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Orienting Polygonal Parts Without Sensors 1 

Kenneth Y. Goldberg 2 

Abstract. In manufacturing it is often necessary to orient parts prior to packing or assembly. We say 
that a planar part is polygonal if its convex hull is a polygon. We consider the following problem: 
given a list of n vertices describing a polygonal part whose initial orientation is unknown, find the 
shortest sequence of mechanical gripper actions that is guaranteed to orient the part up to symmetry 
in its convex hull. We show that such a sequence exists for any polygonal part by giving an O(n 2 log n) 
algorithm for finding the sequence. Since the gripper actions do not require feedback, this result implies 
that any polygonal part can be oriented without sensors. 

Key Words. Robotics, Parts feeding, Planning, Grasping, Compliance, Motion planning with un- 
certainty, Compliant motion planning. 

1. Introduction. Manufacturing processes such as injection molding and stamp- 
ing often produce a stream of parts that must be reoriented before assembly. A 
parts feeder is a machine that orients parts (Figure 1). Although there are many 
designs for parts feeders, most use hand-crafted mechanisms that depend on the 
shape of the part. When part geometry changes, the hardware must be mechanic- 
ally redesigned with a trial-and-error process that can require several months. 
Such delays are problematic when production runs are short and part geometry 
changes frequently. 

Hence we desire a parts feeder that can be reprogrammed rather than physically 
modified. Furthermore, we desire an algorithm for automatically generating the 
appropriate program (or plan) from part geometry. In this paper we present a 
design for a programmable parts feeder for the class of polygonal parts: a planar 
part is polygonal if its convex hull is a polygon. The mechanism is the ubiquitous 
parallel-jaw gripper (Figure 2). We focus on the algorithm, which takes a descrip- 
tion of part geometry as input and generates a plan for controlling the gripper. 

We index each gripper action with an angle. Let a squeeze action, ~, be the 
combination of orienting the gripper at angle ~ with respect to a fixed world frame, 
closing the jaws as far as possible (e.g., with a binary penumatic valve), and then 
opening the jaws. As illustrated in Figure 3 for a rectangular part, a sequence of 
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Fig. 1. A parts feeder is a machine that orients parts. 

two squeeze actions, (0, n/4), will ensure that the part's major axis is aligned with 
the gripper. Note that no sensing is required; the sequence orients the part using 
only mechanical compliance. 

In the next section we review related work. We then specify assumptions and 
analyze the mechanics of squeeze actions before formally defining the problem. In 
Section 4 we describe a planning algorithm that maps a geometric part description 
into a sequence of actions for orienting the part. Sections 5 and 6 prove the 
correctness and completeness of the algorithm, establishing that such a sequence 

. 

Fig. 2. A parallel-jaw gripper poised above a rectangular part. 
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Fig. 3. Four traces, running from top to bottom, of a two-stage plan for orienting a rectangular part. 
Each squeeze action is indicated with a pair of bold parallel lines. In the absence of friction between 
the part and the jaws, the part will always rotate into a vertical or horizontal orientation after the 
first action at 0 ~ After the second action at 45 ~ the part is constrained to be in one of two symmetric 
orientations. 

exists for any polygonal part. Section 7 analyzes the time complexity of the 
algorithm. In Section 8 we show how the algorithm can be extended to the more 
robust class of push-grasp gripper actions. 

2. Previous Work. This method for orienting parts is rooted in two bodies of 
research: the theory of compliant motion planning and the mechanical analysis 
of parts feeders. 

2.1. Relation to the Theory of  Compliant Motion Plannin 9. In exact robot motion 
planning (also known as the Piano Mover's Problem) the objective is to find a path 
(or motion plan) from a known initial configuration (position and orientation of 
the robot) to a desired final configuration while avoiding a given set of obstacles. 
For a review of heuristic and algebraic techniques for this problem, see [13-[4]. 

In robot motion planning with uncertainty, the initial configuration of the robot 
is not known precisely. For example, suppose we are uncertain about the initial 
position of a mobile robot in a square room, yet we desire a plan that will move 
the robot into a corner. In the absence of obstacles, we can achieve this by driving 
the robot north long enough so that it is stopped by some wall, and then driving 
it west long enough to guarantee that the robot reaches the northwest corner of 
the room. Since mechanical compliance is used to reduce uncertainty, this type of 
solution is known as a compliant motion plan? 

A geometric approach to compliant motion planning was introduced by 
Lozano-Perez et aL [5]. In this approach the robot is represented as a point in 
the space of possible configurations. Mechanical properties such as stability, 

3 Also called afine motion plan in [5]. 
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friction, and kinematic constraints are related to geometric conditions in this space. 
To express uncertainty, both the initial conditions and the desired configuration 
(the goal) are represented as a subset of the configuration space such that the 
subset is guaranteed to contain the true configuration of the robot. It is also 
possible to represent uncertainty in the outcome of a nominal commanded motion 
(e.g., arising from control error) using a one-to-many mapping on the configuration 
space. A plan, or sequence of motions, creates a composite mapping. A plan that 
maps the initial set of possible configurations into the goal set is guaranteed to 
achieve the desired outcome. 

One way to generate such a plan automatically is to work backward, known 
as preimage baekehaining. Lozano-Perez et al. considered a class of planar 
problems such as inserting a peg into a hole, where peg velocity can only be 
controlled to within a worst-case error cone. Uncertainty can be reduced by sliding 
the peg along a surface as in the example above. By transforming the peg into a 
point in configuration space and projecting a cone that represents velocity error 
for a nominal commanded motion, it is possible to identify a geometrical region 
from which the motion is guaranteed to succeed. This region, called the strong 
preimage, then becomes the goal for another motion. If, by chaining backward, 
we can find a strong preimage that contains the initial set of possible configura- 
tions, the sequence of preimages defines a plan that is guaranteed to insert the 
peg successfully. 

Erdmann 1,6] differentiated between the teachability and recognizability of goal 
configurations and proposed a restricted class of computable preimages. Donald 
I-7] showed how the approach could be generalized to cope with model error and 
plan failure and gave an algorithm for planning compliant motions in the plane. 
Brost [8] developed numerical methods for planar compliant motion planning 
that are robust to bounded uncertainties in position, orientation, friction, and 
mass distribution. For other related work, see I-9]-[13]. 

A guaranteed plan does not exist for all problems. For example, the robot's 
initial configuration may be sufficiently uncertain such that no sequence of actions 
are guaranteed to achieve the desired goal configuration. Many algorithms for 
compliant motion planning are complete in the sense that they will find a 
guaranteed plan /f one exists. Canny and Reif [14] found that deciding if a 
guaranteed compliant motion plan exists is nondeterministic exponential-time 
hard. For the problem proposed in this paper, we show that a guaranteed plan 
always exists. 

Both Lozano-Perez 1-15] and Natarajan [16] noted the similarity between 
compliant motion planning and the design of parts feeders. The algorithm 
presented here uses preimage backchaining to find compliant motion plans for a 
class of planar problems where the system configuration describes the orientation 
of a polygonal part with respect to the robot gripper. During commanded gripper 
actions, the part experiences compliant motion, rotating into a stable configuration 
as the jaws are closed. Subsequently, jaw motion complies to the geometry of the 
part, halting at this stable configurtion. In a manner analogous to sliding a peg 
along a sequence of surfaces, the generated sequence of gripper actions constrains 
the final orientation of the part without recourse to sensors. Mason [17] describes 



Orienting Polygonal Parts Without Sensors 205 

several other examples where compliant motion plans can be used in lieu of sensors 
to resolve uncertainty. Such approaches are also known as open-loop [18], 
sensorless [19], or oblivious [20] manipulation. 

2.2. Relation to the Analysis of Mechanical Parts Feeders. Although sensor-based 
methods such as a binary vision systems can be used to orient parts, sensors 
introduce additional cost, sampling noise, and require the sensor to be coordinated 
with a mechanical actuator. Of the methods that do not require sensors, perhaps 
the most well-known example is the vibratory bowl feeder, where parts in a bowl 
are vibrated with a rotary motion so that they climb a helical track. As they climb, 
a sequence of pins and cutouts in the track causes parts in all but one orientation 
to fall back into the bowl for another attempt at running the gauntlet [21], [22]. 
When part geometry changes, a new helical track is required. Although vibratory 
bowl feeders are widely used in manufacturing, there are currently no systematic 
methods for generating track geometry from a description of part shape. Track 
design is a "black art" performed by specialists through trial and error: an untested 
part configuration may cause the track to jam during operation. Furthermore, 
there is no guarantee that an effective track exists forevery part. 

Hitakawa [23] described a parts feeder that uses an array of nests (silhouette 
traps) cut into a vibrating plate. The nests and the vibratory motion are designed 
so that the part will remain in the nest only in a particular orientation. By tilting 
the plate and letting parts flow across it, the nests eventually fill up with parts in 
the desired orientation. Although the vibratory motion is under software control, 
trial and error is required to design the net for each part. 

Singer and Seering 1-24] proposed several designs for parts feeders, one using 
impact and another where programmed vibration, based on part geometry, was 
used to drive parts into a stable orientation. Grossman and Blasgen [25] used a 
vibrating box to ensure that parts fall into one of a finite number of stable 
orientations under the influence of gravity. They then used a sequence of tactile 
probes to discriminate among these orientations. All the methods above use 
vibration, which can be undesirable for fragile parts. 

Mason [26] was the first to analyze the role ofpushin9 in robot manipulation. 
Building on results from classical mechanics, he identified a fundamental rule for 
predicting the direction that a part will rotate as it is pushed in the presence of 
Coulomb friction. Although the part's exact motion depends on microscopic 
variations in the support surface, Mason showed that its direction of rotation 
depends only on the location of the part's center of mass. Other geometric methods 
for predicting part motion in the presence of frictional contacts were described in 
[6], [19], [27], [28], and [8]. Mason's rule provided the basis for Brost's [29] 
push diaoram, which represents all possible motions of part as it is grasped by a 
parallel-jaw gripper. Brost showed how to use this diagram to identify single-step 
grasping actions that are robust to bounded uncertainty in friction and part 
orientation. 

When there is sufficient uncertainty in the initial orientation of a part, more 
than one action may be required. Several researchers have addressed the problem 
of finding a sequence of actions (a multistage plan) for orienting parts. Given a 
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finite set of actions, an exhaustive search can be used to consider all possible 
combinations. One difficulty is that the set of possible actions, often indexed by 
angle, is uncountably infinite. In the following four studies, the authors used a 
mechanical analysis based on part geometry to divide an uncountable set of actions 
into a finite set of equivalence classes. In all cases the objective, as in this paper, 
is a multistage plan for orienting a polygonal part. 

Mani and Wilson [30] considered pushing actions using a single planar fence. 
Peshkin and Sanderson [31] considered an arrangement of fixed fences where a 
conveyor belt causes parts to make contact with the fences. Erdmann and Mason 
[19] considered tilting actions that cause a part to slide into contact with the 
edges of a rectangular tray. Goldberg and Mason [-32-] considered grasping actions 
using a parallel-jaw gripper. In each case the authors developed a mechanical 
analysis and partitioned the set of possible actions into a finite number of 
equivalence classes based on part geometry. 4 Each applied a breadth-first exhaus- 
tive search to find a sequence of actions guaranteed to produce a unique final 
orientation of the part. Each method is complete in the sense that it is guaranteed 
to find such a plan if one exists. However, without a bound on plan length, there 
is no bound on the computational complexity for any of these search-based 
planners. 

Natarajan [,-16] was the first to consider the computational complexity of 
designing parts feeders; he formalized the problem as follows: 

Given k transfer functions f l , f 2  . . . . .  fk on a finite set S, f ind a function fo 
that is a composite o f  the f~'s such that fo is a constant on S, that is, 

Ifo(S) l = I (fo(s) ls ~ S) I = 1. 

Although he did not address the problem of finding a physically realistic set of 
transfer functions based on part geometry, he showed that given k functions, a 
constant function can be found, if one exists, in time O(kn4), where n is the size 
of S. He also identified the restricted class of monotonic transfer functions. Say 
that a sequence Sl, s2 , . . . ,  s, is ordered if each element is encountered exactly 
once, in that order, when a simple cycle is traced starting with sl. A function f is 
monotonic if, for any ordered sequence sl,  S 2 , . . . ,  Sn, the sequence f(sO, f ( s2 ) , . . . ,  
f (s , )  is ordered. Recently, Eppstein [-34] reported a n  O(kn 2) algorithm for finding 
such a composite of monotonic functions and showed that finding the shortest 
composite of nonmonotonic functions is NP-complete. 

Erdmann et al. [35] reported a computational approach to orienting three- 
dimensional parts. Given an n-sided polyhedral part resting on a planar table, the 
objective is to find a sequence of tilting angles for the table that will bring a 
particular part face into contact with the table (thereby eliminating all but one 

4 Christiansen [33] describes how automated experiments, in lieu of mechanical analysis, can be used 
for this purpose. 
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degree of rotational freedom). Assuming that friction is infinite and that the part 
never rolls off the edge of the table, the authors showed how to construct such a 
plan, if one exists, in time O(n4). 

In this paper we consider a class of parallel-jaw gripper actions. As described 
in [-32], this uncountable set of gripper actions can be partitioned into O(n 2) 
equivalence classes based on the geometry of the given n-sided part. However, 
since every action corresponds to a monotonic transfer function, we could use 
Eppstein's algorithm to decide if a guaranteed plan exists in time O(n4). However, 
since part geometry adds additional structure to our set of transfer functions, we 
are able to show that a guaranteed plan always exists using a geometric algorithm 
that finds the shortest guaranteed plan in time O(n 2 log n). Preliminary descrip- 
tions of this work appeared in [18] and [36]. 

3. Assumptions and Mechanical Analysis. We assume that: 

1. All motion occurs in the plane and is slow enough that inertial forces are 
negligible. The scope of this quasi-static model is discussed in [37] and [38]. 

2. The gripper consists of two linear jaws arranged parallel to each other. 
3. The direction of gripper motion is orthogonal to the jaws. 
4. The convex hull of the part can be treated as a rigid planar polygon. 
5. The part is presented to the feeder in isolation; we do not address the related 

problem of isolating parts from a bin (commonly known as singulating). 
6. The part's initial position is unconstrained as long as it lies somewhere between 

the jaws. The part remains between the jaws throughout grasping. 
7. Both jaws make contact simultaneously (pure squeezing). 
8. Once contact is made between a jaw and the part, the two surfaces remain in 

contact throughout the grasping motion. The action continues until further 
motion would deform the part. 

9. There is zero friction between the part and the jaws. 

These assumptions are similar to those made by Brost ['29] and by Taylor et 
al. [39], [.40], with the exception of assumptions 3, 7, and 9. By restricting gripper 
motion to be orthogonal to the jaws (assumption 3), we obtain a one-dimensional 
action space rather than the two-dimensional space considered previously. Assum- 
ing simultaneous contact (assumption 7) simplifies the mechanical analysis but is 
almost never perfectly satisfied; that is, one jaw inevitably makes contact first and 
pushes for some distance. InSection 8 we show how this assumption can be relaxed 
by considering the class of push-grasp actions. 

Friction between the part and the jaws can produce wedged configurations where 
the part is cocked between two vertices [29]. By assuming zero friction (assumption 
9), we avoid such configurations. A frictionless gripper can be closely approximated 
by mounting a linear bearing on one jaw as described in [.41]. 

3.1. Mechanical Analysis. When a polygonal part is grasped with the frictionless 
gripper, it assumes one of a finite number of"stable" configurations where at least 
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Fig. 4. The diameter function (top) and squeeze function (bottom) for the rectangular part. 

one edge of the part's convex hull is in contact with a jaw. Such configurations 
correspond to local minima in the following function. For a fixed orientation of 
the part, define the part's diameter at direction 0 to be the maximum distance 
between two parallel supporting lines at angle 0. Let S 1 be the set of planar 
orientations. 5 The diameter function, d: S 1 ~ 9~ describes how the diameter varies 
as the parallel lines are rotated around the part (see Figure 16). Note that the 
diameter is simply the distance separating the jaws of the gripper when both jaws 
are just touching the polygon. See the Appendix for an O(n)-time algorithm for 
computing the diameter function. 

The outcome of a squeeze action can be predicted using the diameter function. 
We define a transfer function, the squeeze function, s: S ~ ~ S ~, such that if 0 is the 
initial orientation of the part with respect to the gripper, s(O) is the orientation of 
the part with respect to the gripper after the squeeze action is completed. For a 
polygonal part, the piecewise-constant squeeze function is derived as follows. All 
orientations that lie between a pair of adjacent local maxima in the diameter 
function will map to the orientation corresponding to the enclosed local minimum, 
i.e., the squeeze function is constant over this interval of orientations. The result 
is a step function as shown in the bottom of Figure 4. 

We assume that all steps in the squeeze function are closed on the left and open 
on the right. Strictly speaking, the squeeze function has value s(O)= 0 at its 
discontinuities, corresponding to an unstable equilibrium where the part is wedged 
between two exactly aligned vertices. We could define a squeeze action at angle 

to include closing and opening the gripper at angle ~ followed by closing the 
gripper at angle ~ + ~, rotating the gripper by -~,  and then opening the gripper. 

5 Functions representing angles in S 1 a r e  evaluated modulo 27z. 



Orienting Polygonal Parts Without Sensors 209 

In [42] we show how to find an appropriate e for any polygonal part such that 
the combined action has a piecewise constant transfer function where each step 
is closed on the left and open on the right. In practice, however, mechanical 
vibration in the gripping mechanism is sufficient to dislodge such wedged confi- 
gurations, and after the first squeeze action causes the part to rotate into a stable 
configuration, the plan's margin for error (specified below) allows us to avoid 
actions that could produce a wedged configuration. For more on this issue, see 
[20]. 

Recall that the domain and range for the squeeze function are specified with 
respect to the gripper. Rotating the gripper corresponds to a shift in the relative 
orientation of the part. If the part is at angle 0 and the action is applied at angle 
~, the resulting orientation of the part with respect to the gripper will be s(O - ~). 

In what follows we use the term interval to refer to a connected subset of S a. 
For an interval | let I| denote its Lebesgue measure. We define an s-interval 
to be a semiclosed interval of the form [a, b) such that a, b are points of 
discontinuity in the domain of squeeze function s. For an s-interval | let Ox 
refer to its included bounding point. Since there are O(n) discontinuities in the 
squeeze function, there are O(n 2) unique s-intervals, each of which has nonzero 
measure. We define the s-image of a set, s(| to be the smallest interval containing 
the following set: (s(O)[O~| Note that the s-image of any set will be a closed 
interval. 

3.2. Orientin9 a Part up to Symmetry. Note that the diameter function has period 
rc due to symmetry in the gripper; rotating the gripper by 180 ~ produces a 
symmetric arrangement that preserves the diameter. Rotational symmetry in the 
part also introduces periodicity into the diameter function. This periodicity 
introduces structure into the squeeze function. We say that a squeeze function has 
period T if, for all 0, 

(1) s(O + T) = s(O) + T. 

For polygons with r-fold rotational symmetry, the squeeze function will have 
period Tr = 2~r/r(1 + r mod 2). For example, a part with no rotational symmetry 
(r = 1) has a squeeze function with period ~. An equilateral triangle has threefold 
rotational symmetry; its squeeze function has period 7t/3. A square has fourfold 
rotational symmetry; its squeeze function has period n/2. 

Periodicity in the squeeze function gives rise to aliasin 9: any sequence of actions 
that maps 0 to 0' will map 0 + T to 0' + T. This implies that there is no sequence 
of squeeze actions that can map orientations 0 and 0 + T into a single final 
orientation. For a given part, let T be the smallest period in its squeeze function. 
We say that a plan orients the convex hull of a part up to symmetry if the set of 
possible final orientations includes exactly 2n/T orientations that are equally 
spaced on S 1. For example, for a part with no rotational symmetry, a squeeze 
plan orients the part up to symmetry if the plan yields exactly two final orientations 
that are rr radians apart. A part with threefold rotational symmetry can be oriented 
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up to symmetry with a squeeze plan that yields six possible final orientations each 
re~3 radians apart. 

We define the parts feeding problem as follows: 

Given a list of  n vertices describing the convex hull of  a polygonal part, find 
the shortest sequence of squeeze actions guaranteed to orient the part up to 
symmetry. 

4. The Algorithm. The algorithm begins with an s-interval whose image is a 
point. It continues, finding larger and larger s-intervals. When the algorithm 
terminates, the resulting sequence of s-intervals can be transformed into a sequence 
of squeeze actions that, in effect, "funnel" the largest s-interval into a unique final 
orientation. The algorithm follows: 

1. Compute the squeeze function. 
2. Find the widest single step in the squeeze function and set | equal to the 

corresponding s-interval. Let i = 1. 
3. While there exists an s-interval | such that Is(| < 1| 

�9 Set 0~+ 1 equal to the widest such s-interval. 
�9 Increment i. 

4. Return the list (01, |  0~). 

We illustrate the algorithm using the squeeze function for the rectangular part 
as reproduced in Figure 5. Since this part has aspect ratio 1.5, let a = a tan 2(3, 2). 

In step 2 of the algorithm the widest single step is found and 01 is set to be 
the corresponding s-interval on the horizontal axis: [n - a, n + a). Note that s(| 
is the unique orientation at angle n. 

In step 3 of the algorithm we seek the widest s-interval whose s-image has 

s ( O i )  �9 

s(0) 

rc 

0 
I I I 0 

| 

Fig. 5. In step 2 the widest single step in the squeeze function is identified. All the orientations in O 1 
map into the single final orientation, s(| 
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Fig. 6. Illustrating step 3 of the algorithm. 

smaller measure than O1. As illustrated in Figure 6, this can be visualized by 
left-aligning a box of dimensional [Oll with each step in the squeeze function. If 
the squeeze function emerges from the right edge of the box, then the s-image of 
the corresponding s-interval has smaller measure than O1. The largest such 
s-interval in this case is 02 = E n -  a, 2 n -  a). Note that s(O2)= Ire, 3n/2], 
Is(O)21 = n/2 < I Oil = 2a. 

Continuing in this manner, wider and wider s-intervals are found until the loop 
terminates. This will occur when IO~1-- T, a period of symmetry in the squeeze 
function as defined in Section 3.2. For the rectangular part, the algorithm 
terminates with i = 2 since IO21 = z. 

4.1. Recovering the Plan. In this section we show how to recover a plan from a 
list of s-intervals. Given the list (O1,02 . . . .  , O~), we can generate i plans. For j 
between 1 and i, a plan, pj is a sequence of j  squeeze actions, (a j, ai_ 1 . . . . .  al), that 
collapses all orientations in Oj to the unique orientation s(O1). Thus we can 
generate a plan to collapse any s-interval in the list. Since I O~1 is the largest 
s-interval (corresponding to a period of symmetry in the squeeze function), p~ will 
orient the part up to symmetry. 

Again, we illustrate using the rectangular part as shown in Figure 6. At the start 
of the plan, the rectangular part will be in some orientation in 02 (i.e., there is 
180 ~ uncertainty in the part's initial orientation). After performing a squeeze action 
at angle 0, the part's orientation is guaranteed to lie in the s-image s(O2). 

Since Is(O2) I < 101[, we could collapse the interval s(O2) to a point with a single 
squeeze action at angle 0 zfs(O2) could be aligned with 01. Fortunately, this can 
be accomplished by rotating the gripper by angle s(02)-  01 = a in the fixed 
coordinate frame, which has the effect of rotating the part with respect to the 
gripper by the negative of this angle. Since the orientation of the part in the new 
gripper frame is guaranteed to lie inside O1, a second squeeze action at angle 0 
in the new gripper frame will ensure that the part's final orientation is the unique 
angle s(O1) = rc in the new gripper frame. 
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Two additional points: 

�9 Since e a c h  rotation is expressed relative to the previous gripper frame, each 
squeeze action must be transformed into the fixed coordinate frame. 

�9 Note that [s(| [ < [| Thus we can allow an additional margin of error 
in part orientation. For the rectangular part, let e I = 2z([| [s(O2)])= 
a - n /4 .  By adding an additional increment of e a to the commanded gripper 
rotation before the second squeeze action, we ensure that the rectangle's 
orientation with respect to the gripper will lie inside | even if the part is 
perturbed by _ e~. 

In general, the/-step plan, Pi = (ei, ei- 1,- . . ,  el), is defined as follows. Set ei = 0. 
For j = i -  1 downto 1, 

(2) ~j = s(Oj+ O - Oj - ~j + ~j+ l, 

where ej = �89 | - ]s(| 1)1). 
If the part's initial orientation is contained in the s-interval | its final 

orientation will be the unique angle, s(| + ~ .  Consider the case where the part's 
initial orientation is completely unknown. Since | is a period of symmetry in the 
squeeze function, it partitions S 1 into 2 n i T  disjoint s-intervals of equal size. 

Thus for the rectangular part, the plan comprised of a squeeze action at angle 
0 followed by a squeeze action at angle n/4 is guaranteed to orient the part to 
angle n/4 if it started out in the range [ - a ,  n - a), and to angle 3n/4 if it started 
out in the range [~ - a, - a ) .  Note that in Figure 3, orientations n/4 and 3n/4 are 
indistinguishable for the rectangle which has rotational symmetry: r = 2. 

Another example is illustrated in Figures 7 and 8, for the 4-gon described by 
vertices ( -42 ,  -41),  (48, -41),  (39, 25), ( -34 ,  59). 

5. Correctness. To show that the algorithm correctly solves the parts feeding 
problem, we first show that the resulting plan will orient the part up to symmetry 
and then show that there is no shorter plan that does so. 

The algorithm finds a plan that collapses an s-interval of length T, where T is 
the smallest period in the part's squeeze function. This implies that the plan orients 
the part up to symmetry. To see this, note that since s(O + I )  = s(O) + T,  it follows 
that, for any plan p, p(O + 1)  = p(O) + T. Consider a two-stage plan, P2 = (~1, c~2): 

p2(O + T )  = s(s(O + T --  ~ )  --  c~2) 

= s(s(O --  czl) + T - -  ~2) 

= s(s(O --  ~1) -- a2) + T 

= p2(O) + T .  

If a plan collapses all orientations in an s-interval to orientation 0, then it will 
also collapse all orientations in an s-interval of the same size offset by k T  to 
orientation 0 + k T .  If the part's initial orientation is unknown, its final orientation 
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Fig. 7. Geometric analysis of the 4-gon, showing diameter and squeeze functions. The bars under the 
horizontal axis indicate the sequence of s-intervals found by the algorithm, the bars to the left of the 
vertical axis indicate the corresponding s-images. 

will be one of 2rr/T final orientations equally spaced on S ~. Thus the plan will 
orient the part up to symmetry as defined earlier. We now prove that the algorithm 
finds the shortest plan 6 for orienting the part up to symmetry. First we show that 
it is sufficient to consider only connected subsets of S a. 

LEMMA 1. Any plan that collapses a set tO ~ S ~ will also collapse the smallest 
(connected) interval containin9 tO. 

6 There may be more than one shortest plan due to ties. We refer to " the"  shortest plan al though it 
may not  be unique. 



214 K.Y. Goldberg 

1 1 1 1 

2 / ~ /  2 / ' /  2/~Pr/ 2 / ~ /  

3 ~ 3 ~  3 ~ 3 ~  

4 ~ 4 ~ 4 

Fig. 8. Four traces of the resulting squeeze plan for the 4-gon. 

PROOF. Let O' be the smallest (connected) interval containing O. Due to 
monotonicity of the squeeze function, s(O') = s(| Thus the first squeeze action 
will produce the same s-image in either case, and we can use the remainder of the 
plan to collapse O' to a point. [] 

THEOREM 1. No plan containing fewer steps can orient the part up to symme- 
try. 

PROOF. Let Pi be the /-stage plan found by the algorithm. Suppoe there is a 
shorter plan, p~,j < i, that orients the part up to symmetry. Let (| O2 . . . . .  | 
be the list of s-intervals found by the algorithm and let (0'~, O~ . . . . .  O)) be the 
corresponding sequence of bounding intervals for plan p) as constructed in Lemma 
1. By definition of the algorithm, IOl1 > IO'11. Since p'. terminates in j steps but - -  j 

Pi does not, it must be the case that IOjl < Io)1. This means that there exists a 
point in the sequences of intervals such thatl| _> IO~,[and IOk+ll < IO~,+11, but 
this cannot occur by definition of the algorithm. Thus there is no shorter plan 
that can orient the part up to symmetry. [] 

6. Completeness 

THEOREM 2. For any polygonal part, we can always f ind a plan to orient the part 
up to symmetry. 
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PROOF. As described earlier, any polygonal part will generate a piecewise- 
constant squeeze function, s: S 1 --* S 1, where all s-intervals have nonzero measure 
and s(O + 7) = s(O) + T, where T is a period of symmetry. To simplify the problem 
of wraparound at 0, in this section we extend s to a function on the real line, 
s:91 ~ 9t, that has exactly the same value as before on [-0, 2r0. Elsewhere, it is 
specified as s(O + 7) = s(O) + T. 

We prove the claim by showing that, for any such squeeze function, we can 
always find a sequence of s-intervals, (| | . . . . .  | of increasing measure with 
the condition that | has larger measure than the s-image of | 1- The trick is 
to show that, for any piecewise-constant monotonic squeeze function and any 
s-interval, we can always find a larger s-interval unless it corresponds to a period 
of symmetry in the squeeze function. 

Let h be the measure of some s-interval. Either we can find a larger s-interval 
whose s-image is smaller than h, 

(3) 20, s(O + h) - s(O) < h, 

or h is a period of symmetry in the squeeze function: 

(4) V0, s (O+h)=s(O)+h,  

where the quantifiers range over the interval [0, 7). 
To understand (3), consider that we have reached a point in the algorithm where 

the current s-interval is | = [0j, 0j + h). Formula (3) says that there is some 
closed interval, | = [0, 0 + h], whose s-image is smaller than 19i. We can expand 
| (without increasing its s image) by extending it to the right until we reach a 
discontinuity in the squeeze function. This yields an s-interval whose s-image is 
smaller than | The difference between this s-interval and | is an open interval 
and hence has nonzero measure. Thus this s-interval will have larger measure than 
Oj. 

We can also interpret (3) with reference to Figure 6. The formula states that we 
can always find a position for the lower left-hand corner of the box such that the 
squeeze function enters on the left edge of the box and exits on the right edge. 

To show that, for any such squeeze function and any h, either (3) or (4) must 
hold, consider the integral of the function s(O + h) - s(O) - h over the interval 
[0, 7): 

(5) [s(O + h) - s(O) - h] dO = s(O) dO - s(O) dO - h r 

f: (6) = -- s(O) dO + s(O) dO -- hT 

(7) = - f f  s(O) aO + f f  [s(O) + T] dO - hT 

= - ;  s(O) dO+ ; s ( O ) d O + h T - h T  (8) 

(9) = O. 
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Since this integral is zero, either there is some point where the function is less than 
zero ((3) is true) or the function is uniformly zero ((4) is true, i.e., h = 7). 

Hence we can always continue to find larger s-intervals until we reach a period 
of symmetry in the squeeze function. We have shown earlier that we can transform 
this sequence of s-intervals into a plan to orient the part up to symmetry. [] 

7. Complexity. We assume that the following operations take time 0(1): finding 
the distance between two points in the plane, finding the angle between two lines 
in the plane, comparing two rational numbers, adding or subtracting two rational 
numbers, and random access of any particular memory location. 

THEOREM 3. For a polygon of n sides, the algorithm runs in time O(n 2 log n) and 
finds plans of length O(n2). 

PROOF. Step 1, computing the squeeze function, can be performed in time O(n) 
as is shown in the Appendix. Since there are O(n) steps in the squeeze function, 
step 2 takes time O(n). For the loop, recall that a squeeze function defines O(n 2) 
s-intervals. Suppose we sort these by Is(| As we proceed through the loop, we 
only need to traverse this list once, so that i is O(n2). Recovering the plan requires 
O(i) time. Sorting dominates the running time, so the algorithm runs in time 
O(n 2 log n). [] 

8. Push-Grasp Actions. In this section we relax the assumption that both jaws 
make contact simultaneously by considering the class of push-grasp actions first 
identified by Brost [29]. Let a push-grasp action, ~, be the combination of orienting 
the gripper at angle ~ with respect to a fixed world frame, translating the gripper 
in direction ~ + n/2 for a fixed distance, closing the jaws as far as possible, 
translating the gripper in direction - ~ -  n/2 for the same distance, and then 
opening the jaws. 

During the pushing phase, where the gripper translates, the part rotates so that 
one of its edges is aligned with the pushing jaw before the second jaw makes 
contact. For this class of actions, we substitute two assumptions for assumption 
7 in Section 3: 

�9 The part's center-of-mass is given and the coefficient of friction with the support 
surface is independent of position and velocity [26]. 

�9 The pushing distance is sufficient to align a stable part edge with the pushing 
jaw before the second jaw makes contact. 

A lower bound on the required pushing distance can be computed by considering 
the smallest disk that covers the part [38]. Although this bound can approach 
infinity if the part is pushed along a vector from the contact vertex through the 
part's center-of-mass, we can avoid such actions after the first push-grasp action 
causes the part to rotate into one of its stable orientations. 

The mechanics of pushing can be captured with an analog to the diameter 
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Fig. 9. The radius and push functions for the 4-gon. 

function as constructed by Mason [26]. Consider a single line of support, aligned 
with the x-axis, below the part. Let the part's radius at direction 0 ~ be the 
perpendicular distance from the support line to the part's center of mass. The 
radius function, r: S 1 ~ ~R, describes how the radius varies as the support line is 
rotated around the part. See top of Figure 9. By checking each vertex, the radius 
function for an n-sided polygonal part can be computed in time O(n). When pushed, 
the part will rotate so as to reduce its radius. 

The push function, p: S 1 ~ S 1, maps an initial orientation of the part to a final 
orientation after the pushing phase. See bottom of Figure 9. It is a step function 
derived from the radius function in the same way that the squeeze function is 
derived from the diameter function, i.e., discontinuities occur at local maxima in 
the radius function. Since the radius function has period 2n unless the part has 
rotational symmetry, pushing allows us to eliminate the 180 ~ ambiguity in the 
part's final orientation that is inherent with squeeze actions. 

To analyze the mechanics of a push-grasp action, we compose the push function 
with the squeeze function to get a transfer function, g: S 1 ~ S 1, that we call the 
push-grasp function as illustrated in Figure 10. We assume that steps are closed 
on the left and open on the right. As with the squeeze function, this assumption 
can be formally justified with a minor modification to the definition of the 
push-grasp action, or we can make a similar argument that metastable orienta- 
tions can be avoided after the first action. Note that the push-grasp function is 
also piecewise constant and monotonic, and can be computed in time O(n). 

Thus we can use the planning algorithm from Section 4, modifying only step 1 
to use the push-grasp function instead of the squeeze function. The correctness, 
complexity, and completeness of the algorithm can be proved as before. The 
s-intervals and resulting plan for the 4-gon are shown in Figures 11 and 12. 
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Fig. 10. Push-grasp analysis for the four-sided part. The radius function is in the upper left. Directly 
below it is the push function. The diameter function is in the upper right. Directly below it is the 
squeeze function. The push-grasp function is shown at the bottom. 

Another example, for a house-shaped part described by the vertices ( -25 ,  -33),  
(25, -33),  (25, 20), (0, 45), ( -25 ,  20), is shown in Figures 13-15. 

9. Discussion. We have described an algorithm for generating parts-feeding plans 
from part geometry. The algorithm can generate either squeeze plans or push- 
grasp plans for the class of polygonal parts. This planning algorithm has been 
implemented in Common Lisp using exact arithmetic to represent angles [43] and 
has been tested on hundreds of polygonal shapes with running times of well under 
1 s on a Sun Sparcstation IPC. 

The plans generated by this algorithm have been verified experimentally both 
at Carnegie Mellon University using a PUMA robot with an electric LORD Co. 
gripper and at the University of Southern California using an IBM robot with a 
pneumatic Robotics and Automation Corp. gripper. Using a pushing distance of 
two part diameters, the push-grasp plans for the house and 4-gon (shown in 
figures) performed as predicted in almost all trials. Occasionally, the part failed 
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Fig. 12. Four traces of the push-grasp plan for the 4-gon, where the thick line indicates the pushing 
jaw. Push-grasp actions are at 0 ~ - 4 4  ~ - 9 6  ~ and -146 ~ 



~ 0  
0 ~/2 ~ 3rd2 2~ 

p(o) 
2~ 

3rc/2 

r~ 

~/2 

0 
0 

I 
I 
I 

I 

I 
f.-,l 
I 
I 
I 

,,-.,i 
I 

I 

I 
I 
I 

,0 
~h ~ 3~2 2~ 

CI 

2 ~  

3~/2 

re/2 

0 

~ 0  
0 ~/2 ~ 3~/2 2~ 

s(O) 

I 
I 
I 

0 ~}2 

,,,,, 

I 
l 

I 

I 
t 

[ 

I 
I 
I 
I 

I 

3~/2 
,0 

2r~ 

g(e) 
2~ 

3~/2 

r~/2 
I 
I 

0 A 
0 

f ,w , , ,  
I 
I 
I 
I 

3~/2 2~ 

Fig. 13. Push-grasp analysis for the house-shaped part. The radius function is in the upper left. Directly 
below it is the push function. The diameter function is in the upper right. Directly below it is the 
squeeze function. The push-grasp function is shown at the bottom. 

1 [#o) 

7z/2 

0 

I 
I 
I 

0 r~}2 t ~ 0 3~/2 2~ 
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Fig. 15. Four traces of the push-grasp plan for the house-shaped part, where the thick line indicates 
the pushing jaw. Push-grasp actions are at 0 ~ 72 ~ and 135 ~ 

to rotate into a stable configuration during the pushing phase. This may be due 
to insufficient pushing distance or error in our calculation of the part's center of 
mass arising from errors in estimating part geometry and/or nonuniform part 
density. Thus two important issues for future research are improved estimates for 
the minimum distance required to align a stable edge of the part with the pushing 
jaw and planning algorithms that are robust to variations in part shape and center 
of mass. 

For this algorithm to be practical in an industrial environment, we must also 
consider the issue of feedrate. One idea is to pipeline the plans; rather than perform 
i actions with one gripper, use i fixed grippers so that parts flow out of the pipeline 
at the rate of one per action. Of course we must still be concerned with the length 
of the pipeline. We can make a tradeoff between plan length and the probability 
of success by optimizing expected feedrate, where the distribution of inputs is 
assured by randomizing the first gripper angle and a binary filter is used to reject 
parts that are not in the most probable orientation [18]. 

Furthermore, although we have shown that the plan length is bounded by O(n2), 
we conjectured based on empirical evidence that plan length is linear in the number 
of part edges. Recently, Yui-Bin Chen and Ierardi [20] proved that plan length 
is indeed linear which means that our algorithm will run in time O(n z) and produce 
plans of length O(n). Also, Prasanna and Rao [44] reported a parallel version of 
this algorithm that runs in linear time on an n • n mesh-connected computer. 

Although we assume that the part remains between the jaws throughout the 
plan, one degree of translational freedom is not constrained by the parts feeder. 
To resolve this after the part is oriented, we might allow the part to slide down 
a track until it falls through a silhouette trap, although it could be difficult to 
ensure that the part does not rotate during this phase. We are currently invest- 
igating an alternate approach based on open-loop pushing. 
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The method described here is limited to the class of planar polygonal parts: 
essentially flat parts with a constant polygonal cross-section. Many parts used in 
industry have curved edges and spatially varying cross-sections. For example, 
many computer-aided design systems and numerical control machines allow a 
cross-section to be defined with a combination of linear and piecewise-circular 
edges. We are currently extending the algorithm to cope with such shapes. For 
three-dimensional polyhedral parts, the planar algorithm might be preceded by a 
preliminary stage that causes a most stable face of the part to be aligned with the 
worktable. This might be accomplished using either vibration [24] or by tilting 
the worktable [35]. For some parts, we may be able to determine the remaining 
degree of rotational freedom using the algorithm described here to orient the 
polyhedron's two-dimensional projection. 

In summary, we have described a planning algorithm that can rapidly analyze 
part geometry. The resulting plans require no sensors and can be pipelined to 
achieve rapid feedrate. The required hardware is widely available at low cost. Thus 
the resulting parts feeder is fully programmable and can be automatically pro- 
grammed as part geometry changes. 

By establishing that an algorithm is complete in the sense that it works for all 
parts in some class, the algorithm can be used as a dependable component in a 
modular automation system [45]. However, as discussed in Section 2, such 
algorithms are rare for compliant motion planning since we can usually construct 
cases for which a guaranteed plan does not exist. Making an analogy with the 
theory of compilers, which has defined classes of languages that can be automatic- 
ally compiled, Natarajan [16] noted that "It would be useful to identify [a] class 
of parts for which feeder design can be easily automated." In this paper we have 
given a parts-orienting algorithm for the class of polygonal parts. 
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Appendix. The Diameter Function. In Section 3.1 we showed that a diameter 
function could be used to analyze the mechanics of squeeze-grasp actions. In this 
appendix we describe an O(n) algorithm for computing the diameter function. 

Let a two-dimensional part be described as a closed, compact region of E 2 
which is also the closure of its interior [463. For a fixed orientation of the part, 
define the part's diameter at direction 0 to be the maximum distance between two 
parallel supporting lines at angle 0. Thus the diameter function, d: $ 1 ~  9t, 
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Fig. 16. The diameter function for the four-sided part shown at the right in its zero orientation. During 
a squeeze, the part rotates so as to reduce the diameter, terminating when the diameter reaches a local 
minimum. 

describes how this distance varies as the parallel lines are rotated around the part 
(see Figure 16). Note that the diameter is simply the distance separating two jaws 
of the gripper when both jaws are just touching the part. 

Jameson [47] used this function to show that any two-dimensional convex body 
must have at least two stable equilibria where it can be grasped between parallel 
jaws. In clustering applications, the maximum of the diameter function is known 
as the diameter of the set covered by the part [48]. The diameter function is also 
known as the width function in geometry, 7 but we use the former term to make 
an analogy with the radius function. We state the following without proof: 

�9 The diameter function is continuous: Ad ~ 0 as A0 ~ 0. 
�9 The diameter function for a part is equal to the diameter function for the convex 

hull of the part. 
�9 The diameter function has period n (due to symmetry of the gripper) and may 

also have smaller period if the part's convex hull has rotational symmetry. 

For  a polygonal part whose convex hull is described by a list of n rational 
vertices, one period of the diameter function can be described by an ordered list 
of sinusoidal functions (phase and amplitude) and the associated transition angles. 
Transitions between sinusoids can only occur when an edge is aligned with the 
gripper, so there are at most 2n sinusoidal pieces. Since each sinusoid arises from 
contact between two opposing vertices in the object, we can trivially compute the 
diameter function by enumerating all n 2 pairs of vertices. 

However, we can compute the diameter function in time O(n) if we assume that 
the following operations require time O(1): finding the distance between two points 
in the plane, finding the angle between two lines in the plane, comparing two 
rational numbers, adding or subtracting two rational numbers, and random access 
of any particular memory location. Preparata and Shamos [48] describe a 
linear-time algorithm for finding the maximum diameter of a convex polygon with 
n sides. Their algorithm enumerates all pairs of vertices that admit parallel 
supporting lines in order of increasing 0. Each pair defines a chord of length l i 
and there are at most 3nl2 such pairs. Thus to compute the diameter function, we 

7 For example, see the discussion of curves of constant width in [49]. 



224 K.Y. Goldberg 

make one pass over this list of chords as follows. Between every adjacent pair of 
part edges, d(O) follows the sinusoid lil s in(0i -  0)1, where liand 01 are taken from 
the longest chord in the interval orthogonal to the interval between edges. A single 
sweep through the list of edges and chords allows us to compute the diameter 
function in linear time. 
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