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Abstract— Deep Learning from Demonstrations (Deep LfD)
is a promising approach for robots to perform precise bilateral
automation tasks involving contact and deformation, where
dynamics are difficult to model explicitly. Deep LfD methods
typically use datasets of 1) human videos, which do not match
robot kinematics and capabilities or 2) waypoints collected with
tedious move-and-record interfaces, such as teaching pendants
or kinesthetic teaching. We explore an alternative using the
Intuitive Surgical da Vinci, which combines a pair of gravity-
balanced, high-precision, passive, and 6-DOF master arms
with stereo vision, allowing humans to teleoperate precise
surgical automation tasks. We present DY-Teleop, an interface
between the da Vinci master manipulators and an ABB YuMi
industrial robot to facilitate the collection of time-synchronized
images and robot states for deep learning of automation tasks
involving deformation and dynamic contact. The system has
an average latency of 194ms and executes commands at 6Hz.
We present YuMiPy, an open source library and ROS package
for controlling an ABB YuMi over Ethernet. Data collection
experiments with scooping a ball into a cup, untying a knot in
a rope, and pipetting liquid between two containers suggest
that demonstrations obtained by DY-Teleop are comparable
with those by kinesthetic teaching in demonstration time. We
performed Deep LfD for the scooping task and found that the
policy trained with DY-Teleop achieved a 1.8× higher success
rate than a policy trained with kinesthetic teaching. Code,
videos, and data are available at berkeleyautomation.
github.io/teleop.

I. INTRODUCTION

In Deep Learning from Demonstrations (LfD), a human
demonstrates a task and a robot learns a policy from the
demonstrations using deep learning [1]. LfD has been used
to for robot assembly tasks [2], autonomous driving [3], and
deformable object manipulation [4], [5].

While one approach to train a policy is reinforcement
learning, this can in practice require many robot trials [6].
Deep LfD [7] is a promising approach to LfD for tasks
with dynamics and state spaces that are difficult to model
explicitly, such as deformable object manipulation. In Deep
LfD, the policy is a deep neural network that maps high
dimensional states such as color images directly to robot
motion commands. Due to high dimensionality and long
time horizons, Deep LfD methods typically require many
demonstrations [7].

Popular methods for data collection include (1) kinesthetic
teaching, where an operator manually moves a robot’s arms
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Fig. 1: DY-Teleop, our bilateral teleoperation system. (Left) The operator
controls the 6-DOF pose of each arm and gripper width through an Intuitive
Surgical da Vinci bilateral Masters manipulator. (Right) The robot executes
the operator’s commands to collect demonstrations of 3 tasks: scooping a
ball into a cup, untying a knot, and pipetting liquid from a beaker to a
graduated cylinder.

to complete a task [8], [9], [10], and (2) low-DOF tele-
operation, where an operator controls a subset of a robot’s
end-effector pose or joints through a device such as a
phantom omni [11] or video game controller [7]. However,
these interfaces have several shortcomings. First, providing
demonstrations using these interfaces can be tedious because
the user may be restricted to controlling a subset of the
available DOFs at a time. It may be difficult to control two
arms simultaneously [12] or have fine control over gripper
closing force. Second, these interfaces may introduce arti-
facts into the data that make learning difficult. For example,
during kinesthetic teaching, recorded images may contain
occlusions from the hands of the demonstrator and motor
torques may contain spikes from human interaction with the
arms. Master-slave bilateral teleoperation systems such as
those used in robot-assisted surgery [13] or based on virtual
reality [14] can mitigate these issues by enabling users to
directly control a robot’s end-effector through master arms
designed to facilitate natural human motions.

In this paper we explore the use of a da Vinci master
manipulator surgical teleoperation system [15] to collect
demonstrations for three bilateral manipulation tasks with the
ABB YuMi, an industrial robot, and we study the use of Deep
LfD to perform one of the tasks. Our system, dVRK-YuMi-
Teleoperation (DY-Teleop), enables real-time and simultane-
ous control of the end-effector poses and closing forces of
both parallel-jaw grippers, and it is illustrated in Figure 1.
The operator has access to stereo video feeds of the robot’s
workspace and controls the robot through the arms of the
master manipulator. The operator’s controls are mapped to
the reference frame of the robot and executed on the YuMi.
To facilitate controlling the YuMi we develop YuMiPy, an
open source Python library for controlling the YuMi over
Ethernet.



We study data collection performance on three tasks
involving dynamic contact and deformable object manipula-
tion: scooping a ball into a cup, untying a knot, and pipetting
liquid from a beaker to a graduated cylinder. Our data
collection experiments suggest that DY-Teleop can collect
demonstrations at a comparable speed to kinesthetic teaching
and is 21% faster for rope untying, which involves significant
use of both arms simultaneously. We also train a Deep LfD
policy that maps images to end-effector pose commands for
the scooping task using demonstrations collected with our
system, and the policy has a 1.8× higher success rate than
one trained with kinesthetic teaching.

II. RELATED WORK

Programming robots to perform manipulation tasks that
involve dynamic motions and trajectories or interactions with
the environment is difficult, and Learning from Demonstra-
tions (LfD) methods have the potential to address these
challenges [1]. The two stages of LfD are collecting human
demonstrations and deriving a robot policy from demonstra-
tion data. Methods used for collecting human demonstrations
can be divided into two groups: teleoperation and kinesthetic
teaching [16], [17], [18].

A. Teleoperation

In teleoperation, a user operates an input device, or
“master,” to control the robot, or “slave,” which executes
the controls specified by the master. Early teleoperation
systems such as Mosher’s Handyman used hydraulic arms
for manipulation in unsafe environments, such as near ra-
dioactive materials or in space [19]. Due to the high cost
and complexity of early systems, recent research in LfD
has considered low-DOF input devices such as the Phantom
Omni [11] and the Xbox controller [7], which can limit the
ability of the operator to simultaneously control multiple
degrees of freedom at once [1], and devices that mount to
human arms [20], [19], such as the Intuitive Surgical da
Vinci master manipulators [5]. However, direct teleoperation
of the end-effector pose has the challenge of redundant
degrees of freedom as there can be multiple inverse kinematic
solutions for a certain pose [21]. This has motivated the use
of motion tracking systems, which can be markerless [22],
marker-based [23], [24], or a full body suit (e.g. XSens
MOVEN [25]) that can map human joints to robot joints.
Teleoperation has been used for demonstrating motions for
pouring water [20], grasping objects [26], [23], and su-
turing in robot assisted surgery [5]. Teleoperation systems
induce latency through communication and control delays,
bandwidth constraints, and limited feedback (e.g. vision
only) which can hinder the operator’s ability to perceive the
workspace and apply accurate controls [19]. Recent research
in teleoperation has explored predicting an operator’s future
actions using inverse optimal controls [27] and from visual
features [28], as well as teleoperating an exoskeleton robot
via brain-machine interfaces [29].

B. Kinesthetic Teaching

In kinesthetic teaching, an operator physically moves the
robot in a gravity-balanced “teach mode” to complete the
given task [8], [9], [4], [10] and the robot records the motion.
Kinesthetic teaching has been used to give demonstrations
for stacking towers [30], scooping melons [31], and writing
on a whiteboard [32] among other tasks, and has recently
become popular in LfD due to its intuitive interface for
directly controlling joint angles and promising experimental
results. Lee and Ott [25] used online kinesthetic teach-
ing to provide corrective motions to incrementally refine
desired trajectories. Wrede et al. [21] proposed a method
for using kinesthetic demonstrations to learn more desired
joint configurations for certain end-effector poses that have
multiple inverse kinematics solutions. Kinesthetic teaching is
challenging for tasks where the operator must move multiple
arms at once, and it can introduce artifacts into the state space
(e.g. hands visible in the camera, which are undesirable for
learning a policy from images).

C. Comparison of Teleoperation and Kinesthetic Teaching

Akgun et al. [33], [11] compared user preferences for
teleoperation versus kinesthetic teaching in giving demon-
strations for unilateral manipulation tasks such as scooping
and pouring coffee beans and stacking blocks using a PR2.
The study found kinesthetic teaching is easier to use than
teleoperating PR2’s end-effectors using a Phantom Omni
haptic device. The authors also argued that a non-expert
may learn how to give kinesthetic demonstrations faster
than through a secondary interface, which is needed for
teleoperation. In another study [34], participants were asked
to give trajectory demonstrations of pushing and closing a
box via an HOAP-3 robot. The study found that users who
were dissatisfied with kinesthetic teaching were concerned
about not knowing the robot’s technical details, e.g. the
field of view of the vision system, and how the robot will
use trajectories to learn. Another user study by Muxfeldt et
al. [35] on industrial assembly discovered that a human’s
performance on a task did not translate into relative per-
formance difference when giving kinesthetic demonstrations.
Our work compares teleoperation with kinesthetic teaching
in giving demonstrations for Deep LfD.

D. Learning from Demonstrations

Our work is also closely related to research on robotic
learning from human demonstrations. Abbeel et al. [36]
learned a policy for helicopter acrobatics from expert demon-
strations given with a joystick controller. Calinon and Bil-
lard [37] studied how to extract implicit joint and workspace
constraints from kinesthetic demonstrations, and Phillips et
al. [38] used kinesthetic teaching to learn door opening
motions on a PR2. Schulman et al. [39] used Thin Plate
Splines to warp kinesthetically demonstrated trajectories of
rope tying with a PR2 to solve novel test cases. Ross
et al. [40] learned a policy for collision avoidance from
monocular images with a UAV by iteratively demonstrating
corrective feedback actions. Laskey et al. [41] extended



this work to only collect corrective actions for novel states
classified with a One-Class SVM. The authors later learned
policies for singulating (or separating) objects from a pile
using supervised learning on data collected by a hierarchy of
human supervisors [4] that provided demonstrations through
a joystick and a GUI through Amazon Mechanical Turk [7].
We use supervised learning following the approach of Laskey
et al. [7] to train policies collected with our bilateral teleop-
eration system.

III. TELEOPERATION SYSTEM

The goals of DY-Teleop are (a) to enable an operator to
quickly provide successful demonstrations of precise bilat-
eral robotic tasks and (b) to collect synchronized data of
trajectories of the robot’s end-effector poses, gripper widths,
and images of the workspace for deep learning of robot
control policies.

A. System Architecture

Figure 2 illustrates the DY-Teleop architecture. During
teleoperation the most current 3D poses of the two ma-
nipulators, along with the two current gripper widths, are
mapped from the Masters Tool Manipulators (MTMs) to the
YuMi arms. Using the most current MTMs’ poses, a pose
mapping service computes the corresponding end-effector
poses for the YuMi robot. This pose forwarding pipeline
is asynchronous to prevent mismatch in pose command
frequency, as the YuMi may take longer than the operator to
execute a motion. Finally, the machine that interfaces with
the YuMi robot constantly pulls the most current desired
poses and gripper widths to command the YuMi accordingly.
If the clutch foot pedal is held by the user, then teleoperation
pauses, allowing the user to move the MTMs without moving
the YuMi. This is useful for executing motions extending
outside of the masters’ workspace.

B. Masters-Slave Pose Mapping

A pose mapping service translates the current MTM poses
to the desired YuMi poses. Our system processes relative
pose changes of the operator into relative poses for the YuMi
because the initial poses of the MTMs and YuMi robot arms
may change. To describe the pose mapping equations we
define the following frames and poses:
• m - World frame of the MTMs. Poses published by the

masters are with respect to this frame.
• w - World frame of the YuMi. Poses commanded to the

YuMi are with respect to this frame.
• mi - Frame of initial MTM pose. mTmi is the first pose

of an MTM.
• mc - Frame of the current MTM pose. mTmc is the

current pose of an MTM.
• yi - Frame of the initial YuMi pose. wTyi is the first

pose of an YuMi arm.
• yc - Frame of the current YuMi pose. wTyc is the current

pose of an YuMi arm.
Formally, we denote a pose from frame a to frame b as
bTa = (R, t) ∈ SE(3) where R ∈ SO(3) and t ∈ R3 are

respectively the rotation and translation from frame a to b.
Note bTa = aT−1b .

At every time step we use the current MTM pose mTmc
to compute the desired current YuMi arm pose wTyc. The
following derivations are done for one MTM and YuMi arm
pair. In practice, pose-mapping is performed for both arms,
and the pose transformation equations are identical.

We define mTw to be a pure rotational transform that
rotates a given pose to a frame used by the YuMi arm to
a frame used by an MTM. While it is feasible to compute
wTyc by applying the relative transform of mTmc to mTmi
onto wTyi as follows:

miTmc = miTm
mTmc (III.1)

wTyc = wTm
miTmc

mTw
wTyi , (III.2)

this often produces unintuitive results for the operator. For
example, if the operator moves an MTM to the right, the
above mapping would move the corresponding YuMi arm
also to the right provided that the MTM was not rotated
prior to moving to the right. If the operator rotated the
MTM in place, then moving to the right for the operator
will no longer move the YuMi arm to the right. Thus we
define a reference frame that the operator uses to perform
demonstrations, and the mapping of wTmc to wTyc uses the
relative transformations of the MTMs and YuMi arms in this
reference frame.

Denote the operator reference frame as r, then the trans-
formation that takes any mTmc to rTmc is rTm, which is a
pure rotational transformation where its rotation is equal to
that of mTmi. Then the new pose mapping computation is:

miTmc = miTm
mTmc (III.3)

rTmc = rTm
miTmc

mTr (III.4)
wTyc = wTm

rTmc
mTw

wTyi . (III.5)

To expand a human operator’s reachable workspace we use
the clutch foot pedal. When the pedal is pressed down, the
motions of YuMi arms are paused, allowing the operator to
move the MTMs to a new pose. When the pedal is released,
teleoperation resumes and the YuMi arms are responsive to
the MTMs again. To accomplish this, we note that the relative
transformation from miTmc to mTmi after clutch up should
not consider the transformation that occurred from clutch
down to clutch up. Furthermore, before any clutching has
occurred, we can treat mTmi as the pose at the last clutch up
because current MTM transformations are computed relative
to it.

We define the following frames and poses related to
clutching:
• r - Reference frame of the operator.
• u - Frame of MTM at last clutch up. mTu is the MTM

pose at clutch up.
• d - Frame of MTM at last clutch down. mTd is the

MTM pose at clutch down.
mTu is initialized to mTmi and miTu is initialized to the
identity transformation. At every clutch up we perform the



Fig. 2: System architecture for our real-time teleoperation software. (Bottom-Left to Bottom-Right) We first translate user inputs from the da Vinci Masters
Tool Manipulators (MTMs) into end-effector poses and gripper widths are discretized. We then convert the poses of the MTMs into the reference frame
of the YuMi, handling operations such as clutching to expand the operator’s reachable workspace. Finally the pose and gripper width commands are
simultaneously executed on the YuMi. (Top-Right to Top-Left) Images from a stereo camera from the robot are integrated into a Graphical User Interface
that displays a set of options and state information to the user on the Masters vision interface.

following update:
miTu ← miTu

uTm
mTd (III.6)

mTu ← mTmc . (III.7)

Incorporating clutch to the pose mapping computation we
arrive at the following equations, which are calculated at
every time step, that receives the current MTM pose mTmc
and outputs the desired YuMi arm pose wTyc:

miTmc = miTu
uTm

mTmc (III.8)
rTmc = rTm

miTmc
mTr (III.9)

wTyc = wTm
rTmc

mTw
wTyi . (III.10)

C. Hardware Overview

1) ABB YuMi: The YuMi robot is a human-safe, stationary
industrial robot with two 7-DOF arms. Each arm has 0.02mm
positional accuracy1 and a payload of 250g. The parallel-
jaw grippers have a maximum closing force of 20N and a
maximum gripper width of 5cm. The original gripper tips
were replaced with custom silicone ones [42]. The YuMi
supports kinesthetic teaching through motion controllers that
provide gravity-compensation.

2) da Vinci Master Manipulators: The dVRK masters
has two 6-DOF MTMs that can output their current 3D
poses, and each MTM has a gripper-control interface that can
output variable widths. The dVRK masters also has a set of
foot pedals that provide high-level user interactions, such as
starting, ending, and pausing a teleoperation session, as well
as toggling between different camera views. The user can
simultaneously control the MTMs, the gripper widths, and
the foot-pedals. DY-Teleop does not have haptic feedback.

3) Cameras: To provide stereoscopic vision, we mount
two Logitech C270 webcams at 1.2m above the YuMi robot
work space, centered around the robot. This height was
chosen such that the field of view of the two cameras can
include a large area of the workspace. The separation be-
tween the two cameras can be adjusted, but it is generally set
around 6.4cm, the average pupillary distance for U.S. adult

1new.abb.com/products/robotics/yumi/

males [43]. Another Logitech C270 webcam is placed at
level with the workspace to provide an additional perspective
that gives greater precision to manipulating objects near the
work surface. Video feeds of resolution 640×480 from these
cameras are relayed via separate USB 2.0 connections to be
displayed as left and right eyed videos on the viewing screens
of the dVRK masters system.

D. Software Overview

1) YuMi Python (YuMiPy) Interface: The YuMi is de-
signed to be programmed by ABB’s RAPID language, which
requires uploading programs to the robot that cannot be
changed dynamically. To increase programming flexibility,
we developed YuMiPy2, a custom python library for inter-
facing with the ABB YuMi robot over Ethernet.

YuMiPy consists of a Python client running on a user
desktop and a RAPID TCP/IP server running on the robot
controller that is based on the OpenABB library3. The
API supports position commands, gripper functionality, and
changes to parameters such as movement speed. The API
also provides functions to stream the current end-effector
poses, joint angles, and motor torques of both arms from
the YuMi robot, allowing for data collection of the YuMi
robot during execution. YuMiPy also supports commanding
the robot through a ROS service.

To command the robot, a user first creates a Python client
that establishes an Ethernet connection to the server. The
client maintains separate processes for asynchronous socket
communication with the YuMi to prevent blocking the user’s
main code while commands are being executed. Python
calls to the YuMiPy API send requests to the asynchronous
communication processes via a queue, and each process
iteratively reads the most recent command and forms a
packet. Each packet consists of a numeric code for the
command, data corresponding to the command (e.g. joint
angles), and an error checking code. Packets are sent to the
server, which parses the packet, executes the corresponding

2berkeleyautomation.github.io/yumipy
3github.com/robotics/open_abb



RAPID command, and sends an acknowledgement or error
message back to the Python client. YuMiPy has a mean
latency of 3.89ms for one way communication between the
Python client and the RAPID server on our system.

2) Network Communication: DY-Teleop uses several li-
braries to synchronize poses and images over the network.
We use the Python multiprocessing library to send data
between processes on the same machine using thread-safe
queues. Data is communicated over the network using ROS
services, publishers, and subscribers in ROS Jade.

IV. DEEP LFD

In Deep Learning from Demonstrations, a human provides
demonstrations to a robot, and a policy mapping observed
states to controls is learned. In this work states are images
of the workspace.

We can formalize this as follows: denote a policy as a
measurable function π : X → U from images X to control
inputs U , such as position commands to a robot. We consider
policies πθ : X → U parameterized by some θ ∈ Θ, such
as the weights of a neural network. Under our assumptions,
any such policy πθ induces a probability density over the set
of trajectories of length T :

p(τ |πθ) = p(x0)

T−1∏
t=0

p(xt+1|πθ(xt),xt) ,

where a trajectory τ of length T is a sequence of state and
action tuples: τ = {(xt,ut)}T−1t=0 ,ut = πθ(xt) .

We note this assumes the Markov property in the state
space. We collect demonstrations using DY-Teleop and kines-
thetic teaching from a supervisor’s policy πθ∗ , where θ∗

may not be contained in Θ. We assume the supervisor
is not necessarily optimal, but achieves a desired level of
performance on the task.

We measure the difference between controls using a sur-
rogate loss l : U × U → R [44], [45]. The surrogate loss
we consider is the squared euclidean loss on the control
l(u1,u2) = ||u1−u2||22. The objective of LfD is to minimize
the expected surrogate loss under the distribution induced by
the robot’s policy:

min
θ
Ep(τ |πθ)

T−1∑
t=0

||πθ(xt)− πθ∗(xt)||22 . (IV.1)

However, in practice this objective is difficult to optimize
because of the coupling between the loss and the robot’s
distribution on states. Thus, we instead minimize an upper-
bound on this objective [7] via sampling N trajectories from
the supervisor’s policy.

min
θ

N−1∑
n=0

T−1∑
t=0

||πθ(xt,n)− πθ∗(xt,n)||22 ; τ ∼ p(τ |πθ∗) .

(IV.2)

V. EXPERIMENTS

We collected demonstration data for three tasks illustrated
in Figure 1 and evaluated the performance of Deep LfD on
the scooping task. All experiments were run on a system
comprised of: three desktops running Ubuntu, the ABB
YuMi, two Logitech C270 webcams, the da Vinci masters,
two TP-Link Gigabit Ethernet switches, and a CN-160 light
on the workspace to help the operator perceive depth.

A. System Latency

Our system was able to execute commands on the YuMi
at 6Hz. The total latency between a user movement and
the visual feedback of the completed motion was 194ms.
This consisted of 7ms to convert pose commands, 155ms to
transmit and execute commands on the YuMi using YuMiPy,
and 31ms to transmit images from USB to the da Vinci
master manipulator viewer.

B. Tasks

Figure 1 illustrates the following tasks.
1) Scooping: The goal of the scooping task is to scoop a

ball into a cup with the free gripper and the lip of the cup,
which is challenging to model due to dynamic rolling and
collisions.

Initially the robot grasps a cup with the left gripper and
holds the right gripper in a paddle position. The ball is
placed in a set of predefined points on a grid between the
grippers. During demonstration, the robot, by a combination
of pushing via the right gripper and scooping with the left
gripper, scoops the ball into the cup. A demonstration is
successful when the ball rests inside the cup and is only
supported by the cup. A common failure is the ball bounces
and rolls away after it collides with the gripper or cup.

2) Untying a Knot: The goal of the rope untying task
is to untie an overhand knot. This is difficult because the
task involves deformation, has multiple steps, and requires
precise gripper placements to pull only a desired segment of
the rope.

Initially a rope tied in an overhand knot is placed on a
foamed surface before the robot. As it is hard for the rope
to slip along the surface of the grippers’ tips, the operator
cannot untie the rope as a human normally would. Instead,
the robot unties the knot by iteratively regrasping and pulling
the end of the rope loose. The task is complete when the rope
no longer makes a loop with itself. The most common failure
is accidentally grasping multiple segments of the rope when
trying to pull a single segment of the rope loose.

3) Pipetting: The goal of the pipetting task is to transfer
3mL of fluid from a beaker to a 10mL graduated cylinder
using a plastic pipette. The task is difficult due to deforma-
tions of the plastic pipette, requirement of fine control of
the gripper width, the multi-step nature of the task, and the
precision needed to put the pipette tip into the graduated
cylinder with only a 15mm diameter opening.

Initially the beaker, graduated cylinder, and pipettes are set
at fixed locations in the workspace. During demonstration,
the operator grasps the graduated cylinder with the right



Time to Completion (s) TrialsTask Mode Median Mean Min Max Std

Scooping K 0.91 0.96 0.30 2.62 0.33 50
T 2.49 2.64 1.53 8.62 1.13 50

Rope Untying K 268.74 267.92 138.80 396.23 105.10 5
T 213.16 241.80 144.81 362.50 76.91 5

Pipetting K 106.03 110.42 85.14 143.46 23.93 6
T 187.38 200.31 152.05 267.17 36.43 6

TABLE I: Comparison of demonstrations collected using kinesthetic teach-
ing (K) and DY-Teleop (T). We compare the time it takes to collect
demonstration data for each task and interface. DY-Teleop is faster to collect
successful demonstrations for the rope untying tasks.

gripper and the pipette with the left gripper. The pipette
is then brought to the beaker and the operator opens the
gripper to a desired width to draw fluid. Next, the pipette
is transported to the opening of the graduated cylinder and
the operator closes the gripper to push the liquid out of the
pipette. This action is repeated until 3mL are transferred
into the graduated cylinder. Common failure modes include
dropping the pipette, failing to extract liquid from the beaker,
and colliding with the transparent objects in the workspace.

C. Analysis of Demonstrations

A demonstration is successful if the operator reaches the
goal state. For each task a pre-defined strategy for both
demonstration modes was determined, and strategies for all
three tasks are described above. Demonstrations that deviated
from them were not included in our analysis.

We collected 50 demonstrations of the scooping task,
5 of the knot untying task, and 6 of the pipetting task.
The scooping demonstrations were collected by a different
operator than the pipetting and rope untying. The difference
in demonstration numbers was due to the time required to
demonstrate each task. Each demonstration was started and
stopped by the operator using a set of footpedals to select
options from a GUI. For all demonstrations we recorded the
time of completion and synchronized streams of poses, joints,
and motor torques for both of YuMi’s arms as well as RGB
images from the overhead webcams sampled at 10Hz.

1) Comparison with Kinesthetic Teaching: To evaluate
our system, we compared the DY-Teleop demonstrations with
kinesthetic ones. During kinesthetic teaching, the operator
moves the YuMi arms through direct physical contact. To
control the gripper width and grasp force, the operator uses
the FlexPendant, a handheld operator unit that provides user
inputs to the YuMi robot.

Table I summarizes timing results. The median time to
collect demonstrations using DY-Teleop was comparable to
kinesthetic teaching and is 21% faster for the rope untying
task, which involves significant use of both arms simulta-
neously. Kinesthetic teaching was faster for the scooping
task because two fast and short wrist movements while
holding the end-effectors can complete the task, whereas
for teleoperation, slight delays in the system made it more
difficult for the operator to confidently execute fast motions.
Kinesthetic was also faster for pipetting because it is difficult
for the operator in teleoperation to discern the location of the
small opening of the 5mL graduated cylinder.

Fig. 3: Comparison of raw and filtered end-effector pose trajectories for
the scooping task. The raw data contains high-frequency components as
the grippers move toward the ball in the center of the table. We use a
Gaussian filter to smooth the trajectories, which can facilitate learning on
small datasets.

2) Preprocessing: Raw actions and observations collected
from DY-Teleop and kinesthetic teaching are not suitable
for machine learning due to high-frequency changes in end-
effector pose and excess data collected at the beginning and
end of each trajectory due to time mismatch between the
demonstration start and stop.

Removing noise from human demonstrations has been
shown to improve Deep LfD performance [46], so to smooth
the trajectories we applied a Gaussian filter to the pose
trajectories with a standard deviation of 3 time steps for
translation and 2 time steps for the Euler rotation angles.
Figure 3 shows an example trajectory before and after
smoothing.

To remove excess background from the images we cropped
each image to a window around the grippers. To be invariant
to lighting changes we binarized each channel of the color
images.

D. Scooping with Deep LfD

To compare Deep LfD performance trained with demon-
strations from DY-Teleop with those with kinesthetic teach-
ing, we train a deep policy on images from the scooping
task. The state space for this task is an overhead RGB
image with dimensions 100 × 250 × 3. Similar to [4],
we apply a binary mask to the image to be robust to
changes in lighting conditions. The control space is U =
{∆xl,∆yl,∆θl,∆xr,∆yr,∆θr}, where x and y are the
planar positions of the grippers in the frame of the YuMi
and θ is the gripper wrist angle that is varied during the
scooping task.

The neural network architecture used is the same as in [4]
and is implemented in Tensorflow. It has a convolutional
layer and two fully connected layers, all with Rectified
Linear Unit (ReLu) activation. The network is trained on a
GeForce 980 GPU using stochastic gradients with momen-
tum. During training, we scale each dimension in the control
vector to the range [−1, 1].

We compare the neural net policy against 3 methods
for physical evaluation. The first is an open-loop policy
that performs a fixed scooping motion in the middle of
the workspace. The second is a trained policy with 50
demonstrations collected via kinesthetic teaching with the
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Fig. 4: Two trajectories collected from DY-Teleop (T) and kinesthetic
teaching (K). The primary difference between the images are the gloves
visible in the bottom-right of the image for the kinesthetic method.
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Fig. 5: The success rates for the trained scooping policies over 21 place-
ments. The three methods are an open-loop demonstration that is not learned,
a policy trained with kinesthetic demonstrations, and a policy trained with
the DY-Teleop . The policy trained with DY-Teleop has a 1.8× higher
success rate than one trained with kinesthetic teaching. We attribute this to
the hands being in the state space during training with kinesthetic teaching.

supervisor wearing white gloves to match the color of the
background. The third is a trained policy with 50 demon-
strations collected via DY-Teleop . During training the ball
was placed uniformly in a 4× 8cm grid.

Results are illustrated in Figure 5. We evaluate the poli-
cies on 21 ball placements in the 4 × 8 cm grid. The
policy trained with demonstrations collected from the DY-
Teleop has a 1.8× higher success rate than one trained with
demonstrations from kinesthetic teaching. We attribute this
discrepancy to the mismatch in test and training distributions
that occurs when the supervisor places their hands in the
state space while collecting demonstrations via kinesthetic
teaching. Despite the supervisor wearing gloves with similar
features to the background, deep networks may be prone to
over-fitting to subtle feature changes [47].

VI. DISCUSSION AND FUTURE WORK

We present DY-Teleop, a system that interfaces between
the Master Tool Manipulators of an Intuitive Surgical da
Vinci and an ABB YuMi that enables bilateral teleopera-
tion for demonstrating automation tasks involving dynamic
contact and deformation.

While we successfully learned a deep policy for bilateral
scooping, we did not learn a policy for the rope untying
and pipetting tasks because they require multiple steps and
failure recovery actions that are known to make learning
difficult without segmenting the task [15]. Figure 6 illustrates
how the demonstrations may be segmented. In future work
we plan to improve system reliability and reduce latency, as

Fig. 6: Illustration of the hierarchical structure in the demonstrations
collected with DY-Teleop for the knot untying (left) and pipetting (right)
tasks. The knot untying demonstrations consist of a set of repeated grab-and-
pull actions as the knot was initially loosened which gradually had longer
pulls until the rope came undone. The pipetting demonstrations consist of
several segments where the gripper raises the pipette out of a container,
transports it along a linear path, and sets it down in a different container.

well as explore hierarchical machine learning to recover task
structures automatically.
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