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ABSTRACT
In this paper we propose a formal approach and methodology for analysis
and generation of human-machine interfaces, with special emphasis on
human-automation interaction. Our approach focuses on the information
content of the interface—that is, on “what should be presented”—rather
than on the form and layout of the graphical user interface (“how it should
be presented”). The methodology is guided by two criteria: First and
foremost, the interface must be correct. That is, given the interface
indications and all related information (e.g., user manuals, training
material, etc.), the user must be able to successfully perform the specified
tasks. Second, the interface and related information should be
succinct—that is, the amount of information (e.g., mode indications, mode
buttons, parameter settings, etc.) presented to the user should be reduced
(abstracted) to the minimum necessary. The foundation of our approach is
the notion of information abstraction. We argue that in terms of the
information provided on the interface, user interfaces are always an
abstract description of the underlying behavior of the machine. The
correspondence between what is presented to the user and the inner
working of the machine is the focus of the verification and abstraction
method presented in this paper. We discuss these concepts and illustrate a
step-by-step procedure for generating correct and succinct user interfaces.
Two examples are used to illustrate the procedure. The procedure for
generating interfaces can be automated, and a software system for its
implementation has already been developed.
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INTRODUCTION
Human interaction with computers is so widespread that almost every aspect of our lives
involves interaction with devices, information systems, and automated control systems.
These computer-based machines have complex behaviors that comprise numerous
internal states and events. Yet, the only face the user sees is the interface: always a
(highly) abstracted description of the underlying machine behavior. This abstraction is a
must, because otherwise the user would be subjected to an enormous, and mostly
irrelevant, amount of information. As such, an important and fundamental aspect of
interface design involves an intricate process of abstracting information so as to suppress
irrelevant information and retain the important information. The end result of this process
is the information provided to the user on the interface. We argue that every interface
designer, explicitly or implicitly, goes through this process of abstraction in his or her
attempt to make user interaction efficient, reliable, and safe.

From this perspective, the designer’s goal is to strike a fine balance between providing
too much information (some of which may be unnecessary to operate the machine) and
providing insufficient information (thereby preventing the user from operating the
machine correctly). Specifically, when insufficient information is provided to the user, he
or she may not be able to perform the specified task correctly (e.g., determine the current
mode of the machine and anticipate its next mode as a consequence of user interaction).
As a result, either the user will be unable to perform the desired task altogether, or there
will be unexpected, faulty, and potentially dangerous outcomes. To illustrate this issue of
correctness, let us consider the following example:

A modern airliner is flying at 8,000 feet under autopilot control. The crew receives an Air
Traffic Control directive to climb and level off at 10,000 feet. The pilot enters the 10,000-
feet altitude constraint into the autopilot, engages a mode called “VERTICAL SPEED,”
then selects the rate of climb (e.g., 2,000 feet per minute); now the aircraft begins
climbing to 10,000 feet. When the aircraft reaches an altitude of 9,000 feet, Air Traffic
Control directs the crew to descend back to 8,000 feet. In response, the pilot enters the
new altitude of 8,000 feet into the autopilot.

Under one set of conditions, the aircraft will continue climbing (at the selected rate of
climb of 2,000 feet per minute) indefinitely; the aircraft will climb past 10,000 feet, and
unless some control action is taken by the crew, the aircraft will keep on climbing. Under
another set of conditions, given the same pilot input, the aircraft will descend (from 9,000
feet) and then level off at 8,000 feet. What we have here is that the same pilot input
(entering the new 8,000-feet altitude constraint into the autopilot) triggers two different
outcomes. Given the autopilot mode indications and displays and all related user manual
information, it is impossible for the crew to determine what the aircraft will do.

The problem is not that the autopilot behaves in unpredictable and unexpected ways. The
autopilot, in fact, is fully deterministic: If the newly entered altitude is above a certain
reference altitude (the altitude at which the autopilot begins a gradual maneuver to
capture and hold the target altitude), then the aircraft will descend and level off at 8,000
feet. However, if the newly entered altitude is below this reference altitude, the aircraft
will continue climbing indefinitely. The problem is that this reference altitude value
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(which changes as a function of the aircraft’s speed and altitude) is not available
anywhere on the cockpit displays. We say that such an interface is “incorrect” because
the pilots, in the process of performing a specified task (climb and level-off), cannot
anticipate the consequences of their interaction with the machine. (See Degani and
Heymann, 2002, for a detailed analysis of this particular interface problem and its root
causes).

In most practical systems, user interfaces do not provide a full and complete description
of the underlying behavior of the machine with all its internal states, events, and
parameters. Therefore, a major concern for designers of interfaces is to make sure that the
interface is indeed correct. Currently, this abstraction is performed in a heuristic and
intuition-based manner, and its evaluation process usually involves many interface design
iterations, costly simulations, and extensive testing. In industries such as medical
equipment, nuclear systems, and commercial aviation, it also involves a complicated
certification process (see for example Federal Aviation Regulation 25.1329 and
associated Advisory Circular). Yet, despite best efforts by design teams and certification
officials, numerous incidents and accidents involving incorrect interfaces have been
noted in avionics systems (Rodriguez et al., 2000; Rushby, 1999), maritime navigation
systems (National Transportation Safety Board, 1997) and computer-based medical
equipment (Leveson, 1995, Appendix A—the Therac-25 radiation machine). Incorrect
interfaces can also be found in Internet applications, automotive systems, and many
consumer electronics devices (see Degani, 2004 for more than 20 examples).

On the flip side of the abstraction problem lies the case where the interface provides too
much information and overloads the user with superfluous and irrelevant information.
Naturally, we all strive for interfaces (and user manuals) that are not only correct, but
succinct. In general, we want an interface in which the number of modes, states, events,
and parameters that the user needs to monitor and interact with to be minimal. In most
cases we would prefer to have a small set of modes rather then a large set of modes in
order to perform a given task (Norman, 1983). Likewise, we would prefer short
sequences of user inputs rather than lengthy ones. The point here is not about eliminating
functionality and user comprehension of the behavior of the system, but rather about
suppressing superfluous and irrelevant information that does not add much to the user’s
ability to control and manage the system (Thimbleby et al., 2002). The advantage of
having succinct displays and shorter sequences of user inputs is not only in minimizing
the actual size of the user interface and the amount of indications that need to be designed
and implemented, but also in reducing the perceptual and cognitive burden on the user.

A formal approach to human-computer interaction and a literature review
Many aspects of the human-machine interaction—such as the design of interfaces in
terms of their graphical appearance and layout—are empirical, and, to some extent,
artistic (Norman, 2004). Nevertheless, by focusing on the information content of the
interface (rather than its appearance and layout) the problem of what to display and
related user interaction issues can be described and analyzed using mathematical, or
formal, methods.



- 4 -

Formal methods is a discipline for studying how mathematical models of systems can be
used to develop efficient, reliable, and safe designs. Formal methods are employed to
express design specifications and requirements, as well as to perform systematic analysis
and verification. Probably the earliest work in using formal methods to address human-
computer interaction issues was conducted by Parnas (1969), who used a finite state
machine model to describe user interaction with a computer terminal. Using this
modeling formalism, he was able to illustrate several design flaws such as “almost-alike”
modes and inconsistent ways to reach a given mode. Foley & Wallace (1974) and Jacob
(1983) used similar modeling formalisms for developing general interface design
specifications for human-computer interaction. Jacob (1986) and Wasserman (1985) used
formal methods for specifying direct manipulation aspects of user interaction in order to
address the concurrent structure of multiple display objects (e.g., windows) that are open
simultaneously.

By the mid 1980s, researchers in Human Computer Interaction (HCI) began using formal
methods as a way to analyze and measure user interaction. Kieras & Polson (1985) used
formal methods to quantify the complexity of human-computer interaction. To do this,
they modeled both the device and the user’s tasks as finite state machines. Since both the
device and the task were represented in the same formalism, they were able to identify
cases in which the user’s task structure did not correspond with the device’s structure.
Bosser & Melchoir (1990) employed the same approach and then applied graphing
techniques to evaluate whether all the specified user’s tasks could be achieved (given the
device’s functionality). Degani (1996) used a variant of a state transition system, called
Statecharts (see Harel, 1987), to develop a framework that describes the environment,
user’s tasks, device functionality, and interface information as four concurrent processes;
the intent was to understand automation-induced mode errors and to identify a variety of
general interface ambiguity problems. Duke, Fields, & Harrison (1999) describe a
framework for modeling interactive computer systems in order to express HCI design
specifications such as access control and information availability.

An important facet of formal methods is to prove that a given model of the system fulfills
certain design criteria, or properties. In this context, a property can be a simple statement
about something that the system model does (or does not do). Extensive checking is then
used to verify that the model of the system, for example, does not “deadlock” (see Dix,
1991; Harrison & Thimbleby, 1990; Palanque & Paternò, 1998; Paternò & Santoro,
2002). Rushby (1999, 2001) employed Model Checking techniques in order to detect
inconsistencies between machine and user models by simultaneously tracking the
operation of both models and then using an iterative search in order to modify the
machine and user model so as to achieve consistency. Doherty, Campos, & Harrison
(2000) used logical theorem-proving techniques to investigate the relation between
system state behavior and user interfaces. Thimbleby, et al. (2002) showed how
unnecessary interface complexity imposed on the user may be inappropriate to the user’s
task needs and, more importantly, how an interface designed to hide irrelevant
complexity had a beneficial impact on the overall reliability of the system.

Several research groups explored the use of algorithm-based processes for selecting and
rendering display widgets. Szekely, et al. (1995) developed a framework (called
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MASTERMIND) for specifying the user’s task, the functions of the system, and the
requirement and style of the interface so as to create a model-based environment for user
interface development. Browne, et al. (1997) used the MASTERMIND framework to
develop an approach for automatically rendering user interfaces (e.g., dialogues boxes
and file structure), given the underlying computer application. Bauer (1996) showed how
a formal description of a (computer) application allowed for an automatic generation of
interface widgets (mostly for dialogues and user input sequences). Krzystrof & Weld
(2004) used an optimization algorithm for automatically selecting, resizing, and rendering
of display widgets to accommodate different display sizes (e.g., small cell phones, PDAs,
large computer screens, etc.).

Beyond formal interface descriptions, specification, evaluations, and algorithm-based
rendering techniques, many other considerations must be taken into account to ensure
efficient and successful human-machine interaction. These include cognitive and
perceptual limitations, human physical abilities, redundancy of critical information,
consistency, commonality with similar devices, training implications, and more.
Nevertheless, at the foundation of any interface design rests the abstraction issue on
which we focus our attention here.

A FORMAL APPROACH FOR DESCRIBING HUMAN-AUTOMATION
INTERACTION
The correspondence between the machine’s behavior and the (abstracted) information
that is provided to the user can be formally described and analyzed by considering the
following four elements: (1) the machine, (2) the user’s tasks, (3) the user interface, and
(4) the user’s model of the machine.

Machine
We consider machines that interact with their human users, interact with the environment,
and can act automatically. A widely used formalism to model machines is to describe
them as state transition systems. A state represents a certain internal configuration of the
machine. Transitions represent discrete state changes that occur in response to events that
fire, or trigger, them. Some of these transitions occur only if triggered by the user, while
others are triggered automatically. In general, we consider two types of automatic
transitions: those that are triggered by the machine’s internal dynamics (e.g., timed
transitions) and those that are triggered by the external environment (e.g., the way an air
conditioner compressor is activated when the temperature reaches a set value).

To illustrate a typical machine model, consider Figure 1, which describes the behavior of
a semi-automatic transmission system of a large vehicle. We shall use the convention that
user-triggered transitions are depicted as solid lines, while automatically triggered
transitions are depicted by broken lines. The transition lines are directed and are labeled
by the (triggering) event that causes the machine to move from state to state.
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Figure 1.  Transmission system of a vehicle (and the driver’s gear lever)

The transmission system in Figure 1 has eight states. These states are grouped into three
clusters, that we refer to as modes: LOW, MEDIUM, and HIGH. Thus there are internal
“speed-level” states low-1, low-2, and low-3 in the LOW mode; medium-1 and medium-
2 in the MEDIUM mode; and high-1, high-2, and high-3 in the HIGH mode. The system
shifts automatically between these internal states (based on torque, throttle, engine RPM,
and actual car speed). Automatic up-shifts (to higher speed states) are denoted by the
event up, and automatic down-shifts (to lower speed states) are denoted by the event
down.

The user interacts with the system by means of a gear lever: pushing the lever up shifts to
a higher torque level, and pulling it down shifts to a lower torque level. These user-
triggered transitions are denoted by events push-up and pull-down, respectively.

User’s tasks
Generally speaking, users interact with a machine to achieve a specific set of tasks
(Parssuramann et al., 2000). These tasks may vary widely, and range from using
consumer electronic devices, such as VCRs, to interacting with web browsers and
operating safety-critical systems (e.g., medical devices and navigation systems onboard
ships and aircraft). With respect to controlling and supervising automated systems,
typical tasks involve monitoring a machine’s mode changes (e.g., an automatic landing of
an aircraft), execution of specific sequences of actions (e.g., making an online
transaction), and supervising a system such that it does not enter into an illegal state (e.g.,
in process control).

It is possible to describe these tasks formally. We do this by first partitioning the entire
machine’s state-space into disjoint clusters that we call specification classes. A
specification class is a set of internal states which the design team determined that the
user need not distinguish among. For example, in the transmission system the three
modes—LOW, LOW, MEDIUM, and HIGH—are our specification classes. (These are
typically defined by design teams by using task analytical techniques and inputs from
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expert users.) Next, the design team specifies the task requirements. For example, one
task requirement, which is common to almost all automated systems that are supervised
by humans, is for the user to track these specification classes unambiguously. In the case
of the transmission system, the design team stated that the user must be able to determine
whether the system is in, or is about to enter into, the LOW, MEDIUM, or HIGH
specification classes. What this means is that the user is not required to track every
internal state change of the machine (e.g., transitions between the states high-1, high-2,
and high-3, which are all contained in HIGH do not need to be tracked). Using this
approach, other types of user’s tasks, such as reliably executing a specified sequence of
actions, can also be expressed formally (Degani, Heymann, & Shafto, 1999).

Interface
In almost every machine that we encounter today, the events that take place inside the
machine are purposefully abstracted and the interface displays only a limited view of
these internal states. In most computer systems, there is dedicated software that collects
events from the underlying machine and then passes this information to a special
component that generates the display. In automated control systems such as autopilots
and flight management systems, a display generator, collocated between the system and
the interface, takes in selected events from the machine and provides outputs in a form of
commands to light up (or turn off) display indications. One important aspect of the work
described in this paper is to determine which events must be collected from the machine
and then presented, in the form of indications, on the user interface.

To illustrate this formal approach for considering interfaces, let us return to the vehicle
transmission example. Figure 2(a) is a suggestion for a simple and straightforward user
interface for the vehicle transmission system. Note that in this proposed design all
internal transitions are removed from the interface, and consequently from the user’s
awareness. As one can see by comparing Figure 2(a) with Figure 1, the LOW mode has
actually three internal states: low-1, low-2, and low-3. When the user first enters
manually into low gear, low-1 is the active state (see the small quarter-circle arrow);
when the driver increases speed, an automatic transition to low-2 takes place, yet this
internal transition is not evident to the driver, who is only aware of being in the LOW
mode. The same applies to all other internal transitions in the system.
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Figure 2(a).  Proposed  interface Figure 2(b). The corresponding user model

User model
Manufacturers normally provide users with information about the working of the
machine by means of user manuals. Here the manufacturers describe the functions of the
machine and its behavior as a consequence of user action and environmental conditions.
Most verbal statements for consumer electronics as well as more complex systems (e.g.,
avionics) take the following form: “When the machine is in mode A and button x is
pushed, the machines transitions to mode B.”

The user manual for the transmission system should be consistent with the interface of
Figure 2(a). It might tell the driver that when the transmission is in MEDIUM mode,
pushing the lever up would cause the system to shift to HIGH mode, while a down-shift
would transition the system to LOW mode, and so on. This series of fragmented
statements describes to the user how the machine works, as well as how he or she is
expected to interact with it. (But again, note that these user manual statements are
abstractions of the actual behavior of the machine).

In Figure 2(b) we incorporated all the user-triggered transitions of the machine with the
three mode indications (LOW, MEDIUM, HIGH ). The resultant description shows how
the user, monitoring the machine through the proposed interface, would see the
machine’s behavior. We refer to this description of the interface indications, and of the
transitions and events that drive it, as the user model of the machine.

The user model is based on the interface because it directly relates to the indications
displayed there. Thus, as mentioned earlier and as can be readily seen in Figure 2(b), the
interface is actually embedded in the user model. Therefore, for practical purposes, we
will consider from here on only the user model in the process of analyzing and generating
interfaces. Finally, it is important to note here that the description of the user model may
not be confined to exactly what is provided in the user manual and/or on the interface, as
is the case in this example.
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INTERFACE CORRECTNESS CRITERIA
Among the four elements that play a role in the formal aspect of human-machine
interaction, the machine model and the user’s tasks are regarded for our purposes as
given. (Our only assumption is that the machine’s behavior is deterministic and the user’s
tasks are within the machine’s abilities.) This leaves the user model (and the interface
which is embedded in it) as the focus of our analysis.

One immediate observation about interface correctness is that the machine’s response to
user-triggered events must be deterministic. That is, there must not be a situation
wherein, starting from the same mode, an identical user event (e.g., up-shifting the gear)
will sometimes transition the system into one mode (e.g., MEDIUM) and at other times
into another (e.g., HIGH).

Broadly speaking, there are three user-interface correctness criteria that we aim at
satisfying in the process of analyzing and generating interfaces: An interface is correct if
there are no error states, no restricting states, and no augmenting states, as explained
below.

• An error state occurs when the user interface indicates that the machine in one
mode when, in fact, the machine is in another. Interfaces with error states lead to
faulty interaction. Frequently (but not always), error states are caused by the
presence of non-deterministic responses to user interaction.

• A restricting state occurs when the user can trigger certain mode changes in the
machine that are not present in the user model and interface. Interfaces with
restricting states tend to surprise and confuse users.

• An augmenting state occurs when the user is told that certain transitions are
available when, in fact, they cannot be executed by the machine (or are disabled).
Interfaces with augmenting states puzzle users and have contributed to operational
errors.

All three criteria can be expressed mathematically, and therefore can be dealt with using
formal methods of analysis (see Heymann & Degani, 2002).

Non-deterministic interfaces and error states
We begin by analyzing the proposed user model of Figure 2(b). The manual up-shift from
MEDIUM to HIGH and the down-shift from HIGH to MEDIUM and MEDIUM to LOW
are always predictable; the user will be able to anticipate the next mode of the machine.
However, note that the transitions out of LOW depend on the internal states: up-shifts
from low-1 and low-2 take us to MEDIUM, while the up-shift from low-3 switches the
transmission to HIGH (see Figure 1.) What we have here is that the same user-triggered
event (push-up) takes us to either of two different machine modes. But since the display
abstracts from us which internal state the system is in, we will not be able to predict
whether the system will transition to MEDIUM or HIGH. In other words, the proposed
display, with respect to user-triggered events, becomes non-deterministic and may lead to
an error state. Therefore, we must conclude that the proposed interface and corresponding
user model of Figure 2 is incorrect.
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Next consider the alternate user-model of Figure 3 where the display has been modified
to partition the low mode into two sub-modes (LOW-A, and LOW-B). The user manual
is modified correspondingly to explain to the user that the up-shift (push-up) from LOW-
A, transitions the system to MEDIUM, while the up-shift (push-up) from LOW-B,
transitions the system to HIGH. Let us try to analyze the correctness of this user model.
But this time let us proceed in a formal way (Degani & Heymann, 2002).

Figure 3.  Alternative user model

In any human-machine system, two concurrent processes are constantly at play: the
machine with its internal states and transitions on one hand, and the interface
annunciations with the associated user–model transitions on the other. These two
processes, or models, must “march” in synchronization and never encounter error states,
restricting states, and augmenting states. Verification that this is indeed true can be
accomplished by constructing a composite model that incorporates both the machine
model states and the user model states. In this composition, we combine corresponding
user-model states and machine-model states into state-pairs and evaluate their
synchronized march with respect to the specification classes and the task requirements.

The machine (see Figure 1) starts in state low-1 and the display and user model (see
Figure 3) starts in LOW-A. So the first composite state in Figure 4 is “low-1, LOW-A.”
Upon an internally triggered automatic shift (event up), the machine transitions to low-2
and the display to LOW-B. Now we are in composite state “low-2, LOW-B” and all is
well. Another internally triggered automatic transition up takes the system to the
composite state “low-3, LOW-B.” If at this point, the user decides to transition the
system manually by pushing up, the composite state that is reached is “high-1, HIGH”
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and all is consistent. If, however, the user had decided to up-shift manually when the
machine was still in state low-2, the machine would transition to state medium-1 (see
Figure 1) and the interface into HIGH mode (see Figure 3). The new composite state
would be “medium-1, HIGH” (Figure 4), which is clearly an inconsistency! The display
indicates to the user that he or she is in HIGH mode, whereas in fact the underlying
machine is in MEDIUM (internal state medium-1).

Figure 4.  Composite of the machine and the user model

The composite state “medium-1, HIGH” constitutes an error state (because the machine
is in one specification class—medium—and the user model is in another—high). Because
of this discrepancy between the models with respect to the specification classes, the user
model (of Figure 3) is not a correct abstraction of the underlying machine. Given such a
display, there is nothing we can do to alleviate the problem; no additional training, no
better user manuals, procedures, or any other countermeasures will help. We conclude
that the user model of Figure 3 is incorrect for the task.

GENERATING USER INTERFACES
The objective of the interface generation procedure is to derive a user model that is
correct for the specified tasks—namely, it is free of error states, restricting states, and
augmenting states. A second requirement is that this user model must be succinct. The
proposed methodology centers on a systematic method for reducing the machine model
into a smaller model that still allows the user to perform correctly all the specified tasks
(and such that the model cannot be reduced further). What follows is a description of an
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algorithmic procedure for the generation of user models. The detailed mathematical
aspects of this algorithm are provided in Heymann & Degani (2002). Here we shall
describe the underlying ideas and principles of the methodology and illustrate the
procedure with the aid of examples, and in particular, the one that we are already familiar
with—the transmission system.

Outline of the algorithmic approach
Our algorithmic approach for generation of succinct user models and associated
interfaces is based on the fact that not all the system’s internal states need to be
individually presented to the user. Specifically, two internal states need not be
distinguished, whenever 1) they belong to the same specification class, 2) each user-
triggered event that is available and active in one of the states is also available and active
in the other, 3) whenever starting from either of the two states and triggered by the same
event sequence, the state pairs visited, respectively, also satisfy conditions 1) and 2).
Such state pairs that need not be distinguished by the user are referred to as compatible.
Thus, the first step of the interface generation algorithm consists of finding all the
compatible state pairs. From these pairs, all the (largest possible) sets of compatible
states—called maximal compatibles—are computed.

The next step of the algorithm consists of generating a reduced user model. The user
model’s states comprise maximal compatible state sets which constitute the user model’s
building blocks. In general, not all the maximal compatibles need to be chosen for the
reduced model, and frequently the designer has more than one choice in selecting
appropriate compatible sets. The key to a suitable selection is that the selected set must
constitute a minimal cover of the original machine’s state set. That is, each state of the
original machine must be a member of at least one selected maximal compatible (this
constitutes the cover property), and none of the selected maximal compatibles can be
omitted from the selected set without violating the cover property (this constitutes the
minimality property).

Once the state set of the reduced model has been selected as just described, the next step
is to determine the transitions in the reduced model. These are defined so as to be
consistent with the original machine model and with the partition of the state set into
specification classes. Three subtle issues arise in this connection: (1) sets of distinct
events that need not be distinguished and can be grouped together, (2) events that can be
deleted since their presence in the reduced model is redundant, and (3) transition non-
determinism that can be eliminated from the reduced model. The resultant reduced
machine model constitutes the user model. The required interface is then extracted from
this model. (The mathematical details of this algorithmic approach are discussed in
Heymann & Degani (2002). Here they will only be demonstrated through the ensuing
examples).

Compatible states
The user model must enable us to operate the machine correctly with respect to the user’s
tasks and requirements. Thus, while the user is required to track, unambiguously, the
specification classes visited by the system, the user need not track every internal state of
the machine. In the transmission example there is no need for us to distinguish between
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two internal states (say medium-1 and medium-2 of mode MEDIUM), if, following any
event sequence, 1) we always end up in the same specification-class (e.g., HIGH), and 2)
the same set of user-triggered events is available, regardless of which of the two internal
states we started from. If that is the case, the two states (medium-1 and medium-2) are
compatible. From an interface design standpoint, the two compatible states can be
grouped together on the display and be represented as a single user model state because
the intrinsic details of whether the current internal state is medium-1 or medium-2 are
inconsequential to the user.

Instead of trying to find all state pairs that are compatible, it is computationally more
convenient to first find all state-pairs that are incompatible. Once we identify and mark
all incompatible pairs (i.e, those that cannot be grouped together on the interface), then,
of course, the remaining state pairs must be compatible. We proceed as follows:

An immediate criterion for incompatibility of a state-pair is that the two states which
constitute the pair belong to two distinct specification classes or have distinct active user-
triggered events. For example, the state-pair low-1 and high-1 is outright incompatible
because low-1 belongs to the LOW specification class and high-1 belongs to HIGH. We
must never group these two states together on the display.

The second criterion for designating a pair of states as incompatible has to do with event
sequences. We mark a state pair incompatible if, starting from the two states and
following the same sequence of events, we transition into a state-pair that has already
been deemed incompatible. For example, consider the state-pair low-2 and low-3.
Initially, the pair is tentatively marked as compatible (because the two states belong to
the same specification class and have the same active user-triggered event—push-up).
However, following a common event (push-up), this pair transitions into the state pair
medium-1 and high-1. Since medium-1 and high-1 are already known to be
incompatible (because they belong to two different specification class), the initial pair,
low-2 and low-3, must also be marked as incompatible.

Computing compatible pairs
An efficient iterative procedure for computing such compatible and incompatible state-
pairs is based on the use of merger tables (see Paull & Ungar, 1959, and Kohavi, 1978)
as described via our transmission example next. A merger table is a table of cells that
lists, for each state pair of the machine, the set of all distinct state pairs that are reached
through a single common transition event. By iteratively stepping through the table one
event transition at a time, we progressively detect all incompatible state pairs, thereby
“resolving” the table; that is, we uncover all the state-pairs that are not found to be
incompatible, and we designate them as compatible.

In the case of the transmission example, we have eight states and there are (n*[n-1]/2 =
8*7/2) 28 possible state-pairs. Each state pair corresponds to a unique cell in the table.

Initial resolution. Figure 5 shows the merger table for the transmission system and its
initial resolution. Based on the observations from the previous sub-section regarding
incompatible pairs, we use the following procedure to populate the cells.
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1. For each state pair (e.g., low-1 and high-3) that can be immediately determined as
incompatible (because they belong to two distinct specification classes—LOW
and HIGH—or have distinct sets of active user-triggered events), we mark their
cell as incompatible.

2. For all other state-pairs, we write in their cells the next state-pair(s) that they
transition into following a common event. For example, for the state pair
medium-1 and medium-2, the next state pair, following the common event
(push-up), is high-1 and high-2.

Figure 5.  The merger table for the eight-state transmission system and its initial resolution

We begin at the top of the table. The upper-most cell represents the state pair low-1 and
low-2. Looking at the machine model (see the inset in Figure 5), and noting that states
low-1 and low-2 transition on automatic up-shift [up], to low-2 and low-3, we write that
(low-2, low-3) inside the top cell. Next, we go down to the cell representing to the state
pair low-1 and low-3. We note that in the machine model, the states transition on manual
up-shift (push-up) into medium-1 and high-1, and that’s what we write inside the cell.
Moving one cell to the right, we now consider the cell representing low-2 and low-3.
Looking at the machine model, we note that there are two common transitions from this
pair: an automatic down-shift (event down) from these two states takes us to low-1 and
low-2; and a manual up-shift (event push-up) takes us to medium-1 and high-1. We
write these two state-pairs in the cell.
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Now, we go down the table to the cell representing low-1 and medium-1. Since each
state of this pair belongs to a different specification class, they are immediately deemed
incompatible. The same applies for the low-1 and medium-2. In this fashion we go cell
by cell and populate the rest of the table. Notice, however, that the cell representing high-
1 and high-3 is empty. This is because these two states are not incompatible (they both
belong to HIGH and have push down as active user-triggered event), yet they don’t
transition into another state-pair under a common event like the rest of the state pairs. We
therefore leave the cell empty, only to deal with it later.

Second iteration. We now continue with the resolution process. But from this step
onward, we do not need to refer to the machine model anymore. In an iterative manner,
we start substituting state-pairs in the cells according to the following procedure:

1. Cells that were already marked as incompatible stay that way.

2. Every cell that has not yet been determined as incompatible in Figure 5 (e.g., low-
1, low-3) is updated as follows: If a cell includes a state pair (e.g., medium-1 and
high-1) that has already been marked as incompatible, then the cell is designated
incompatible (see Figure 6).

3. Otherwise, the cell is modified as follows: Each state-pair in the cell is replaced
by all the state-pairs that appeared in their original cell. For example, in Figure 5
the cell representing low-1 and low-2 contains the pair (low-2, low-3). We look
into the cell representing low-2 and low-3 in Figure 5 and find in there two state-
pairs: (low-2, low-3) and (medium-1, high-1). We write these two state-pairs
inside the cell representing low-1 and low-2 (in Figure 6).
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Figure 6.  The second iterative resolution

Continuing with the procedure, we designate the cell representing low-2 and low-3 in
Figure 6 as incompatible (because it contains the pair medium-1 and high-1, which was
already marked as incompatible). In the cell representing medium-1 and medium-2, we
place the state pair (high-2, high-3). The cell representing high-1 and high-2 gets the
state pair (high-1, high-2), high-2 and high-3 get (high-2, high-3), while high-1 and
high-3 stay empty as before.
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Third iteration. In the next iteration the table of Figure 7 is obtained. Here the cell
representing low-1 and low-2 is marked incompatible (because it contains medium-1 and
high-1).

Figure 7.  The third iterative resolution
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Final iteration. In this step we realize that no additional incompatible pairs are identified,
and the table remains identical to that of Figure 7. From here on, no further iterations will
ever produce incompatible pairs. Therefore, we mark the empty cell of high-1 and high-3
as "compatible" (see Figure 8), concluding the resolution procedure.

The resolution procedure identified all the incompatible and compatible pairs. Figure 8
shows that we have four such compatible pairs: (high-1, high-2), (high-1, high-3), (high-
2, high-3), and (medium-1, medium-2)

What this means is that when it comes to designing the interface for the transmission
system, it will be possible to combine a compatible pair (e.g. medium-1, medium-2) into
a single indication (because the user does not need to distinguish between medium-1 and
medium-2 in order to perform the task).  Notice, however, that the states low-1, low-2,
and low-3 do not appear in any compatible pairs. As a consequence, no reduction can be
achieved with respect to these three internal states.

Figure 8.  The final resolution
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Identifying compatible sets
Although we have identified all the compatible pairs in the system, and we know that we
can combine the pairs so as to reduce the number of states (and corresponding display
indications) to create an abstracted user model, we are not content yet. Why? Because it
may be possible to further reduce the system by considering compatible triples,
quadruples, etc. The idea here is based on the simple observation that a set of states is
compatible if all its constituent state-pairs are compatible. That is, a state triple is
compatible if its three constituent pairs are compatible, a state quadruple is compatible if
its four constituent triples are compatible, and so on. Recall that our goal is to try to
reduce the system as much as possible—the larger the compatible sets (or the larger the
compatible n-tuples), the better. Thus, we are interested in this reduction procedure to
find what we call the maximal compatibles.

 Returning to the transmission example, note that the set of compatible pairs (high-1,
high-2), (high-1, high-3), and (high-2, high-3) make up a compatible triple. What this
means is that it is possible to combine high-1, high-2 and high-3 into a single indication
on the interface. In principle, after finding this compatible triple, the automated procedure
will try to find bigger compatible sets (i.e., a quadruple in this case). But a triplet is the
best that can be done with the transmission system and the procedure terminates with the
following set of maximal compatibles:

1. (high-1, high-2, high-3)

2. (medium-1, medium-2)

3. (low-1) (low-2) (low-3)

Constructing the (reduced) user model
The above set of maximal compatibles forms the basis from which we now construct the
user model. We combine high-1, high-2, and high-3 into a single indication that we call
HIGH; medium-1 and medium-2 into MEDIUM, and we provide separate indications
for low-1, low-2, and low-3. The reduced user model obtained for the transmission
system is shown in Figure 9. Note that both the MEDIUM and HIGH have self-loops.
These are the internal events that take place “inside” MEDIUM and HIGH. But since
these internal (machine-triggered) events do not cause any changes in the user model
(i.e., there is no mode switching), it is possible to go ahead and delete them.

(Nevertheless, beyond the results of the formal procedure, it is up to the design team to
decide, based on operational and situation awareness consideration, whether they want to
provide information about these internal gear shifts in the user manual and/or perhaps
provide some annunciation, e.g., blinking, about their occurrence, on the interface. It is
noteworthy, however, that in the case of automotive transmission systems, most car
manufacturers opt not to provide any indication to the user about internal gear shifts
while the car is in automatic “DRIVE” mode).
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Figure 9.  Succinct and correct user model for the transmission system

As a final check, we may wish to evaluate the user model by employing the verification
procedure mentioned earlier in the paper, and making sure that no errors have crept in
while constructing the interface or anywhere throughout the process (see Shiffman,
Degani, and Heymann, 2005 for a computerized tool that can automatically verify large
systems).

Specifying the interface and the user manual
The final step is to extract from the user model all the (state) information that must be
provided on the display and then specify the indications. Along the same lines, we extract
from the user model all the (event-related) information that must appear in the user
manual and then specify the content. At this point we’re done with the transmission
system; we have reduced it as much as possible and come up with the specifications for a
succinct and correct display and user manual information.

FURTHER ASPECTS OF THE REDUCTION PROCEDURE
The transmission system that we have used to illustrate the reduction procedure was
selected because of its familiarity and its limited number of states and transitions. As a
consequence not all aspects of the algorithmic approach could be exhibited. Next we shall
present another, more complex, example that will exhibit further aspects of the reduction
procedure.

The machine in Figure 10 has 18 states and 42 transitions (some of which, such as ua and
ud, are user triggered; the rest are automatic). Four specification classes are defined for
this machine: A, B, C, and D. The task requirement is similar to our previous one: The
user must be able to identify the current specification class (mode) of the machine and to
anticipate the next mode that the machine will enter as a result of his or her interactions.
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Figure 10.  Machine model

We perform the reduction procedure as described in the previous section. The algorithm
terminates with the following list of eight maximal compatibles:

1. (11, 12, 21, 22, 31, 32);

2. (12, 21, 22, 31, 32, 51);

3. (11, 21, 22, 31, 32, 53);

4. (21, 22, 31, 32, 51, 53)

5. (41, 42, 62);

6. (71, 73);

7. (74, 81);

8. (91, 92, 93)

Note that unlike in the transmission system where each internal state appeared in only
one maximal compatible, this example illustrates a case in which there are multiple
overlapping compatible sets. In particular, the first four maximal compatibles have the
states 21, 22, 31, and 32 which appear in all of them. This overlap among maximal
compatibles is quite common, and frequently implies the existence of multiple candidate
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user models. In the example, there are two candidates to chose from: One consists of the
compatibles 1, 4, 5, 6, 7,  and 8 as its state set, while the other consists of 2, 3, 5, 6, 7, and
8. (These two sets constitute the only possible minimal covers, as discussed earlier in the
outline of the algorithmic approach.)

The selection among the various candidate user models cannot, generally, be quantified,
and is based on engineering and human-factors considerations. Here various kinds of
design decisions can be brought to bear: the number of user model states, the number
(and intuitive nature) of the displayed transitions, the physical interpretation of the
reduced model, etc. Of course when no profound reason exists to prefer one candidate
model over another, any one may be selected. In the present example we selected the
minimal cover that consists of the maximal compatibles 2, 3, 5, 6, 7, and 8 of the above
list.

 We now proceed to construct the user model. We first incorporate the selected maximal
compatibles into user model states (modes A-1 and A-2; B; C-1 and C-2; and D). Next,
we establish the transitions between the user model states in the following way: For each
mode and each event label, we determine the set of all constituent machine model target
states (to which an outgoing transition with this label exists). A transition with the
corresponding label is then drawn from the mode under consideration to each mode that
includes all the target states. This procedure results in the reduced model of Figure 11.

Figure 11.  Reduced machine
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Next, note that there may be non-deterministic outgoing transitions to states within the
given specification class. (This non-determinism does not lead to nondeterministic
transitions between specification classes, and hence cannot lead to error states.) For
example, the event r emanates from mode A-2 to both A-1 and, as a self-loop, to A-2. We
can eliminate this non-determinism by judicious decision as to which of the redundant
transitions to delete. We further note that automatic events that occur only in self-loops
have no effect on the reduced model and can be deleted. Thus, when the redundant
transition r from A-2 to A-1 is deleted, the event r remains only in self-loops.

Finally, groups of events that always appear together in transitions can be abstracted into
single representative labels. Thus, in the example, the events n and s are abstracted into
the representative label p and the events e and g are abstracted into q. The resulting user
model, which is both correct and succinct, is depicted in Figure 12. It contains only six
modes.

Figure 12.  Correct and succinct user model and interface

In addition to the six indicated modes, the user would need to know which user events
can be triggered, and what will be the ensuing mode. Thus, in mode B the user can trigger
either ud or up, leading the system to either A-2 or to D, respectively. In C-1 and C-2 the
user can trigger event um, leading the system to mode A-1 or B.

SUMMARY AND CONCLUSIONS
We began this paper with a discussion on a formal approach for describing and analyzing
human-automation interaction. Two objectives guided us: first and foremost was that the
user model and interface were correct; second was that they were minimal, or succinct, in
terms of the amount of information (e.g., mode annunciations, selection buttons, and
parameter settings, as well as user manual content) required to accomplish the task. We
then focused our attention on a systematic procedure for reducing the machine model
according to the user’s task. The reduction algorithm described in this paper generates
user models that are both correct and succinct.
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Limitations
To analyze and generate user models according to the methodologies described in this
paper, one needs a formal description of the underlying machine, specification classes,
and task requirements. While the use of such formal descriptions is currently not the
mainstream in human factors, formal descriptions of system behavior and requirement
specifications are used in many software development processes (e.g., the Unified
Modeling Language methodology). Furthermore, there are many tools available today
that allow designers to specify the system’s behavior (see Harel and Politi, 1998) and
then the tool automatically translates the specification into code (e.g., Java or C++). We
believe that just as software design is moving toward the use of formal methods for
specification, design, and verification; interface design will eventually follow suit.

For simplicity and clarity of exposition, we have confined our discussion to machine
models, specification classes, and task requirements that are based on discrete events and
modeled as state transition systems. Nevertheless, the focus of this work is not on a
particular modeling formalism and notation. Rather, it is on the ideas that they
encapsulate and on the properties of the system that we need to insure. As such, the
approach, methodology, and algorithm proposed here can be extended to other discrete
event formalisms such as Petri-nets and Statecharts, as well as to hybrid systems models
that have both continuous and discrete behaviors (see, for example, the hybrid system
modeling and verification approach used in Oishi, Tomlin, & Degani, 2003).

In principle, the computation of maximal compatibles for very large systems with
thousands of states can become exponentially complex and, eventually, computationally
intractable. Nevertheless, there are many algorithmic techniques to deal with this problem
(e.g., Kam et al., 1997). Using a computerized tool (Shiffman, Heymann, & Degani,
2005), the reduction algorithm described in this paper has been successfully applied to
machine models with more than 500 internal states. It may be possible, by improving the
efficiency of our algorithm, to reduce even larger machines.

Implications for design of user interaction
Most users perceive the interface as if it were the machine itself. On one hand, this
induced misconception is an important design goal (e.g., “direct manipulation”) so as to
provide a smooth, effortless, and non-intermediary human-machine interaction. While it
is debatable whether or not it is good to always furnish this perception, it is obligatory
that user interface designers not succumb to this illusion which, unless carefully designed
and verified, can backfire. For example, if there is a design flaw in the interface such that
the delicate synchronization between the interface and the machine is disrupted, the
interface may give the impression that the machine is doing one thing, when in fact it is
doing something completely different. In consumer electronics, Internet applications, and
information systems this type of design flaw leads to user’s confusion and frustration. In
high-risk systems it can be disastrous.

Our discussion and the transmission example illustrate that even for machines that are
seemingly simple—i.e, with relatively few states and straightforward user
interaction—coming up with a correct and succinct interface is not a trivial matter.
Interfaces that may intuitively appear to be correct have been shown, after applying
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formal verification, to be faulty. While many interface and interaction problems are
identified in simulations and usability testing, some are left unidentified and can plague a
system for years. Furthermore, as systems become larger, more integrated (comprising
several subsystems that are linked and synchronized), and therefore more complex, it is
becoming more and more difficult to evaluate user interfaces using traditional inspection-
based methods. At the same time, there is an ever-increasing demand for reliable and
safer user interaction.

Beyond incorrect interfaces, there exists the related issue of succinct interfaces. Due to
the current intuitive and iterative approach for generating design solutions, there is never
a guarantee that the selected interface solution cannot be further reduced. To this end, we
believe that the notion of abstraction, which is at the cornerstone of our formal approach
for interface design and evaluation, as well as the interface correctness criteria,
methodologies, procedures, and tools for generating correct interfaces, will help
designers to better understand and reason about critical design issues that are currently
addressed in an intuitive, ad hoc, way.
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