fig. 12. A resulting jaw design to align the sample part. 

 

Fig. 12 illustrates a computed jaw design for the 
sample part, where A at (5.93, 95.61), A’ at (-6.17, 4.55), B 
at (42.05, 31.83), and B’ at (-21.53, 78.02). 

 

 
Fig. 13. Experimental workcell: the robot picks up parts from a convey 
belt using the parallel-jaw gripper. 
 

To explore robustness to initial conditions, we 
conducted physical experiments using an AdeptOne 
industrial robot and a pneumatic parallel-jaw gripper 
(Mecanotron serial number: 101167) as shown in Fig. 13. 
The gripper jaws were designed by the algorithm and 
manually assembled from aluminum stock. To control the 
velocity of our pneumatic gripper, we added two air 
regulators (Wilkerson serial number: R08-01-F000) and two 
compression springs (Century serial number: C-606). 

 

  
Fig. 14. Natural resting pose of the lever and the assembly: the lever (in 
white) inserted onto the vertical post. 
 

The part we used is a small lever from a commercial 
videotape cassette (Fuji serial number: 7410161160). As 
shown in Fig. 14, the lever must be rotated from the natural 
resting pose and inserted into a vertical post on the 
videotape cassette. Its planar convex hull is shown in Fig. 3. 
The COM and friction coefficients were determined by 
physical experiments. 

Fig. 15 illustrates a successful grasp where the lever 
rotates in the vertical plane from its resting pose to the 
desired orientation θd = 37°. The part begins in stable 
orientation in (1). Its desired orientation for insertion is (5). 
We choose A and A’ at dA = 6mm and dA’ = 5mm, 



 

respectively. The friction cone bounds are αt = [0, 5°] and 
αs = [0, 10°]. x2 = 14mm, z2 = 0mm, ψ2 = 56°, η = 46°, ρ = 
7mm, and ω = 53°. For k = 10, the algorithm requires 
approximately one second on a 233MHz Pentium II PC 
running Microsoft J++ 6.0 to find 43 solutions. The gripper 
jaws in Fig. 15 have the following contact values: dB = 
11mm, dB’ = 13mm, xAB = 5mm, and xA’B’ = 1mm. 

 

 
Fig. 15. Part aligning experiment. 

 
We conducted two experiments to test sensitivity. In 

Experiment 1, we tested the gripper 50 times at each of 
seven height offsets. The results are shown in Fig. 16.  All 
50 trials were successful at the nominal gripper height 
(offset = 0).  But grasping is sensitive to small variations in 
gripper height; the part can jam in the gripper or be ejected 
when the gripper height is offset. 
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Fig. 16. Success rate when the height of the gripper varies. 

 
In Experiment 2, we vary gripper angle. Fig. 17 

illustrates a top view of the part (in gray) and the gripper 
jaws (in black). The arrows indicate the motion direction of 
jaws: δ is the angular error.  

 
 

X

δ 

 
Fig.17. Top view: Error in gripper angle δ. 

Fig. 18 shows that all 50 trials are successful even 
when the gripper is rotated by ± 10°. Grasping can fail for 
larger rotations, where the part is ejected or causes the 
gripper to jam. 
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Fig. 18. Success rate when the angle of the gripper varies. 

IX. DISCUSSION AND FUTURE WORK 
Designing gripper jaws is particularly challenging when the   
natural resting pose of a part differs from the pose desired 
for insertion. In this paper we consider a minimalist 
solution where four contact tips on a parallel-jaw gripper 
guide the part into alignment and hold it securely. We 
analyze the gripper contact design problem based on a 
geometric analysis of the mechanics of toppling, 
accessibility, and form closure and give a polynomial-time 
numerical algorithm. 

In future work we will extend our analysis to edge 
contact models. We will consider gripper jaws, based on 
trapezoidal modules, that maximize contact between the 
gripper and the part at its desired final orientation. We will 
also study shape tolerance of the gripper jaws and 
investigate the conditions under which solutions are 
guaranteed to exist.  
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