
ANA*: Anytime Nonparametric A*

Jur van den Berg1 and Rajat Shah2 and Arthur Huang2 and Ken Goldberg2
1University of North Carolina at Chapel Hill. E-mail: berg@cs.unc.edu.

2University of California, Berkeley. E-mail: {rajatm.shah, arthurhuang, goldberg}@berkeley.edu.

Abstract

Anytime variants of Dijkstra’s and A* shortest path algo-
rithms quickly produce a suboptimal solution and then im-
prove it over time. For example, ARA* introduces a weight-
ing value (ε) to rapidly find an initial suboptimal path and
then reduces ε to improve path quality over time. In ARA*,
ε is based on a linear trajectory with ad-hoc parameters cho-
sen by each user. We propose a new Anytime A* algorithm,
Anytime Nonparametric A* (ANA*), that does not require
ad-hoc parameters, and adaptively reduces ε to expand the
most promising node per iteration, adapting the greediness of
the search as path quality improves. We prove that each node
expanded by ANA* provides an upper bound on the subop-
timality of the current-best solution. We evaluate the perfor-
mance of ANA* with experiments in the domains of robot
motion planning, gridworld planning, and multiple sequence
alignment. The results suggest that ANA* is as efficient as
ARA* and in most cases: (1) ANA* finds an initial solution
faster, (2) ANA* spends less time between solution improve-
ments, (3) ANA* decreases the suboptimality bound of the
current-best solution more gradually, and (4) ANA* finds the
optimal solution faster. ANA* is freely available from Maxim
Likhachev’s Search-based Planning Library (SBPL).

1 Introduction
The A* algorithm (Hart, Nilsson, and Raphael 1968) is
widely used to compute minimum-cost paths in graphs in
applications ranging from map navigation software to robot
path planning to AI for games. Given an admissible heuris-
tic, A* is guaranteed to find an optimal solution (Dechter and
Pearl 1985). In time-critical applications such as robotics,
rather than waiting for the optimal solution, anytime algo-
rithms quickly produce an initial, suboptimal solution and
then improve it over time. Most existing anytime A* algo-
rithms are based on Weighted A*, which inflates the heuris-
tic node values by a factor of ε ≥ 1 to trade off running time
versus solution quality (Pohl 1970). Weighted A* repeatedly
expands the “open” state s that has a minimal value of:

f (s) = g(s)+ ε ·h(s),

where g(s) is the current-best cost to move from the start
state to s, and h(s) is the heuristic function, an estimate of

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the cost to move from s to a goal state. The higher ε , the
greedier the search and the sooner a solution is found. If
the heuristic is admissible (i.e. a lower-bound on the true
distance to the goal), the suboptimality of the solution is
bounded by ε . That is, the solution is guaranteed to be no
costlier than ε times the cost of the optimal path. These ob-
servations can be used in anytime algorithms, for instance
as in ARA* (Likhachev, Gordon, and Thrun 2004), which
initially runs Weighted A* with a large value of ε to quickly
find an initial solution, and continues the search with pro-
gressively smaller values of ε to improve the solution and
reduce its suboptimality bound. To our knowledge, all exist-
ing anytime A* algorithms require users to set parameters.
ARA*, for instance, has two parameters: the initial value of
ε and the amount by which ε is decreased in each iteration.
Setting these parameters requires trial-and-error and domain
expertise (Aine, Chakrabarti, and Kumar 2007).

This motivated us to develop an anytime A* algorithm
that does not require parameters. Instead of minimizing
f (s), Anytime Nonparametric A* (ANA*) expands the open
state s with a maximal value of

e(s) =
G−g(s)

h(s)
,

where G is the cost of the current-best solution, initially an
arbitrarily large value. The value of e(s) is equal to the
maximal value of ε such that f (s) ≤ G. Hence, continu-
ally expanding the node s with maximal e(s) corresponds to
the greediest possible search to improve the current solution
that in effect automatically adapts the value of ε as the al-
gorithm progresses and path quality improves. In addition,
we will prove that the maximal value of e(s) provides an up-
per bound on the suboptimality of the current best solution,
which is hence gradually reduced while ANA* searches for
an improved solution. ARA*, in contrast, lets the value of ε

follow a “linear” trajectory, resulting in highly unpredictable
search times between the fixed decrements of ε .

In addition to eliminating ad-hoc parameters, results of
experiments in representative search domains suggest that
ANA* has superior “anytime characteristics” compared to
ARA*. That is: (1) ANA* usually finds an initial solution
faster, (2) ANA* usually spends less time between solution
improvements, (3) ANA* more gradually decreases the sub-
optimality bound of the current-best solution, and (4) ANA*
usually finds the optimal solution faster.



Our implementation of ANA* is freely available from
Maxim Likhachev’s Search-based Planning Library (SBPL)
at http://www.cs.cmu.edu/˜maxim/software.html.

2 Preliminaries and Previous Work

2.1 Dijkstra’s, A*, and Weighted A*

Dijkstra’s algorithm, introduced in 1959 (Dijkstra 1959),
finds a minimum-cost path between a start state sstart and
a goal state sgoal (or a set of goal states) in a graph with non-
negative edge costs. For each state s in the graph, it main-
tains a value g(s), which is the minimum cost proven so far
to reach s from sstart. Initially, all g(s) are ∞, except for the
start state, whose g-value is initialized at 0. The algorithm
maintains an OPEN queue containing all locally inconsis-
tent states, i.e. states s that may have successors s′ for which
g(s′) > g(s) + c(s,s′), where c(s,s′) is the cost of travers-
ing the edge between s and s′. Initially, OPEN only con-
tains the start state sstart. Continually, Dijkstra’s algorithm
extracts the state s from OPEN with minimal g(s) value, and
expands it. That is, it updates the g-values of the successors
of s, and puts them on the OPEN queue if their g-value was
decreased. This continues until state sgoal is extracted from
OPEN, or until OPEN is empty, in which case a solution
does not exist. Dijkstra’s algorithm is optimal in terms of
big-O notation (Cormen, Leiserson, and Rivest 1990), and
runs in O(n logn+ k) time, where n and k are the number of
states and edges, respectively.

The A* algorithm, introduced in 1968, is a generaliza-
tion of Dijkstra’s algorithm that improves its running time
in practice if a heuristic is available, by focusing the search
towards the goal (Hart, Nilsson, and Raphael 1968). The
difference from Dijkstra’s is that A* expands the state s in
OPEN with a minimal value of g(s)+h(s), where h(s) is the
heuristic that estimates the cost of moving from s to sgoal.
Let c∗(s,s′) denote the cost of the optimal path between s
and s′. If the heuristic is admissible, i.e. if h(s)≤ c∗(s,sgoal)
for all s, A* is guaranteed to find the optimal solution in op-
timal running time (Dechter and Pearl 1985). If the heuristic
is also consistent, i.e. if h(s) ≤ c∗(s,s′)+h(s′) for all s and
s′, it can be proven that no state is expanded more than once
by the A* algorithm. Note that A* is equivalent to Dijkstra’s
when h(s) = 0.

Weighted A* extends A* by allowing to trade-off running
time and solution quality (Pohl 1970). It is similar to A*, ex-
cept that it inflates the heuristic by a value ε ≥ 1 and expands
the state s in OPEN with minimal f (s) = g(s)+ε ·h(s). The
higher ε , the greedier the search, and the sooner a solution
is typically found. The suboptimality of solutions found by
Weighted A* is bounded by ε , i.e. the solution is guaran-
teed to be no costlier than ε times the cost of the optimal
solution. Weighted A* may expand states more than once
(as the inflated heuristic ε · h(s) is typically not consistent).
However, if h(s) itself is consistent, it can be proven that re-
stricting states to being expanded no more than once does
not invalidate the ε-suboptimality bound (Likhachev, Gor-
don, and Thrun 2004).

2.2 Anytime A* Algorithms Based on Weighted
A*

Anytime Heuristic Search (AHS) (Hansen and Zhou 2007)
is an anytime version of Weighted A*. It finds an initial so-
lution for a given value of ε , and continues the search after
an initial solution is found (with the same ε). Each time
the goal state is extracted from OPEN, an improved solution
is found. Eventually, AHS will find the optimal solution.
Throughout, AHS expands the state in OPEN with minimal
f (s) = g(s)+ ε · h(s), where ε is a parameter of the algo-
rithm. The suboptimality of intermediate solutions can be
bounded by G/mins∈OPEN{g(s) + h(s)}, as G, the cost of
the current-best solution, is an upper bound of the cost of
the optimal solution, and mins∈OPEN{g(s)+h(s)} is a lower
bound of the cost of the optimal solution.

Anytime Repairing A* (ARA*) (Likhachev, Gordon, and
Thrun 2004) is also based on Weighted A*. It finds an ini-
tial solution for a given initial value of ε , and continues the
search with progressively smaller values of ε to improve the
solution and reduce its suboptimality bound. The value of
ε is decreased by a fixed amount each time an improved so-
lution is found or the current-best solution is proven to be
ε-suboptimal. The f (s)-values of the states s ∈ OPEN are
then updated to account for the new value of ε . The initial
value of ε and the amount by which it is decreased in each
iteration are parameters of the algorithm. The algorithm we
present in this paper was motivated by ARA*. We will dis-
cuss their relation in detail in Section 4.

Restarting Weighted A* (RWA*) (Richter, Thayer, and
Ruml 2010) is similar to ARA*, but it restarts the search
each time ε is decreased. That is, each search is started with
only the start state on the OPEN queue. It reuses the effort of
previous searches by putting the states explored in previous
iterations on a SEEN list. Each time the search encounters
a seen state, it is put back on the OPEN queue regardless of
whether its g-value was decreased. Restarting has proven to
be effective in situations where the quality of the heuristic
varies substantially across the search space. As with ARA*,
the initial value of ε and the amount by which it is decreased
in each iteration are parameters of the algorithm.

2.3 Other Anytime A* Algorithms
Anytime Window A* (AWA*) (Aine, Chakrabarti, and Ku-
mar 2007) is based on unweighted A*, but only expands
states within an active window that slides along with the
“deepest” state expanded so far. Only states with a g-value
inside the window (i.e. the g-value is larger than the largest
g-value among the states expanded so far minus the window
size) are put on the OPEN queue. The other states are put
on an auxiliary SUSPEND list. Iteratively, the window size
is increased to broaden the search, which will eventually be-
come equivalent to A*. A problem of this algorithm is that
if it “misses” the goal state in its initial search (i.e. the goal
state is outside the window), it exhausts the entire search
space before the initial search terminates, which may take
prohibitively long.

Beam-Stack search (BSS) (Zhou and Hansen 2005) and
ITSA* (Furcy 2006) are based on beam search, which is an



IMPROVESOLUTION()

1: while OPEN 6= /0 do
2: s← argmaxs∈OPEN{e(s)}
3: OPEN← OPEN \{s}
4: if e(s)< E then
5: E← e(s)
6: if ISGOAL(s) then
7: G← g(s)
8: return
9: for each successor s′ of s do

10: if g(s)+ c(s,s′)< g(s′) then
11: g(s′)← g(s)+ c(s,s′)
12: pred(s′)← s
13: if g(s′)+h(s′)< G then
14: Insert or update s′ in OPEN with key e(s′)

ANA*()
1: G← ∞; E← ∞; OPEN← /0; g(sstart)← 0
2: Insert sstart into OPEN with key e(sstart)
3: while OPEN 6= /0 do
4: IMPROVESOLUTION()
5: Report current E-suboptimal solution
6: Update keys e(s) in OPEN and prune states if g(s)+

h(s)≥ G

Figure 1: The Anytime Nonparametric A* (ANA*) algo-
rithm. In practice the values for ∞ are set to large numerical
values.

augmented form of breadth-first search in which only the b
most promising states of each layer are expanded. Beam
search itself is incomplete, i.e. it may not find a solution
even if one exists, but BSS and ITSA* make beam search
complete by adding backtracking mechanisms. Iteratively
increasing the beam width b provides the anytime character-
istic. These algorithms have the same problem as Anytime
Window A*, as the initial search is essentially a depth-first
search that may “miss” the goal state.

3 Anytime Nonparametric A*
In this section, we present our anytime nonparametric algo-
rithm ANA* and discuss its properties.

3.1 Algorithm
Our algorithm ANA* is given in Fig. 1. Throughout the
algorithm, a global variable G is maintained storing the cost
of the current-best solution. Initially, G = ∞, as no solution
has yet been found.

IMPROVESOLUTION implements a version of A* that is
adapted such that it expands the state s ∈ OPEN with the
maximal value of

e(s) =
G−g(s)

h(s)
(1)

(line 2). Each time a state s is expanded, it is checked
whether the g-value of the successors s′ of s can be decreased
(line 10). If so, g(s′) is updated (line 11) and the predeces-
sor of s′ is set to s (line 12) such that the solution can be

reconstructed once one is found. Subsequently, s′ is inserted
into the OPEN queue with key e(s′), or if it was already on
the OPEN queue, its key e(s′) is updated (line 14). States
for which g(s)+h(s)≥ G, or equivalently e(s)≤ 1, are not
put on the OPEN queue, though, as such states will never
contribute to improving the current-best solution (line 13).
As a result, when a goal state is extracted from OPEN, it is
guaranteed that a solution has been found with lower cost
than the current-best solution, so G is updated (line 7) and
IMPROVESOLUTION terminates (line 8).

ANA* is the “main” function that iteratively calls IM-
PROVESOLUTION to improve the current solution. It starts
by initalizing the g-value of the start state sstart to zero and
putting it on OPEN (line 2). In the first iteration, G = ∞, as
no solution has yet been found, in which case IMPROVESO-
LUTION expands the state in OPEN with the smallest h(s)-
value, and in case of ties the one with the smallest g(s)-
value. This follows naturally from Equation (1) if one thinks
of G as a very large but finite number. This is equivalent to
executing Weighted A* minimizing f (s) with ε = ∞, so the
search for an initial solution is maximally greedy.

Each time IMPROVESOLUTION terminates, either an im-
proved solution has been found, or the OPEN queue has run
empty, in which case the current-best solution is optimal (or
no solution exists if none was found yet). After an improved
solution has been found by IMPROVESOLUTION, the solu-
tion may be reported (line 5 of ANA*) and the keys of the
states in OPEN are updated to account for the new value
of G (line 6). States s for which g(s)+h(s)≥ G are pruned
from OPEN, as they will never contribute to an improved so-
lution (line 6). Subsequently, the OPEN queue is reordered
given the updated keys, and IMPROVESOLUTION is called
again. This repeats until OPEN is empty, in which case the
optimal solution has been found. Note that successive ex-
ecutions of IMPROVESOLUTION reuse the search effort of
previous iterations.

3.2 Suboptimality Bound
Our algorithm ANA* provides a suboptimality bound of the
current-best solution that gradually decreases as the algo-
rithm progresses. Each time a state s is selected for expan-
sion in line 2 of IMPROVESOLUTION, its e(s)-value bounds
the suboptimality of the current-best solution. We prove the
theorem below. We denote by G∗ the cost of the optimal so-
lution, so G/G∗ is the true suboptimality of the current-best
solution (recall that G is the cost of the current solution).
Further, we denote by g∗(s) = c∗(sstart,s) the cost of the op-
timal path between the start state sstart and s.

Lemma: If the optimal solution has not yet been found,
there must be a state s ∈ OPEN that is part of the optimal
solution and whose g-value is optimal, i.e. g(s) = g∗(s).

Proof: Initially, sstart ∈OPEN is part of the optimal solution
and g(sstart) = g∗(sstart) = 0. At each iteration a state s from
OPEN is expanded. s is either part of the optimal solution
and g(s) is optimal, or not. In the latter case, the state with
the above property remains in OPEN (its g-value is optimal
and cannot be decreased). In the former case, s must have
a successor s′ that is part of the optimal solution. The suc-



cessor’s updated g-value is optimal since edge (s,s′) is part
of the optimal solution and g(s′) = g(s)+ c(s,s′). This con-
tinues until the goal state is dequeued with optimal g-value
when the optimal path has been found. �

Theorem: Each time a state s is selected for expansion in
line 2 of IMPROVESOLUTION, its e(s)-value bounds the
suboptimality of the current solution:

max
s∈OPEN

{e(s)} ≥ G
G∗

.

Proof: We assume that the heuristic is admissible. If the
current solution is optimal, the theorem trivially holds, as
OPEN only contains states with an e-value greater than 1.
If the optimal solution has not yet been found, there must
be a state s′ ∈ OPEN that is part of the optimal solution and
whose g-value is optimal, i.e. g(s′) = g∗(s′) (see Lemma).
The minimal cost to move from s′ to the goal is G∗−g∗(s′),
since s′ is part of the optimal solution. As the heuristic is
admissible, h(s′)≤ G∗−g∗(s′). Therefore:

e(s′) =
G−g∗(s′)

h(s′)
≥ G−g∗(s′)

G∗−g∗(s′)
≥ G

G∗
,

where the last inequality follows as G > G∗ ≥ g∗(s′) ≥ 0.
So, maxs∈OPEN{e(s)} ≥ e(s′)≥ G/G∗. �

In the algorithm of Fig. 1, we keep track of the subopti-
mality bound of the current-best solution in the variable E.
Initially E =∞, as no solution has been found yet. Each time
a state s is encountered in line 2 of IMPROVESOLUTION
with e(s) < E, we update the value of E (line 5). Hence,
the algorithm gradually decreases the suboptimality bound
of the current solution while it is searching for an improved
solution.

4 Comparison with ARA*
Selecting the state s ∈ OPEN with a maximal value of e(s)
for expansion as we do in ANA* can intuitively be un-
derstood as selecting the state that is most promising for
improving the current-best solution, as e(s) is the ratio of
the “budget” that is left to improve the current solution
(G− g(s)) and the estimate of the cost between the state
and the goal h(s). This, however, is not our motivation for
choosing the ordering criterion e(s); in fact, it is derived
by careful analysis of the existing anytime algorithm ARA*
(Likhachev, Gordon, and Thrun 2004). We discuss this con-
nection in detail in this section.

For completeness, a simplified version of the ARA* algo-
rithm is given in Fig. 2.1 Like Weighted A*, ARA* expands
the state s ∈ OPEN with a minimal value of

f (s) = g(s)+ ε ·h(s).
1A feature of ARA* that is not included in our description

is that it blocks a state to be opened more than once within the
same iteration of IMPROVESOLUTION. Instead of reinserting these
states on the OPEN queue, they are stored in an auxiliary list called
INCONS, whose states will be put back in OPEN only in the next
iteration. If the heuristics are consistent, this optimization does not
invalidate the suboptimality bound of the solution that is found.
This optimization is not relevant for the discussion, and is left out
for simplicity.

IMPROVESOLUTION()

1: while OPEN 6= /0 and mins∈OPEN{ f (s)} ≤ G do
2: s← argmins∈OPEN{ f (s)}
3: OPEN← OPEN \{s}
4: if ISGOAL(s) then
5: G← g(s)
6: return
7: for each successor s′ of s do
8: if g(s)+ c(s,s′)< g(s′) then
9: g(s′)← g(s)+ c(s,s′)

10: pred(s′)← s
11: if g(s′)+h(s′)< G then
12: Insert or update s′ in OPEN with key f (s′)

ARA*(ε0,∆ε)

1: G← ∞; ε ← ε0; OPEN← /0; g(sstart)← 0
2: Insert sstart into OPEN with key f (sstart)
3: while OPEN 6= /0 do
4: IMPROVESOLUTION()
5: Publish current ε-suboptimal solution.
6: ε ← ε−∆ε

7: Update keys f (s) in OPEN and prune states if g(s)+
h(s)≥ G

Figure 2: A simplified version of the ARA* algorithm.
ARA* is the “main” function.

ARA* is similar in structure to ANA*, and iteratively calls
its version of IMPROVESOLUTION, initially with ε = ε0, and
after each iteration, ε is decreased by a fixed amount ∆ε

(line 6 of ARA*). IMPROVESOLUTION terminates either
when an improved solution is found (line 6), which is then
guaranteed to be ε-suboptimal, or when mins∈OPEN{ f (s)}>
G (line 1), in which case the current-best solution is proven
to be ε-suboptimal.

The initial value ε0 of ε and the amount ∆ε by which it
is decreased after each iteration are parameters of the ARA*
algorithm. Setting these parameters is non-trivial. A first
property of a good anytime algorithm is that it finds an initial
solution as soon as possible, such that a solution can be given
even if little time is available. Ideally, therefore, ε0 = ∞, as
the higher ε , the greedier the search and the sooner a solution
is found. However, setting ε0 = ∞ is not possible in ARA*,
as ε is later decreased with finite steps (line 6 of ARA*). For
that reason, ε is initialized with a finite value ε0 in ARA*.

A second desirable property is to reduce the time spent
between improvements of the solution, such that when the
current-best solution is requested by the host, the least
amount of time has been spent in vain. The amount ∆ε by
which ε is decreased should therefore be as small as possible
(this is also argued by the authors of ARA* in (Likhachev,
Gordon, and Thrun 2004)). However, if ε is decreased by
too little, it is possible that the subsequent iteration of IM-
PROVESOLUTION does not expand a single state: recall that
IMPROVESOLUTION terminates when mins∈OPEN{ f (s)} >
G. If ε is hardly decreased in the next iteration, it might still
be the case that mins∈OPEN{ f (s)}> G. So, what is the max-
imal value of ε for which at least one state can be expanded?



That is when
ε = max

s∈OPEN
{e(s)}, (2)

which follows from the fact that f (s) ≤ G⇐⇒ ε ≤ e(s).
The one state that can then be expanded is indeed the state
s ∈ OPEN with a maximal value of e(s). This is precisely
the state that ANA* expands.

As an alternative to ANA*, one could imagine an adapted
version of ARA* that uses Equation (2) to decrease ε by the
least possible amount after each iteration of IMPROVESO-
LUTION. This would also allow initializing ε at ∞ for the
first iteration. However, such an algorithm would very often
have to update the f (s)-keys of the states s ∈ OPEN (and
reorder the OPEN queue) to account for the new value of ε .
This takes O(n) time, if n is the number of states in OPEN.
Also, ARA* is not maximally greedy to find an improved
solution: after the new value of ε has been determined, it re-
mains fixed during the subsequent iteration of IMPROVES-
OLUTION. However, new states s for which f (s) < G may
be put on the OPEN queue and expanded during that itera-
tion of IMPROVESOLUTION. If f (s)< G, state s would also
have been expanded if ε were increased again (up to e(s)).
A higher ε corresponds to a greedier search, so instead one
could always maximize ε such that there is at least one state
s ∈ OPEN for which f (s) ≤ G. This is equivalent to what
ANA* does, by continually expanding the state s ∈ OPEN
with a maximal value of e(s).

In summary, ANA* improves on ARA* in five ways: (1)
ANA* does not require parameters to be set; (2) ANA* is
maximally greedy to find an initial solution; (3) ANA* is
maximally greedy to improve the current-best solution; (4)
ANA* gradually decreases the suboptimality bound of the
current-best solution; and (5) ANA* only needs to update
the keys of the states in the OPEN queue when an improved
solution is found.

5 Experimental Results
In preliminary testing (see Section 7) we found that ARA*
had the strongest performance compared to other anytime
A* algorithms, so we focused our experiments on the com-
parison between ANA* and ARA*.

We implemented ANA* with Maxim Likhachev’s SBPL
library, which is publicly available on his website and con-
tains a framework with his own ARA* planner and multiple
benchmark domains (Likhachev, Gordon, and Thrun 2004).
We tested ANA* and ARA* on Likhachev’s robotic arm tra-
jectory planning problem. As this problem has high branch-
ing factor and few duplicate states and may not be repre-
sentative (Thayer and Ruml 2010), we also perform experi-
ments with the Gridworld and multiple sequence alignment
problems, which have search domains of bounded depth and
relatively small branching factor.

All experiments were implemented in C++ and executed
on a 32-bit Windows, Intel Pentium Dual Core machine with
1.8 GHz processors and 3GB of RAM.

The quality of an anytime algorithm is measured by its
performance with respect to several metrics: (1) the speed
with which the algorithm finds an initial solution, (2) the
speed and (3) frequency with which the algorithm decreases

(a) 20DOF Arm Navigating Around Obstacles

Figure 3: Robotic Arm Trajectory: The red rectangles are
obstacles; initially, the robot end effector is at the right in
black. The final configuration reaches through the opening
and is illustrated in white; triangles indicate the end effector
trajectory as computed by ANA*.

the suboptimality bound of the current-best solution, (4) the
speed with which the algorithm converges to the optimal
solution, and (5) the frequency with which each algorithm
improves the current-best solution. In our experiments we
explore the relative performance of ARA* and ANA* with
respect to these five metrics.

5.1 Robot Arm Experiment
We simulate both a 6-degree-of-freedom arm and the 20-
degree-of-freedom (DOF) arm shown in Fig. 3(a). The arms
have a fixed base. The objective is to move the end-effector
from its initial location to the pre-determined goal location
while avoiding obstacles (indicated by red rectangles). An
action is defined as a change of a global angle of any par-
ticular joint (i.e., the next joint further along the arm rotates
in the opposite direction to maintain the global angle of the
remaining joints). The cost of each action for the arm can
either be non-uniform, i.e. changing a joint angle closer to
the base is more expensive than changing a joint angle closer
to the end-effector, or all actions can have the same cost.

The environment is discretized into a 50x50 2D grid. The
heuristic is calculated as the shortest distance from the cur-
rent location of the end-effector to the goal location that
avoids obstacles. To avoid having the heuristic overestimate
true costs, joint angles are discretized so as to never move
the end-effector by more than one cell on the 50x50 grid in
a single action. Memory for each state is allocated on de-
mand, resulting in an expansive planning space of over 3
billion states for a 6 DOF robot arm and over 1026 states for
the 20 DOF robot arm.

For each planning domain, we executed ARA* with dif-
ferent values of parameters ε0 and ∆ε . We found that ARA*
run times and performance were not linearly correlated with
these parameters, suggesting that finding good values is non-
trivial. In the interest of space, we focus on the effect of
parameter ε0 and fix the ARA* parameter ∆ε at the value
of 0.2 as recommended by (Likhachev, Gordon, and Thrun



(a) 6DOF, Uniform

(b) 6DOF, Uniform, Suboptimality

(c) 6DOF, Non-uniform

(d) 6DOF, Non-uniform, Suboptimality

Figure 4: Experimental results of the robot motion plan-
ning problem; illustrating performance over time for 6 DOF
robotic arm

(a) 20DOF, Uniform

(b) 20DOF, Uniform, Suboptimality

Figure 5: Experimental results of the robot motion planning
problem; illustrating performance over time for 20 DOF
robotic arm

2004).
Figs. 4(a) and Fig. 4(b) illustrate the cost and suboptimal-

ity, respectively, of the current-best solution over time for
ARA* with various parameter values and for ANA* in the
6-DOF arm domain with uniform cost. We consider the sub-
optimality and current-best cost to be infinite until an initial
solution is found. The vertical lines in the graphs signify the
first solution found for each algorithm, as the suboptimality
and best-cost values drop from infinity to that value. In this
experiment, the optimal solution was found by ANA* before
ARA*. For ANA* this required 5.0 seconds, whereas ARA*
with ε0 = 1.4 required 36.8 seconds. ANA* finds an initial
solution of suboptimality 2.9 in 0.016 seconds, and its rapid
convergence to ε=1 and consistent decrease in suboptimality
are illustrated by the graph and represent the anytime nature
of ANA*.

Figs. 4(c) illustrates the the solution cost of the current-
best solution over time for both algorithms in the 6-DOF
arm domain with non-uniform cost. ANA* finds an initial
solution of cost 386 in 0.078 seconds, while ARA* with the
best ε0 takes 0.090 seconds to find an initial solution with
the same cost. Over time, ANA* consistently maintains a
solution of lower cost in comparison to ARA*.

Fig. 5(b) illustrates the suboptimality of the current-best
solution over time for each planner in the 20-DOF arm do-



(a) Solution Cost

(b) Suboptimality

Figure 6: Experimental results of the 100x1200 grid-world
path-planning experiment with obstacles and uniform cost.

main where each action has uniform cost. Again, ANA*
finds an initial solution (14.8 seconds) faster than ARA*.
While ARA* achieves a better solution for a period of time,
ANA* finds a series of solutions lower than those achieved
by ARA* for any ε0 value within 250 seconds. Due to the
expansiveness of the search space in this experiment, neither
algorithm can prove optimality of the best solution it finds
before it runs out of memory. The graph shows that ANA*
has the most number of steps in its decrease to a lower sub-
optimality. This indicates a larger number of improvements
to the current-best solution cost and illustrates the maximal
greediness of ANA* to improve on the current-best solution.

5.2 Gridworld Planning
We consider two planar Gridworld path-planning problems
with different sizes and number of obstacles from the SBPL
library mentioned above. In both problems, we set the start
state as the cell at the top left corner, and the goal state at
the bottom right cell (Thayer and Ruml 2008). The first
grid-world problem is a 100x1200 8-connected grid with
obstacles, with unit uniform cost to move between adja-
cent obstacle-free cells. The second grid-world problem is
a 5000x5000 4-connected grid in which each transition be-
tween adjacent cells is assigned a random cost between 1
and 1,000. We considered two cases for this environment,
one with obstacles and one without.

Fig. 6 shows the solution cost results for the 100x1200

(a) Without obstacles

(b) Without obstacles, Suboptimality

Figure 7: Experimental results of the 5000x5000 grid-world
path-planning experiments with random cost.

gridworld experiment, with fixed transition cost and obsta-
cles in the environment. The disparity in the ARA* results
illustrates a non-linear relationship between ε0 and perfor-
mance of ARA*, suggesting that setting this value is non-
trivial, as a higher or lower ε0 value does not necessarily
guarantee better or worse performance. ARA* was tested
with ε0 ∈ [2,500]. ANA* finds an initial solution first (in 4
ms), and reaches an optimal solution in the smallest amount
of time (E = 1 in 15 ms), whereas the next best ARA* takes
478 ms to obtain the same solution.

Figs. 7(a) and 8(a) show results without and with ob-
stacles in the 5000x5000 domain with random transition
cost. ARA* was tested with ε0 ∈ [3,500] and ε0 ∈ [3,2000],
respectively. The results suggest that the performance of
ANA* is superior in all cases of the domain without obsta-
cles.

In the domain with obstacles, ANA* finds an initial so-
lution first (in 50ms), but after 50s, ARA* with ε0 = 500
has found a solution of lower cost than ANA*. ANA* re-
quired an additional 193s to find this solution. This is due to
the fact that ANA* improves its current-best solution so of-
ten (with small improvements) that the overhead of updating
the keys in the OPEN queue reduces the effective running
time of ANA* in this case. Note, however, that the values
for ε0 produce very different results for ARA* in these do-
mains: in Fig. 7(a), ε0 = 30 is the best of those tested, while
in Fig. 8(a) ε0 = 500 is best of those tested. ANA* does not



(a) With obstacles

(b) With obstacles, Suboptimality

Figure 8: Experimental results of the 5000x5000 grid-world
path-planning experiments with random cost.

require setting of parameters.

5.3 Multiple Sequence Alignment
The multiple sequence alignment problem is central for
computational molecular biology and can be formalized as a
shortest-path problem in an n-dimensional lattice, where n is
the number of sequences to be aligned (Yoshizumi, Miura,
and Ishida 2000). The state representation is the number
of characters consumed so far from each string; a goal is
reached when all characters are consumed (Ruml and Do
2007). Moves that consume from only some of the strings
represent the insertion of a gap character into the others. We
computed alignments of five sequences at a time, using the
standard sum-of-pairs cost function in which a gap costs 2,
a substitution (mismatched non-gap characters) costs 1, and
costs are computed by summing all the pairwise alignments.
Each problem consists of five dissimilar protein sequences
obtained from (Ikeda and Imai 1994), and (Kobayashi and
Imai 1998). The heuristic function h(n) was based on opti-
mal pairwise alignments that were precomputed by dynamic
programming.

Fig 9(a) compares the performance of ANA* to that of
ARA*. ANA* found an initial solution (after 11ms) before
ARA* in all cases. ANA* took an average of 18s to improve
the current-best solution, while the best run of ARA* aver-
aged 200s, resulting in a better area score for ANA*. Also,
ANA* found a new solution 52 times compared to 16 for the

(a) Solution cost v. Time

(b) Suboptimlaity v. Time

Figure 9: Results for the multiple sequence alignment prob-
lem with five protein sequences.

best case of ARA*. ARA* was tested with ε0 ∈ [2,100] (the
ideal value of ε0 for ARA* was small in this case).

6 Further Discussion
In section 5, ANA* was compared to ARA*, with the claim
that ARA* possessed the strongest anytime characteristics
out of all of the other anytime algorithms we tested. In this
section we delve into a discussion of the preliminary tests,
and explain our reasoning behind choosing ARA* as the al-
gorithm selected for comparison. These tests were executed
on the same machine mentioned earlier, a 32-bit Windows,
Intel Pentium Dual Core machine with 1.8 GHz processors
and 3GB of RAM.

In the preliminary experiments, each algorithm is run in
two Gridworld path-planning domains. The first is a 1000
x 1000 grid with 4-way movement, where each edge has a
random cost set before execution, and obstacles are absent.
The second is a 10000 x 10000 grid with 4-way movement
such that each edge has equal cost and obstacles are present.
For each algorithm that required setting of parameters, val-
ues for ε0 and ∆ε were selected that gave the best anytime
characteristic for that algorithm.

For the first domain, of random edge-cost in the ab-
sence of obstacles, Fig 10(a) displays the comparative per-
formance of each algorithm. In the experiment, ANA* finds
the optimal solution in 7.8 seconds, ARA* requires 9 sec-



onds, while AHS takes 9.5 seconds, and RWA* finds it in
44.5 seconds. The suboptimality bound for ANA* decreases
162 times before reaching the optimal cost. RWA*, on the
other hand, updates the suboptimality bound 11 times, but
takes the longest time to reach the optimal solution. ANA*
also finds the initial solution the fastest, returning a solu-
tion at 19 milliseconds. The randomized edge-cost environ-
ment hindered RWA*, and restarting in such an environment
proved detrimental, since it forced the algorithm to repeat-
edly explore the same states over multiple iterations.

In the second domain, of uniform cost, ANA* reaches
the optimal solution in 227 milliseconds, while ARA* takes
273 milliseconds, RWA* takes 396 milliseconds, and finally
AHS takes 520 milliseconds. The suboptimality bound of
ANA* is decreased 6 times before reaching the final answer,
while ARA* updates the suboptimality value three times and
RWA* decreases it twice. Though AHS decreases the bound
7 times, it takes longer to reach the optimal solution compare
ANA*. The speed at which the initial solution is found is
relatively similar for all algorithms in this experiment, with
ANA* taking 110 milliseconds; second only to RWA* at
107 milliseconds. Fig 10(c) shows the comparison of the
area under the cost vs. time curve for each algorithm.

From these experiments, we observed that ARA* outper-
formed the other anytime algorithms based on Weighted A*,
making it a strong candidate to use for the final benchmark
tests. Also, the conceptual basis for our algorithm was de-
rived from ARA*. AHS and RWA* in contrast, exhibit in-
consistent anytime behavior. In some cases, they excel in
one criteria, such as the frequency of improvement on the
current-best solution, for a certain experiment, and some-
times fairing poorly in the same area, given a different envi-
ronment. ANA* and ARA* proved to have a more consis-
tent performance with respect to our metrics of comparison.

7 Conclusion
We present ANA*, a new anytime A* algorithm that requires
no parameters to be set by a user and is easy to implement.
Both qualitative analysis and quantitative experimental re-
sults suggest that ANA* has superior anytime characteristics
compared to existing anytime A* algorithms. ANA* intro-
duces a novel order-criterion to choose the state to expand,
which was derived through analyzing the existing anytime
algorithm ARA* (Likhachev, Gordon, and Thrun 2004).

Subjects of ongoing research include graph search in dy-
namic domains, where the cost of transitions between states
changes over time and solutions need to be updated quickly.
In (Likhachev et al. 2008), an anytime algorithm for dy-
namic domains was presented that is based on ARA*. We
are currently exploring how ANA* can be adapted for ap-
plication in dynamic domains, such that it offers similar ad-
vantages: ANA* is as easy to implement as ARA*, has com-
parable and in many cases superior performance, and frees
users from the burden of setting parameters.

8 Acknowledgements
We thank Maxim Likhachev for making his implementation
of ARA* available to us, as well as publishing the code

(a) Random cost grid without obstacles

(b) Random cost grid without obstacles, Subopti-
mality

(c) Uniform cost grid with obstacles

(d) Uniform cost grid with obstacles, Subopti-
mality

Figure 10: Experimental results of preliminary testing:
Comparing ANA* with ARA*, RWA* and AHS search al-
gorithms in the Gridworld environment



for ANA*. Our implementation of ANA* is freely avail-
able in his Search-based Planning Library (SBPL) at http:
//www.cs.cmu.edu/˜maxim/software.html. We also
acknowledge the support of NIH Research Award 1R01EB-
006435-01A1, and the Center for Information Technology
Research in the Interest of Society (CITRIS), UC Berkeley.

References
Aine, S.; Chakrabarti, P.; and Kumar, R. 2007. AWA* – a
window constrained anytime heuristic search algorithm. In
Proc. Int. Joint Conf. on Artificial Intelligence, 2250–2255.
Cormen, T.; Leiserson, C.; and Rivest, R. 1990. Introduction
to Algorithms. MIT press.
Dechter, R., and Pearl, J. 1985. Generalized best-first search
strategies and the optimality of A*. Journal of the Associa-
tion for Computing Machinery 32(3):505–536.
Dijkstra, E. 1959. A note on two problems in connexion
with graphs. Numerische Mathematik 1:269–271.
Furcy, D. 2006. ITSA*: iterative tunneling search with
A*. In Proc. AAAI Workshop on Heuristic Search, Memory-
Based Heuristics and their Applications, 21–26.
Hansen, E., and Zhou, R. 2007. Anytime heuristic search.
Journal of Artificial Intelligence Research 28:267–297.
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal basis
for the heuristic determination of minimum cost paths. IEEE
Trans. on Systems Science and Cybernetics 4(2):100–107.
Ikeda, T., and Imai, H. 1994. Fast A* algorithms for mul-
tiple sequence alignment. In Proc. Workshop on Genome
Informatics, 90–99.
Kobayashi, H., and Imai, H. 1998. Improvement of the
A* algorithm for multiple sequence alignment. In Genome
Informatics Series, 120–130.
Likhachev, M.; Ferguson, D.; Gordon, G.; Stentz, A.; and
Thrun, S. 2008. Anytime search in dynamic graphs. Artifi-
cial Intelligence 172(14):1613–1643.
Likhachev, M.; Gordon, G.; and Thrun, S. 2004. ARA*:
anytime A* with provable bounds on sub-optimality. Ad-
vances in Neural Information Processing Systems 16.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artificial Intelligence 1:193–204.
Richter, S.; Thayer, J.; and Ruml, W. 2010. The joy of
forgetting: faster anytime search via restarting. In Proc. Int.
Conf. on Automated Planning and Scheduling, 137–144.
Ruml, W., and Do, M. 2007. Best-first utility-guided search.
In Proc. Int. Joint Conf. on Artificial Intelligence, 2378–
2384.
Thayer, J., and Ruml, W. 2008. Faster than weighted A*: an
optimistic approach to bounded suboptimal search. In Proc.
Int. Conf. on Automated Planning and Scheduling, 355–362.
Thayer, J., and Ruml, W. 2010. Anytime heuristic search:
frameworks and algorithms. In Proc. Symp. on Combinato-
rial Search.
Yoshizumi, T.; Miura, T.; and Ishida, T. 2000. A* with
partial expansion for large branching factor problems. In
Proc. Nat. Conf. on Artificial Intelligence, 923–929.

Zhou, R., and Hansen, E. 2005. Beam-stack search: inte-
grating backtracking with beam search. In Proc. Int. Conf.
on Automated Planning and Scheduling, 90–98.


