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Abstract— The Amazon Echo and Google Home exemplify a
new class of home automation platforms that provide intuitive,
low-cost, cloud-based speech interfaces. We present EchoBot,
a system that interfaces the Amazon Echo to the ABB YuMi
industrial robot to facilitate human-robot data collection for
Learning from Demonstration (LfD). EchoBot uses the compu-
tation power of the Amazon cloud to robustly convert speech
to text and provides continuous speech explanations to the user
of the robot during operation. We study performance with
two tasks, grasping and "Tower of Hanoi" ring stacking, with
four input and output interface combinations. Our experiments
vary speech and keyboard as input interfaces, and speech and
monitor as output interfaces. We evaluate the effectiveness of
EchoBot when collecting infrequent data in the first task, and
evaluate EchoBot’s effectiveness with frequent data input in
the second task. Results suggest that speech has potential to
provide significant improvements in demonstration times and
reliability over keyboards and monitors, and we observed a
57% decrease in average time to complete a task that required
two hands and frequent human input over 22 trials.

I. INTRODUCTION

With the emergence of voice activation systems, a new
class of home automation platforms has appeared in the
commercial market. These systems utilize speech recognition
and natural language processing to facilitate interactions
with a variety of devices, including speakers, smartphones,
and television sets. Speech interfaces also have potential to
enhance the efficiency of interactions with robots, such as to
train a robot to perform a task according to a desired policy.
One approach to training robots is Learning from Demonstra-
tion (LfD), where a human provides several demonstrations
of a task to the robot, and the robot learns to perform that
task. These demonstrations may consist of segments of arm
trajectories or keyframes of robot poses at periodic time
intervals, and are specified to the robot as input. The robot
uses this collected data to learn a policy to perform the task.

We explore how a voice activation system may improve
data collection for LfD. Using the Amazon Echo [4], we im-
plemented EchoBot1,2, a 2-way speech interface for commu-
nication between humans and robots during data collection
for robot learning.
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1Code is available at https://github.com/rishikapadia/
echoyumi.

2Video is available at https://www.youtube.com/watch?v=
XgaGeCsERU8.

Fig. 1: EchoBot integrates the Amazon Echo home automation bi-
directional speech interface with the ABB YuMi industrial robot.
We present results comparing EchoBot to a keyboard-monitor input-
output interface.

A. System Criteria
In this paper, we focus on a speech interface as a medium
for input and output. We assume that there is only one
person speaking during the command transmission and that
the user knows what keywords issue each command. To be
usable and convenient to the user, response times to user
commands must have a latency similar to the delay between
two conversing humans.
B. System Overview
We integrated the Amazon Echo and the YuMi industrial
robot from ABB [1] into EchoBot. The Echo is a wire-
less speaker and voice command device. It is a low-cost,
commercially-available product with a text-to-speech inter-
face for natural language processing. We use the Echo for its
speech recognition system, which is robust to variances in
voice location, pitch, and intonation. The YuMi is a dual-arm,
human-safe industrial robot with flexible joints and grippers,
and offers state-of-the-art robot control. EchoBot as a system
allows users to utter commands to the Echo that are relayed
as actions to the YuMi robot, and communicates vocal
feedback from the robot back to the user while performing
those actions.

We evaluate EchoBot in 2 experiments as an input and
output interface to perform data collection using robots and
find that it increases collection efficiency when the user needs
to input data frequently while both hands are occupied with
the task.

This paper contributes:
1) The first implemented system architecture interfacing

the Amazon Echo home automation speech interface to
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the ABB YuMi industrial robot.
2) Experiments with two robot tasks, grasping and "Tower

of Hanoi" ring stacking, comparing four interface com-
binations varying input and output with keyboard, mon-
itor, and speech.

II. RELATED WORK
A. Data Collection for Learning from Demonstration
LfD is a promising approach to teach policies to robots
through demonstrations of a desired behavior. It can take
robot trajectories and data labels as input, and a policy
function as output. There currently exist several methods for
providing demonstrations to robots, including teleoperation
and kinesthetic teaching [5]. In teleoperation, the demonstra-
tor controls the end-effector position or joint angles of the
robot using a device such as a joystick or game controller
[25]. In kinesthetic teaching, the human physically guides
the robot’s arms and grippers to complete the task. The
robot uses several such demonstrations of the task as a
sampling of the policy intended by the human, and attempts
to find the underlying policy to perform the task. Both data
collection methods often require the demonstrator to use both
hands, which can complicate denoting the start and end of a
demonstration using a game controller or button press.

Several studies have utilized voice commands to facilitate
data collection of kinesthetic demonstrations in LfD systems.
In [43], subjects were tasked with using voice commands
to start and end demonstrations, and afterward the robot
reproduced the learned skill. The speech interface of Akgun
et. al [2] had similar functionality. The kinesthetic trajectories
were provided in keyframes, where voice commands were
used to indicate where the demonstration was segmented
by the subject. In addition to keyframe and segmentation
functionality, EchoBot also provides the user with prompts
and continuous audio output detailing the status of the robot.
B. Home Automation Systems
The Echo has been used as an interface for products by
Uber, StubHub, Fitbit, Domino’s Pizza, and many others
[3]. Samsung revealed in late 2016 that all of its WiFi-
enabled robotic vacuums can now be controlled using the
Echo. Other voice interfaces include Apple’s Siri in 2011
and Homekit in 2014, a collection of smart devices for users
to control around the house. In November 2016, Google
Home was introduced, which offers the capability of Google,
Inc.’s search engine. Other smart assistants include ivee
Voice, Cubic, Mycroft, Sonos Play, Hal, Comcast Xfinity
TV remote, and many others.

Prior work has studied voice activation to control robots
and other machines. An early instance of voice recognition
used in surgical robotic assistants controlled the end effector
location of a robotic arm during laparoscopic surgery [34],
where the surgeon could command the arm to move in the
3 axial directions or to predefined locations at a constant
speed. Furthermore, the constraints or failure modes of the
robot were conveyed audibly to the surgeon, such as when
a joint had exceeded its limits, to prevent damage to the
robot and patient. Dean et al. [10] used a speech interface to

control the da Vinci, a tele-operation robotic surgical system,
to perform simple tasks like measuring the distance between
two locations and manipulating visual markers on the display.
Henkel et al. [19] describes an open-source voice interaction
toolkit to serve as a medium between dependent victims,
such as trapped earthquake survivors, and the outside world.
Gesture and voice interfaces were developed to help disabled
people operate a remote controller for home automation [21],
to facilitate rehabilitation for people with disabilities [26],
and to help children with autism [33]. Other examples of
using voice control for robots include [16, 18, 29, 42]. To
our knowledge, EchoBot is the first of these home automation
systems that provides voice interaction to an industrial robot
for data collection.

C. Robots and Speech

Our motivation for facilitating data collection using a voice
interface comes from the work of previous studies. Ray et al.
[32] found that humans prefer to interact with robots using
speech. Cha et al. [8] have shown that human perception
of robot capability in physical tasks can be affected by
speech. Takayama et al. [37] found that perception of robots
is influenced not only by robots showing forethought, but
also by the success outcome of the task and showing goal-
oriented reactions to task outcomes. The acceptance of robots
is important in making robots a part of workplaces and
homes [6, 9], and the perceived capability of robots largely
influences robot acceptance [9]. Srinivasa et al. [36] used a
speech synthesis module on their robotic butler to interact
with humans while completing tasks such as collecting
mugs. When humans engaged with robots using speech, their
confidence that the robot was a reliable source of information
was shown to increase [28]. It has also been shown that
there are noticeable drops in trust as reliability of the robot
decreases [11, 13, 14], and only once reliability recovers does
trust start to increase monotonically [12, 27]. These works
may suggest that in the event of failures, conversational
speech might be able to help restore trust in the robot’s
capability, and that the content of the speech has an impact
on the effectiveness of a robot.

Kollar et al. [24] extracted a sequence of directional
commands from linguistic input for a humanoid robot or
drone to follow. Tellex et al. [38] trained an inference model
with a crowdsourced corpus of commands to allow humans
to manipulate an autonomous robotic forklift with natural
speech commands. In cases where the robot was told to
perform an action that it did not understand, Cantrell et al.
[7] demonstrated an algorithm where a human could explain
the meaning of that action to the robot, and the robot would
then be able to carry out instructions involving that action.
Studies have also been conducted about how humans expect
to interact with a robot [15, 17, 22, 23, 30]. There are
also examples of robots that modify their speech behavior
based on the circumstance and external conditions, such as
[35, 40, 41].



Fig. 2: System diagram. When (1) a user asks the Echo a question, (2) a request is sent to Amazon’s servers over WiFi, which converts
the speech to a robot command. (3) Amazon’s servers send an HTTPS request to our server running on our local computer. (4) Our
local server communicates actions to either the classifier or interaction database, depending on the command. (5) The robot manipulation
program polls that database for a new command, and (6-7) communicates the actions and responses via Ethernet to the YuMi robot. (8)
The robot program logs messages to the audio stream database, (9) which is polled by the local server. (10a) That message is played to
the user through the computer’s speakers in an audio stream. After the local server received the HTTPS request in step (2) and logs to
the appropriate database (3), it returns an HTTPS response back to Amazon’s server (10b), which relays the "end of request" command
to the Echo (11).

III. SYSTEM DESIGN

A. System Architecture
To enable the Amazon Echo to communicate with the ABB
YuMi robot, we implemented a web server on a local
Linux desktop computer using the Django web framework,
implemented in the Python programming language.

Our local Django web server is based on the
pycontribs/django-alexa repository, which is pub-
licly available on GitHub.com. We modified the code in the
public repository to support the current format of Amazon’s
JSON messages and to handle our own custom application
on the Amazon Echo. Our web application exposes a REST
API endpoint at the relative address /alexa/ask of our
server to communicate with the Amazon Echo (see Figure
2). This endpoint handles all incoming HTTPS requests and
dispatches them to the appropriate Python functions that we
define for various commands to EchoBot. We specify the
public web address of our local server on the Alexa Skills
Kit [3] web portal.

B. Communication with Amazon
Since we created a custom application on the Echo, Amazon
requires that we specify a comprehensive, textual list of
commands on the Alexa Skills Kit web portal beforehand.
One or more invocation phrases, or human speech com-
mands, must be specified for each robot command, and
providing more phrases increases the robustness of Amazon’s
speech-to-command correspondence algorithm. Given this
set of predefined possible human phrases to robot commands,
Amazon’s servers then compute the closest match of the
speech to the corresponding command. These commands
can contain parameters, or arguments, which are words or
phrases that are variable in a given command. However,
the set of possible parameters must be defined beforehand
as well, which means that the system is unable to handle
wildcard phrases for custom commands.

The Amazon voice service also places constraints on what
a user must say to convey a human speech command. First,
the Echo must be triggered by a "wake word", which can be
either "Alexa", "Echo", or "Amazon", where we have chosen
to use "Echo". Then, the user must specify their command
in the form of <action> <connecting word> <application
name> <command>, where we have named our application
"YuMi", the connecting word is optional, and "command"
refers to an invocation phrase. For example, to issue the
command for the robot to grasp all parts, the user could
say, "Echo, ask YuMi to pack all of the parts" or "Echo, tell
YuMi to pack all of the parts". The command prefix must be
included in the human speech command because we created
a custom application with the Echo, rather than a native
Amazon feature such as time or weather reports. If users
want to issue frequent voice commands to the Echo, they
may only say <command> for all following robot commands,
provided that each command is issued within 5 seconds of
the previous command.

When a user speaks a command to the Echo, an HTTPS
request is sent over WiFi to Amazon’s servers to convert
the speech to text. The Amazon server then makes another
HTTPS request in JSON format to our local server with
the name of that command and potentially any parameters.
The mechanics from the Amazon Echo to Amazon’s servers
are an abstraction, and the interface Amazon provides is
speech as input and JSON data as output. Our local server
parses the received JSON request and calls the function
corresponding to that command name with any required
or optional parameters. That function communicates the
appropriate actions to a robot manipulation program via a
database connected to our local server and accessible from
anywhere on that same machine. The robot manipulation
program communicates directly to the robot via Ethernet.
Upon completion, the function on our local server sends an



HTTPS response, also in JSON format, back to Amazon’s
servers to be sent back to the Echo. This response may
contain a phrase to be spoken through the Echo’s speakers to
the user, a signal for the Echo to continue listening for more
commands, or a signal indicating the end of the command
(see Figure 2).

The delay between the time the user finishes speaking to
the Echo and the time our local server receives the HTTPS
request is on average 2.1 seconds (see Figure 2, steps 1-3).
The delay between the time the user finishes speaking to the
Echo and the time the Echo receives the HTTPS response is
2.2 seconds (see Figure 2, steps 1-3,10b-11). This includes
0.5 seconds of delay after the user finishes speaking for the
Echo to register that there is no more speech to send to
Amazon’s servers.
C. EchoBot Audio Output
The Amazon Echo API does not allow for the Echo to
speak a series of phrases unless the user actively queries
each one. Therefore, we routed the audio stream to the
local server’s computer speakers instead, to give the user
explanation updates almost in real-time (see Figure 2).

To launch the audio stream, a user states, "Echo, ask YuMi
to explain what it is doing." (See Figure 2 steps 1-3,10a.)
Then, messages are logged from the main robot script to the
audio stream database used by the local server (see Figure
2 step 8). Each record entry, or log, in the audio stream
database consists of a time stamp and a logged message.
As a message arrives into the audio stream database queue,
the server converts the message into an audio signal using a
text-to-speech library based on Google Translate’s web API
[39]. The server polls the database every 0.04 seconds, so
the user is presented explanations with imperceptible latency
as the messages arrive (see Figure 2 step 9). In the case
where several messages are logged at the same time, only the
last one is played, to reduce queuing delays. We have found
that polling the database scales well as the total number of
messages grows, since only the last message in the database
needs to be checked at each poll.

Google Translate provides speech audio that sounds very
natural, but because the text-to-speech library makes an
HTTP request to convert the audio, translations would incur
an average latency of approximately 2.5 seconds. Therefore,
our local server caches these text-to-audio translations for
immediate access, and defaults to a different text-to-speech
library [31] that incurs latency on the order of 10 millisec-
onds.

We also utilized speech, music, and sound effects in an
attempt to humanize the robot using EchoBot. When there
are no explanations in the queue to play to the user, relaxing
but interesting background music is played to fill in the
silent gaps between messages. If the background music
is not desired, there is also a command to disable it or
play a different song using the built-in functionality of the
Echo. With respect to data collection, we recognized that
users may need detailed instructions while collecting initial
data samples, but may quickly become annoyed at hearing
complete details repeatedly, and might want shorter prompts

TABLE I: Example dialogues that EchoBot speaks to the user
during data collection.

Sample Speech Output
Hello, friend! Let’s get started.
Howdy, partner! Ready when you are.
Step 1: Please place the object in the workspace and
capture an image.
Step 2: Please guide my arm to the object and record
my arm’s pose.
Step 2 is through, now run step 1.
Step 1 is done, now do step 2.
Looks like the gripper needs to be rotated 180 degrees.
Hmm, that’s not quite right. Let’s reset the sequence
and try that again.
All done! You’re really good at this!
Congratulations! You’ve finished the experiment.
Well done! You made it look easy!

as they become more comfortable with the task. EchoBot
instead plays a short sound effect before each prompt for
user action to condition the user to correlate the sound effect
with the full message. Table I shows a sampling of the speech
phrases that EchoBot uses to communicate with a user. Over
successive sample trials, the speech message of the prompt
reduces and is eventually discarded, leaving just the sound
effect. The motivation for adding sound effects is to reduce
the time it takes for EchoBot to relay instructions to the user,
and improving the efficiency of data collection over speech
instructions. The music and sound effects were added after
our experiments to enhance the effectiveness of EchoBot
based on our observations.

D. Data Collection using EchoBot
Many LfD demonstrations require collecting poses or tra-
jectories of the robot’s arm positions as a human physically
guides the arms and grippers. These trajectories may include
several segments, where the endpoints of each segment are
recorded. An example segment may be moving an arm’s
end effector from one location to another, or the actions
of closing and opening the gripper. Robot arm trajectories
can be recorded using buttons to specify the endpoints of
each trajectory segment, where one button maps to a "start
recording" command and another button maps to a "stop
recording" command. This method has several shortcomings,
including that demonstrators:

1) Often need both hands to control the robot’s movements
and can’t stop to press a button.

2) Have to remember the mapping of buttons to com-
mands.

3) Have to check the monitor display for cues on when
the button press has been registered and the robot is
prepared to record a trajectory.

EchoBot allows the user to speak commands such as "Start
recording" and "Stop recording" to the Echo and achieve
more intuitive control over data collection. Internally, when
our server receives the user command, it sends the command
to the main robot script via the classifier database (see Figure
2, step 4). Each record entry in the audio stream database
consists of a time stamp, the logged command, and a Boolean



flag to indicate whether that command has been read. The
classifier database is polled at least every 0.1 seconds by the
robot program (see Figure 2, step 5).

IV. HUMAN PERFORMANCE STUDIES
A. Grasp Task

1) Study Setting
We evaluated EchoBot in a 2x2 study as an input and out-

put interface to better understand the system’s effectiveness
in facilitating data collection for training a robot to grasp ob-
jects. The two input interfaces we compared were a keyboard
button and EchoBot, and the two output interfaces were a
monitor screen and EchoBot. The grasp task exemplifies a
method to collect data for LfD robot learning. Given images
of an object placed in various locations in the workspace and
the poses of the robot to grasp those locations, LfD methods
can be used to train the robot to grasp the object in unseen
locations.

We used a factorial design to compare the four possible
combinations of keyboard presses or EchoBot commands as
input and a text-based monitor screen or EchoBot responses
as output. Our subjects included 10 volunteers from our lab,
who were randomly assigned to two of the four experimental
conditions. Each condition had 5 subjects perform the experi-
ment. For this task, we asked each subject to provide repeated
grasp pose demonstrations on the YuMi robot kinesthetically.
Each subject performed 10-minute experiments with two of
the interfaces.

We measure the average durations of individual grasp trials
and the percentage of failed grasps per condition.

2) Study Procedure
The experimenter provided each subject with the necessary

information to perform the task using the I/O interface,
including how to respond to potential errors that may oc-
cur. Subjects performed repeated trials for 10 minutes for
each of two of the interface conditions. The order of the
two conditions was randomized to mitigate learning effects.
Subjects were given two minutes prior to each condition to
be familiarized with the task and interface, to alleviate the
effects of initial learning time.

Subjects were asked to provide input as a means to record
demonstrations of correct poses for robotic grasps of the
same object. They either stated "Echo, tell YuMi to record"
for the EchoBot interface, or pressed the "r" key for the
keyboard interface. By using the "r" key instead of the
"Enter" key, the two input methods were more similar in
terms of cognitive memory load on the user. The subject
provides this input periodically every 20-30 seconds. The
output messages of the monitor and EchoBot were exactly
the same, with the function of giving the subject information
about successes and failures while recording grasp poses.
When the system detected a failure, such as if the gripper was
outside the workspace, the subject had to re-demonstrate the
grasp based on feedback from the output. After the subject
completed both conditions, the subject was administered a
short questionnaire, loosely based on [20], to understand user
opinions of the interfaces.

Fig. 3: Results for the grasp task, with 5 subjects per condition.
The best condition is highlighted in green, and the worst in red.
(a) Average durations of trials per condition. (b) Percent of failed
grasps per condition in 10-minute tasks.

3) Results
To ascertain that initial learning effects did not cause

subjects to increase in speed over time, we analyzed the
durations of individual sample collections for each subject.
We did not find a significant difference in these durations
over time for any of the 4 interfaces.

We report the average durations of trials and number
of failures per condition (see Figure 3), along with survey
results. Each condition had between 74 and 110 total grasp
trials across all participants. The average time per trial across
conditions was found to be statistically significant, and the
confidence intervals of all conditions were non-overlapping.
Using the keyboard-monitor as the input-output interface has
both more successes and failures, which means that this
condition resulted in many more attempts at samples than the
other conditions. However, survey results suggested that the
Echo-speaker (EchoBot) and keyboard-speaker conditions
were more intuitive and more enjoyable to use than the Echo-
monitor and keyboard-monitor conditions, respectively. Al-
though the most samples were collected with the keyboard-
monitor interface, most users preferred to use an interface
with either speech input or audio output.

The difference in successful grasps may be explained by
the length of speech input and output in comparison with
pressing a button or reading a sentence on the monitor.
It takes a user longer to speak a 5-word command to the
Echo than to press a key. Moreover, it was also observed
that subjects would wait until EchoBot had finished its
speech transmission before attempting the next trial, whereas
they would immediately begin after the text on the monitor
changed. The value of a speech interface may not have been
apparent in this task, aside from user preferences, because
the task did not require the user to engage both hands.
B. Ring-Stacking Task

1) Study Setting
Motivated by the findings of the grasping task, we

designed a second task in which subjects provided full-
trajectory, kinesthetic demonstrations of a ring stacking task
with the YuMi robot. The task is similar to the Tower of



Fig. 4: The ring-stacking task (left to right). Subjects guide the
robot grippers to pick up the rings to stack onto the rod in size
order.

Hanoi puzzle, where the objective is to move 3 rings from
a pile to a rod in size order using both robot grippers (see
Figure 4). During the demonstrations, the user was asked to
record every instance of the grippers being open or closed.
Our aim was to compare the EchoBot interface with the
keyboard-monitor interface for a task where the collection of
human input was more frequent and occurred at inconsistent
time intervals, and demonstrations required the concurrent
involvement of both hands. While we did not use the data
collected in the grasp task, this task is representative of other
data collection methods that require constant input from a
human. Frequent human input may be used in data collection
for LfD methods in a dynamic workspace, and concurrent
use of both hands allows for a larger range of tasks with the
robot.

We used a within-subjects design, assigning 11 UC Berke-
ley computer science student volunteers to both conditions
and randomly perturbing the order of the conditions. There
was no overlap between participants in our two human
performance studies. None of the subjects in this task had any
prior experience with the Amazon Echo or with a mechanical
robot. We measured the time to complete each demonstration
and the percentage of human errors in record commands for
each condition.

2) Study Procedure
The experimenter provided each subject with the necessary

information to perform the task using the I/O interface. The
experimenter demonstrated a sequence to move the 3 rings
from one pile to the rod and guided the subject to repeat
the sequence twice prior to the experimental trials. This was
to help the subject memorize the exact sequence of moves,
and to reduce the effects of not knowing how to perform the
task. During the trials, subjects repeated the same sequence
and also indicated using the keyboard or EchoBot whenever
either gripper opens or closes. This was done by saying
"left opened", "left closed", "right opened", or "right closed"
to EchoBot, or by typing "lo", "lc", "ro", or "rc" on the
keyboard. If the subject made a mistake, the monitor or
speaker informed the subject to restart the sequence before
the trial was successful, yet continued to accept inputs. Thus,
ignoring the output caused the subject to perform unneces-
sary work. After the subject completed both conditions, the
subject was administered a short questionnaire, loosely based
on [20], to understand user opinions of the interfaces.

Fig. 5: Results from the ring-stacking experiment, with 11 trials per
condition. The best condition is highlighted in green, and the worst
in red. (a) Average durations of experiments across conditions. (b)
Percentage of human errors across conditions.

3) Results
Subjects using EchoBot were able to complete the ring-

stacking task in less time than with the keyboard-monitor
interface (see Figure 5). We observed a 57% decrease in
average time to complete the task. All subjects were able
to complete the ring-stacking demonstration with EchoBot
in approximately equal or less time than with the keyboard-
monitor interface. The difference between the average times
per trial of the two conditions is statistically significant ac-
cording to the Wilcoxon signed-rank test, and the confidence
intervals of both conditions are non-overlapping. In addition,
subjects committed fewer errors with EchoBot than with
the keyboard-monitor. Survey results indicated that subjects
found EchoBot to be more intuitive and enjoyable, and felt
more efficient with EchoBot than with the keyboard-monitor.

Even though EchoBot outperformed the keyboard-monitor
interface according to many metrics, there are still areas
where it can be improved. Some subjects indicated that the 5-
second listening timeout on the Amazon Echo was too short,
and it was inconvenient to reactivate the Echo whenever they
were unable to issue the next command within that time
limit. EchoBot performed much better in this task than in
the grasp task because this task required repeated input from
the user every 5 seconds, and because it occupied both of the
subject’s hands. Frequent input, as opposed to every 20-30
seconds as in the previous experiment, allowed the user to
reduce the size of the human speech command to the Echo
by 4 words because the Echo can continue listening for input
up to 5 seconds after a human speech command, a significant
improvement for user interactivity. Moreover, we found that
in the keyboard-monitor condition, subjects would often first
speak the command (e.g. "left closed", "right opened"), think
about which buttons to press, and then type the correct input,
even if they had not yet experienced the EchoBot condition.

V. DISCUSSION, LIMITATIONS, AND FUTURE WORK
We present EchoBot, a system that uses the Amazon Echo
to facilitate data collection for LfD. This paper presents an
initial experimental study of the effects of using a voice



interface to collect data on a robot. The Echo is not robust
to multiple voices speaking at once, and we anticipate that
further shortening of phrase inputs will increase efficiency for
data collection and that EchoBot can enhance the acceptance
of robots.
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