Understanding BCNF: Boyce Codd Normal Form

Recall the definition of 3NF:

R is in 3NF if \(\forall X \rightarrow Y \), either \(X \) is a superkey

or \(Y \) is a prime attribute.

BCNF is stricter:

R is in BCNF if \(\forall X \rightarrow Y \), \(X \) is a superkey.

(BCNF eliminates second option)

Conditions for violating BCNF:

Consider \(R(A,B,C) \)

R is in 3NF but NOT in BCNF if all 5 of these conditions hold:

1) \(AB \rightarrow C \)
 (required by the fact that \(AB \) is a Candidate Key)

2) \(A \nrightarrow C \)
 (\(A \) does NOT determine \(C \): otherwise \(R \) is not in 2NF)

3) \(B \nrightarrow C \)
 (similarly, otherwise \(R \) is not in 2NF)

4) \(C \rightarrow B \)
 (violates BCNF)

5) \(C \nrightarrow A \)
 (otherwise given 4, \(C \) would be a superkey)

We can normalize \(R \) into BCNF:

\[
R1(A,C) \\
R2(C,B)
\]
Consider:

StudentMajor(SID, Major, Advisor)

Note: a student can have more than one Major, and one Advisor for each of their Major, and note that Advisors only advise in one Major Advisor → Major

StudentMajor(SID, Major, Advisor)

is in 3NF since Major is a Prime Attribute

but it is NOT in BCNF because Advisor is not a superkey.

To Normalize into BCNF, replace:

StudentMajor(SID, Major, Advisor)

With:

StudentMajors(SID, Major)

Advises_in_Major(Advisor, Major)

(This is in BCNF but does not capture which Advisors a student has.)