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Abstract— In this paper, we present an algorithm that im-
proves the rate of successful grasp transfer between 3D mesh
models by breaking each mesh into functional subsegments
and transferring grasps between similar subsegments rather
than between full models. This algorithm combines prior
research on grasp transfer with mesh segmentation techniques
from computer graphics to successfully transfer contact points
more often while potentially preserving task-specific knowledge
across transfers. The algorithm extracts subsegments from
each mesh model with a customized segmentation algorithm
designed for speed and then groups similar subsegments with
D2 shape descriptors and Gaussian mixture models (GMMs).
Grasps are then transferred by aligning similar subsegments
with Super4PCS, a global point cloud registration algorithm.
We experimentally evaluated this algorithm against a non-
segmenting baseline on over 20,000 grasp transfers across
a set of 80 objects and found that the segmentation-based
algorithm improved the success rate for finding a transferred
grasp from 82% to 98%. Additionally, grasps transferred with
our algorithm were only 8.7% less robust on average than the
original grasps without any local re-planning.

I. INTRODUCTION

Grasp synthesis is the process of selecting a suitable
grasp configuration for a rigid object, and it is an active
research topic in robotics [1], [2]. Many current methods
use physics-based robustness metrics such as Ferrari and
Canny’s ε-metric [3] and force closure [2] to predict
whether a grasp will succeed or fail. These analytic methods
can be used to rapidly evaluate thousands of grasp candidates
[4], but they are sensitive to errors in modeling and do
not encode task-specific information about grasps. Other
approaches use human demonstrations to learn high-quality
grasp configurations [5], [6]. Human-selected grasps often
carry useful functional information – for example, grasps
on the handle of a hammer allow users to hit a nail – but
grasp demonstrations are expensive to collect, which limits
the scalability of these types of planners.

One method for improving both of these techniques is
grasp transfer – the process of transforming a grasp on one
object to an equivalent grasp on similar objects. For example,
a grasp on the handle of one hammer could be transferred to
grasps on the handles of other hammers. Grasp transfer can
address the scalability issues of human grasp demonstrations
by generalizing a single demonstration across entire classes
of objects. Furthermore, transferring analytically-generated
grasps across a dataset and preserving links between related
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Fig. 1. Transfers of sampled grasps in the bearing, cup, glasses, and plier
datasets. (Left) The original grasp configuration. (Right) Grasps transferred
from the original. Articulated objects like pliers and glasses are problematic
for prior grasp transfer algorithms since the full meshes are difficult to align,
but our algorithm succeeds by transferring grasps between subsegments of
the 3D meshes.

grasps could allow knowledge gained about a single grasp –
for example, affordance labeling for a task – to be propagated
to all similar grasps.

Prior grasp transfer methods have generally focused on
warping contact points from a source object to a target
object [7], [8], [9], [10], [11]. While the exact technique for
warping the contacts varies, nearly all of the prior transfer
methods begin by attempting to align the full geometries
of the source and target objects. However, aligning full
object geometries is often difficult, especially for articulated
objects. For example, it would be impossible to rigidly align
two pliers whose jaws are opened to different angles.

In this paper, we propose an algorithm that addresses this
issue by exploiting the observation that similar objects are
often composed of a common set of subsegments – smaller
components that usually have an associated functionality. For
example, all eyeglasses are composed of two lenses and two
temple arms, and all pliers have two jaws, two handles, and a
hinge. Similar subsegments are likely to have less geometric
variation than full object models, and prior research suggests
that they often carry useful implications about grasp affor-



Fig. 2. Overall grasp transfer algorithm. (1) Each 3D mesh is decom-
posed into subsegments. (2) D2 shape descriptors are computed for each
subsegment and a GMM is used to cluster similar subsegments. (3) A given
grasp is transferred from one object to another by re-scaling the relevant
subsegments and aligning them with Super4PCS.

dances [12]. Therefore, we propose a method for identifying
these similar subsegments and transferring grasps between
them rather than between full object models.

Our algorithm decomposes a set of related triangular
mesh models into subsegments using a customized mesh
segmentation algorithm that has been optimized for speed. It
then clusters geometrically-similar subsegments into groups
using D2 shape descriptors and Gaussian Mixture Models
(GMMs). Finally, it transfers grasp contact points between
similar subsegments with a warping method based on eigen-
value scaling and rigid registration. A diagram of this process
is shown in Figure 2.

We evaluated our algorithm against a non-segmenting
baseline that transfers grasps between full object meshes
instead of between subsegments. Each method was used to
attempt approximately 20,000 parallel-jaw grasp transfers
on 80 objects from the Princeton Segmentation Benchmark
[13]. We found that our algorithm improved grasp transfer
success rates from 82% to 98% over the baseline, where a
transfer attempt was successful if the algorithm was able to
align the source and target objects closely enough to find cor-
responding grasp contact points on the target. Furthermore,
grasps transferred with our algorithm experienced a mean
loss in robustness of only 8.67% on average when compared
to the original grasp – a loss which could likely be recovered
with a local grasp re-planner.

II. RELATED WORK

In this paper, we draw from prior research on grasp
transfer, mesh segmentation, and data-driven grasp synthesis.

A. Grasp Transfer

Prior approaches to grasp transfer have focused on point
cloud feature-matching, nonlinear warping, and grasp moduli
spaces as techniques for mapping a grasp from a source
object to a target.

In the realm of point-cloud feature matching, Detry et
al. [7], [8] transferred grasps from source point clouds to a
target by volumetrically segmenting each source point cloud
in the vicinity of the source grasp to produce a library of part

candidates. Then, their algorithm iteratively aligned each part
candidate with the target point cloud, selected the best match,
and directly transferred grasp contact points by transforming
the source grasp into the target’s coordinates. In a similar
vein, Herzog et al. [14] computed heightmap descriptors
from the point clouds of objects grasped during kinesthetic
demonstrations. When presented with a new scene, their
algorithm finds the closest heightmap in the scene to each
labeled descriptor and transfers the grasp from the best
labeled descriptor into the scene.

Taking a different approach, Stouraitis, Hillenbrand, and
Roa [9], [10] demonstrated a method for warping the
surface geometry of a source object onto a target object by
rigidly aligning the two objects, assigning correspondences
between nearby sampled surface points, and interpolating
those correspondences to form a continuous mapping. Their
algorithm then transfers grasp contact points using the com-
puted mapping and locally re-plans transferred grasps with
perturbation sampling to achieve force closure.

In the realm of topology, Pokorny et al. [11] used
spectral analysis of point clouds and grasp moduli spaces to
represent objects and grasps in a common space. The authors
demonstrated a gradient-based optimization technique that
iteratively warps the shape of a source object toward a target
object in order to achieve direct grasp transfer. Transferred
grasps were shown to maintain robustness levels when com-
pared against the original grasps.

Our algorithm draws on the “parts” library ideas of [7],
[8], [14], as we group together similar object subsegments
for grasp transfer. Additionally, we draw on the ideas of [9],
[10] as our algorithm transfers grasp contact points with rigid
alignment and contact point warping on object subsegments.

B. Mesh Segmentation

In the field of mesh segmentation, Katz et al. proposed
an algorithm for iteratively decomposing a mesh into seg-
ments by clustering nearby faces with k-means, computing a
“fuzzy” region of uncertainty between each pair of adjacent
segments, and then computing a boundary between the
segments in the fuzzy region using minimum cuts on the dual
graph of the mesh [15]. Golovinskiy and Funkhouser used
randomized hierarchical clustering algorithms on mesh faces
to rapidly generate random mesh segmentations [16]. Most
recently, Huang et al. produced a method that collects a large
library of segment candidates for each object and optimizes
a linear program that prioritizes choosing similarly-shaped
segments for all objects [17]. Shape similarity in their
algorithm is measured with the D2 shape descriptor [18],
and the algorithm achieves the highest marks to date on the
canonical Princeton Segmentation Benchmark [13].

Our mesh segmentation algorithm is based on Huang et
al.’s work [17], but we make several simplifications to
achieve higher speed at the cost of some loss in quality.
Additionally, we use the D2 shape descriptor [18] as our
primary measure of shape similarity and use meshes from
[13] for experimental evaluation of our algorithm.



C. Data Driven Grasp Synthesis

A full survey of data-driven grasp synthesis techniques
can be found in [1]. Much work has been done on
grasping objects by viewing them as a decomposition of
components [19]. For example, Miller et al. computed rough
hand formations for different components of objects by
fitting primitive shapes such as cylinders and cubes to each
component [20]. Additionally, El-Khoury et al. demonstrated
a method for identifying and grasping the handles of objects
by using super-quadric approximations for components of
the object [21].

More recently, Mahler et al. implemented Dex-Net 1.0, a
system that samples parallel-jaw grasps on 3D mesh models
and evaluates their robustness through Monte Carlo inte-
gration of physics-based metrics over uncertainty in object
pose, gripper pose, and friction. [4]. This work drew on prior
research in physics-based grasp analysis, including GraspIt!
[22] and other similar methods.

In our work, we use Dex-Net 1.0 directly to evaluate our
grasp transfer algorithm. We sample thousands of transfers
and evaluate the robustness of each grasp using a metric from
Dex-Net that estimates the probability of achieving force
closure for a given grasp.

III. PROBLEM STATEMENT

Given a set of similar 3D meshes, our algorithm trans-
fers grasps between them by (1) decomposing each mesh
into subsegments, (2) partitioning subsegments uniquely into
clusters based on shape and (3) transferring grasps on one
subsegment to all other subsegments in its cluster (see Figure
2). This section formally defines each of these phases as a
distinct problem, and the succeeding sections describe the
algorithms used to solve each problem in detail.

LetM = {M1,M2, . . . ,Mn} be a set of related polygonal
meshes with vertices in R3. We assume that ∀i ∈ {1, . . . , n},
Mi is an orientable manifold with strictly triangular faces and
that the faces of Mi form a single connected component.

A. Mesh Segmentation

Let M be a triangular mesh as described above. Let F =
{f1, . . . , fn} be the set of M ’s faces, where fi is a triangle
embedded in R3. Now, let G = (V, E) be the undirected dual
graph of M . Each face fi ∈ F dualizes to a unique vertex
vi ∈ V . Additionally, each edge shared by two triangular
faces fi and fj in M dualizes to an edge eij = (vi, vj) ∈ E .

We define a segment S of mesh M to be a subset of the
vertices of its dual graph (i.e. S ⊆ V). Each segment dualizes
to a set of faces that forms the segment’s 3D mesh. A set of
segments T = {S1,S2, . . . ,Sk} forms a valid segmentation
[15] of M if and only if T is an exact cover of V and
each segment Si ∈ T forms a connected component of G.
Given M , a mesh segmentation algorithm seeks to compute
an optimal T with respect to some cost function. This forms
phase 1 of our algorithm as seen in Figure 2.

Fig. 3. Sample final segmentations computed by our algorithm. Categories
listed counterclockwise from top left: plier, bearing, glasses, mech, cup,
airplane.

B. Segment Clustering

Given a set of segments I, we define a cluster C of I
to be a subset of the segments in I (i.e. C ⊆ I). A set of
clusters K = {C1, C2, . . . , Ck} defines a valid clustering of I
if and only if K is an exact cover of I. Given I, a segment
clustering algorithm seeks to find an optimal K with respect
to some cost function. This forms phase 2 of our algorithm
as seen in Figure 2.

C. Grasp Transfer

Now, we formalize the grasp transfer problem. Let g =
(x,v) be a parallel-jaw grasp parameterized by the centroid
x ∈ R3 of the gripper’s jaws and an axis v ∈ S2 that points
from one jaw to the other. We assume a robustness metric
R that measures the quality of a grasp g on mesh M . Given
a grasp gi on a source mesh Mi, our overall goal is to find
a corresponding grasp gj on each target mesh {Mj ∈ M |
j 6= i} that maximizes R(gj ,Mj) under the constraint that
gj should be similar gi. This forms phase 3 of our algorithm
as seen in Figure 2.

Here, we define similarity with respect to a set of seg-
mentations W = {T1, . . . , Tn} of the meshes in M and a
clustering K on all segments in I = ∪ni=1Ti. Let Si ∈ Ti be
the segment of mesh Mi that grasp gi intersects, and define
Sj analogously for grasp gj on mesh Mj . Now, gi and gj
are similar if and only if Si and Sj are in the same cluster
C ∈ K.

In order for a grasp transfer algorithm defined in this way
to work well, we need a mesh segmentation algorithm that
produces functionally relevant segments for each mesh and
a clustering algorithm that places similar segments in the
same cluster. Additionally, we need some way to compute
the optimal positioning of gj on the segments of Mj that
are similar to Si. Our solutions to each these problems are
provided in the following sections.

IV. MESH SEGMENTATION ALGORITHM

During the first part of our grasp transfer algorithm, we
produce a segmentation Ti for each mesh Mi ∈M such that
the segments chosen for each mesh are functionally relevant.



A fair amount of research has been done on this topic, but
no open-source implementations of state-of-the-art methods
are available, so we implemented an algorithm that draws
inspiration from Huang et al.’s joint shape segmentation
algorithm [17]. Their algorithm works in two stages. First,
it creates a large set of candidate segments Ii for each mesh
in M using randomized cuts [16]. Then, it formulates and
optimizes a linear program to select a valid segmentation
from each candidate set. The program’s objective has a local
component that selects segments with high repetition counts
in each Ii and a global component that selects groups of
similarly-shaped segments across all meshes in the dataset.

Their algorithm produces very high-quality segmentations,
but it takes between 20 and 120 minutes to segment sets of
20 meshes from the Princeton benchmark. Our algorithm
seeks to reduce this run time while still producing quality
segmentations by making a few key simplifications. Instead
of randomly generating hundreds of segment candidates for
each mesh, we deterministically generate around twenty
candidates using hierarchical clustering [16] and fuzzy cuts
[15]. Then, we replace the repetition count term in the
linear program’s objective with a weight that favors segments
with concave boundary edges. Most techniques for mesh
segmentation use concave edges to find good boundaries
between segments [16], and the underlying algorithms that
Huang et al. used to randomly generate their segment can-
didates are no exception. Therefore, this substitution serves
as a reasonable approximation, as a more concave boundary
should correspond to a higher repetition count.

With the optimizations described above, we were able
to compute segmentations for any set of 20 meshes from
the Princeton benchmark in under 10 minutes. Our seg-
mentations are not as consistent as Huang et al.’s, but the
decreased running time could be crucial when segmenting a
large dataset of models.

Like Huang et al.’s algorithm, ours proceeds in two phases:
1) Generate a set of segment candidates for each mesh.
2) Formulate and optimize a linear program to select a

final segmentation from the candidate segments for
each mesh.

The details of these two phases are provided below.

A. Segment Candidate Generation

This section describes our method for generating a set
of segment candidates Ii for each mesh Mi ∈ M. First,
we quickly partition Mi into a segmentation Ti of k initial
segments with hierarchical clustering. Hierarchical clustering
works quickly, but the segment boundaries it produces are
not well aligned with the concave edges of Mi. In order
to rectify this, we re-compute the boundaries between the
initial k segments of Ti using a variation of the fuzzy cuts
algorithm of [15]. See Figure 4 for an example of the results
of an initial hierarchical clustering run followed by boundary
improvement with fuzzy cuts.

Once the boundaries between the initial k segments have
been refined, we initialize Ii with those segments and con-
tinue to use hierarchical clustering to reduce the number of

Fig. 4. Example of hierarchical segmentation (left) followed by fuzzy cuts
(right) on an airplane mesh. Note how the segment boundaries move to
smoothly follow concavities in the mesh after the fuzzy cuts stage.

segments in Ti to 2. At each iteration, two existing segments
are merged to produce a new one, and we add the newly-
created segment to Ii. Once this run is completed, Ii holds
2k − 2 candidate segments for mesh Mi.

The details of the hierarchical clustering and fuzzy cuts
algorithms are described below.

1) Hierarchical Clustering: Hierarchical clustering is a
greedy algorithm that segments a mesh M with n faces in
O(n log n) time. It takes as parameters α, which affects how
strongly the concavities of the mesh are weighted, and k, a
target number of segments.

Let M be a triangular mesh with dual graph G = (V, E).
Then, let

c(vi, vj) = `ij min
(

(θ/π)α, 1
)

(1)

be the edge cut cost between adjacent vertices vi, vj ∈ V .
Here, `ij is the edge length between the dual faces fi and
fj of vi and vj and θ is the external dihedral angle between
fi and fj . This formulation assigns low cut costs to concave
edges and cut costs of 1 to convex or flat edges.

In addition, let

c(S) =
∑
vi∈S

( ∑
vj∈N (vi)|vj 6∈S

c(vi, vj)

)
(2)

c̄(S) =
c(S)

A(S)
(3)

be the cut cost and area-normalized cut cost of a segment
S, respectively, where A(S) is total surface area of the dual
mesh of S and N (vi) ⊆ V is the set of vertex vi’s neighbors
in G.

Hierarchical clustering works by initially assigning a
unique segment to each vertex of G and then iteratively
merging two adjacent segments, S∗i and S∗j , which are
chosen such that

S∗i ,S∗j = argmax
Si,Sj

(
c̄(Si) + c̄(Sj)− c̄(Si ∪ Sj)

)
(4)

This continues until only k segments remain.
2) Edge Refinement with Fuzzy Cuts: Given two adjacent

segments S1 and S2 on a mesh M , this algorithm, which is
a variant of fuzzy cuts [15], re-aligns the boundary between
the segments to fit closely to concave features of the mesh
M . It takes a parameter β ∈ [0, 1], which controls the size
of the fuzzy region in which we search for a new boundary.



Let G = (V, E) be the dual graph of M and let B ⊆
{S1∪S2} be the vertices on the boundary between segments
S1 and S2. More formally,

B ={vi ∈ S1 | N (vi) ∩ S2 6= ∅} ∪
{vj ∈ S2 | N (vj) ∩ S1 6= ∅}

(5)

We first extract a “fuzzy” region in the vicinity of B in
which we search for a new boundary between S1 and S2.
Let G1(S1, E1) and G2(S2, E2) be the dual graphs of S1 and
S2, respectively, with edge weights defined by Equation 1.
For graph Gi ∈ {G1, G2}, we add an extra synthetic vertex
bi that represents the boundary itself. Each vertex in B ∩ Si
is connected to bi with an edge of zero weight. Then, we
run Dijkstra’s algorithm on Gi from bi to determine the cut
cost distance of each vertex vj ∈ Si from the boundary.

Let d(vj) be the distance of vertex vj from bi, and let
di = maxj∈Si d(vj). Then, the subset of Si in the fuzzy
region can be defined as

Fi =
{
vj ∈ Si | d(vj) < βdi

}
(6)

where β ∈ [0, 1] is a parameter that determines the size of
the fuzzy region.

Now, we extract the new boundary by running a minimum
cuts algorithm in the fuzzy region F = {F1∪F2}. Let Gf be
the dual graph of F . We create two new synthetic vertices,
s1 and s2, and connect each vertex {vj ∈ Fi | N (vj)∩ (Si \
Fi) 6= 0} to si with an edge of infinite weight. Then, we
compute the new boundary between S1 and S2 by computing
an s-t mincut between s1 and s2 with [23], which runs in
O(f2 log f) time, where f is the number of vertices in F .

B. Segment Selection

Once an initial set of segment candidates is chosen for
each mesh, we formulate a linear program that selects a
valid segmentation Ti ⊂ Ii from each candidate set. Segment
candidates in Ii are weighted to favor segments with concave
boundaries that are similar in shape to other segments in
the dataset, and constraints are formulated to ensure that
the resulting segmentation Ti is valid on Mi. The linear
program is then optimized with standard solvers to obtain
a final segmentation for each mesh in M. Sample outputs
from this stage of the algorithm are shown in Figures 3 and
5.

1) Shape Descriptors: In order to determine how similar
two segments are in shape, we use the D2 shape descriptor
[18]. The descriptor is a histogram of Euclidean distances
between pairs of points that are uniformly sampled from the
surface of a mesh, and it has been shown to provide good
discriminative power in practice. Huang et al. [17] suggested
computing three D2 descriptors for different scalings of the
three principle eigenvalues of each mesh in order to factor
out variations in scale between segments. The three cases are
as follows:

1) Isotropic scaling of the first eigenvalue to 1.
2) Anisotropic scaling of the first two eigenvalues to 1.
3) Anisotropic scaling of all three eigenvalues to 1.

Here, we use the same distance metric as Huang et al. [17]:

d(S,S ′) =

(
min
i
||di(S)−di(S ′)||2+λ||Λ(S)−Λ(S ′)||2

) 1
2

where S and S ′ are segments, di(S) is the D2 descriptor
computed from case i ∈ {1, 2, 3} as described above, Λ(S)
are the original principal eigenvalues of S’s dual mesh, and λ
is a constant that controls the penalty for differences in initial
scale between the two segment meshes. All D2 descriptors
were computed with 10,000 samples and 128 histogram bins,
which we found to provide sufficient discriminative power.

Fig. 5. Sample final segmentations for four cups and four pliers. The
coloration of the cups indicates classification as well as segmentation – all
handles are part of one class and all cup bodies are part of another. The
colors for the pliers do not represent segment classification – the jaws and
handles are sorted into two categories, and the remaining mixtures captured
odd segments from a few meshes with poor face topologies.

2) Linear Program Formulation: Given a set of segment
candidates Ii for each mesh Mi ∈ M, we formulate and
optimize a linear program to select a valid segmentation Ti ⊂
Ii for each mesh.

For each candidate segment Si ∈ Ii, we compute a weight
that accounts for both the segment’s local properties and its
similarity to other segments in the dataset. Let w(Si) be
defined as

w(Si) = H(Si)

√
A(Si)
A(Mi)

(
n∑
k=1

D(Si,S∗k)H(S∗k)

)
(7)

Here, A(Si) is the surface area of segment Si’s dual mesh
and A(Mi) is the surface area of mesh Mi. H(S) is a
weight that favors segments with concave boundaries, and
it is defined as

H(S) = exp

(
− γ c(S)

p(S)η2
r

)
(8)

where c(S) is the cut cost for segment S as defined in
Equation 2, p(S) is the perimeter of S, and ηr = γ(µr−σr),
where µr is the mean perimeter-normalized cut cost across
all segment candidates, σr is the standard deviation in
perimeter-normalized cut cost, and γ is a parameter that
modifies the strength of the penalty against segments with
non-concave boundaries.



D(S,S ′) is a weight that favors segments that match
closely in shape, and it is defined as

D(S,S ′) = exp

(
− d2(S,S ′)

2σ2
d

)
(9)

where σd is the median distance between the most similar
segments across all shapes. In this formulation,

S∗k = argmin
Sk∈Ik

d(Si,Sk) (10)

is the segment from mesh Mk closest to Si in shape.
Our objective function U({T1, . . . Tn}) is given by

U({T1, . . . Tn}) =
n∑
i=1

∑
Sj∈Ti

w(Sj) (11)

Maximizing this objective is equivalent to finding a segmen-
tation T ∗i for each mesh Mi such that

T ∗i = argmax
Ti

∑
Sj∈Ti

w(Sj) (12)

Let wi be a column weight vector for Ii whose entries
are the individual segment weights w(Sj),Sj ∈ Ii, and
let xi be a column vector of the same dimension, where
each entry xij ∈ {0, 1} is an indicator for whether segment
Sj should be included in T ∗i . Finding T ∗i then reduces
to solving an integer program that maximizes cᵀi xi. Since
integer programming is difficult, we follow Huang et al.’s
example and convert the problem into a linear program by
allowing each indicator xij to take on values ∈ [0, 1] [17].
This gives us the following linear program:

maximize cᵀi xi

subject to Aixi = 1

0 ≤ xi ≤ 1

In this formulation, the constraint Aixi = 1 is designed to
ensure that the selected segments form an exact cover of
Mi’s dual vertices Vi.

Once the linear program is optimized, we iteratively round
the entries of xi. At each iteration, we snap the highest
remaining indicator value to 1 and set the indicators for every
segment that overlaps the most recently rounded one to 0.
Once all indicators have been rounded fully, each xi uniquely
determines T ∗i :

Sj ∈ T ∗i ⇐⇒ xij = 1 (13)

V. SEGMENT CLUSTERING
After mesh segmentation, we need to form a clustering

of our dataset’s segments such that similarly-shaped seg-
ments end up in the same cluster. Given the set of meshes
M = {M1, . . . ,Mn} and their corresponding segmentations
{T1, . . . , Tn}, we find a clustering K = {C1, . . . , Cg} for I =
∪ni=1Ti that places segments with similar shapes together by
using a Gaussian Mixture Model (GMM) over the vertices
of each segment’s D2 descriptors.

First, we form a vector v ∈ R384 for each segment
S from the normalized histogram bins of S’s three D2

Fig. 6. Example of segmentation and alignment with Super4PCS. We
start with two meshes (top row) and then segment them and cluster
their segments (second row). Each pair of similar segments is scaled
anisotropically (third row) and aligned with Super4PCS (bottom row) to
achieve grasp transfer.

descriptors. We make the assumption that each vector v
can be modeled as a sample of a 384-dimensional Gaussian
random variable, where the mean and covariance matrix for
the random variable is determined by the cluster to which
the segment belongs. Given the number of clusters, g, for the
dataset, we assign each segment S to a cluster Ci by fitting
a 384-dimensional Gaussian Mixture Model to the set of all
vectors v in our dataset.

Determining the best g is an unsolved problem, so we
set it equal to the mean number of segments per object in
the dataset as an approximation. This can produce too many
clusters for objects such as pliers, which have two identical
handles and two identical jaws per mesh. However, we prefer
to err on the side of over-estimating g, as under-estimating
g will result in clusters with very different shapes grouped
together and lead to poor grasp transfers.

See the cups in Figure 5 for an example of segment
classification in action.

VI. GRASP TRANSFER

Now, given the segment clustering K for our dataset and
a parallel jaw grasp gi on mesh Mi that intersects segment
Si, we attempt to synthesize a grasp gj on every other mesh
Mj ∈ M such that gj maximizes a robustness metric R
under the constraint that gj intersects some segment Sj of
Mj that is in the same cluster as Si.

However, finding a grasp that maximizes a robustness
metric over an entire mesh is difficult and usually involves
extensive sampling. Therefore, as a metric-agnostic first-
order approximation, we attempt to directly transfer gi to Sj
by aligning the dual meshes of Si and Sj after an anisotropic
scaling (see Figure 6 for a visualization of this process).

Let M and M ′ be the dual meshes of segments Si and
Sj , respectively. First, we compute the contact points c1 and
c2 of gi on M and parameterize them by their barycentric
coordinates relative to the triangular faces f1 and f2 they



lie in. Then, we anisotropically scale all three principal
eigenvalues of M and M ′ to one, producing new meshes
M̄ and M̄ ′. This factors out scale variations in all three
dimensions, which makes it easier to directly transfer grasps
between segments that have similar shapes but different
principal eigenvalues.

Next, we align M̄ and M̄ ′ with Super4PCS, a global point
cloud alignment algorithm [24]. Minimal parameter tuning
was needed, and the algorithm finds optimal alignments for
any pair of meshes in a few seconds. Then, we find the
transformed contact points c̄1 and c̄2 on M̄ by re-applying
their original barycentric coordinates to the transformed
triangles f̄1 and f̄2.

The line c̄1c̄2 is then intersected with M̄ ′ to find trans-
ferred contact points c̄′1 and c̄′2. If they don’t exist, we
report a transfer failure for gi on segment Sj and exit.
Otherwise, the contact points are again parameterized by
their barycentric coordinates relative to the contact triangular
faces f̄ ′1 and f̄ ′2 and are transferred back to M ′ by re-applying
their barycentric coordinates to the original triangles f ′1 and
f ′2 on M ′.

This process extracts contact points c′1 and c′2 on M ′, and
the transformed grasp gj = (xj ,vj) can be parameterized
such that xj lies halfway between c′1 and c′2 and vj points
from c′1 to c′2. This completes the initial grasp transfer. If
further refinement is required, a local grasp re-planner could
be used to improve the transferred grasp as in [14], [10].

VII. EXPERIMENTS

In order to test our segmentation-based algorithm’s effec-
tiveness, we compared it against a baseline grasp transfer
algorithm that uses the same eigenvalue scaling and point
cloud alignment techniques as our segmentation-based al-
gorithm, but simply transfers grasps between full 3D mesh
models instead of mesh subsegments. Both algorithms were
evaluated on four datasets (the cups, pliers, bearings, and
glasses datasets) of twenty meshes each from [13]. We chose
five meshes at random from each dataset and used Dex-Net
[4] to sample fifty parallel-jaw grasp configurations on each
selected mesh.

For the baseline algorithm, we attempted to transfer each
grasp to every other object in the same dataset. For our
segmentation-based algorithm, we first segmented each mesh
and clustered similar segments within each dataset. Then, we
attempted to transfer each grasp on a segment to all segments
in its cluster. For all experiments, we set k to 10 (safely
above the maximum number of subsegments we expected
per object), α to 10 as advised by [16], λ to 0.1 as advised
by [17], and γ to log 4 and β to 0.25 based on experimental
testing. The number of segment clusters, g, was set to the
mean number of segments per object in the dataset.

The baseline algorithm produced a total of 15559 success-
ful transfers from its 1000 initial grasps and failed to transfer
3441 grasps, for a total successful transfer rate of 82%.
Our segmentation-based algorithm improved these numbers
substantially, producing a total of 20194 successful transfers
from the 1000 initial grasps and failing to find a transfer

Fig. 7. Histogram of differences in robustness between original grasps and
transferred grasps for our primary algorithm. For 20194 pairs of grasps, the
mean ∆R was −0.087 with a standard deviation of 0.217.

in 401 cases, for a total successful transfer rate of 98%.
Some example grasp transfers for our algorithm are shown
in Figure 1.

As expected, the non-segmenting baseline is often unable
to align all components of full object models – especially for
articulated objects like pliers. When the grasped component
of the source object doesn’t overlap the aligned target object,
the grasp fails to transfer, as the algorithm cannot find contact
points on the target object that match the source grasp. For
example, this occurs for pliers opened to different angles
whose handles cannot be simultaneously aligned. However,
our segmentation-based algorithm is able to avoid most of
these cases, as the object subsegments are much closer in
overall shape than the full object models. For example, plier
handle meshes can always be aligned closely, regardless of
the relative configurations of the source and target pliers.

In addition to transfer success rates, we also evaluated
the change in robustness caused by transferring a grasp. We
approximated the robustnessR(g) of a grasp g by estimating
the probability of achieving force closure. We borrow from
Mahler et al. [4] and assume Gaussian distributions on object
pose, gripper pose, and friction coefficient, with translational
variances of σ = 0.005 m, rotational variances of σ =
0.1 rad, and frictional variance of σ = 0.1, with a mean
friction coefficient of 0.5. R(g) is computed by Monte Carlo
integration of the force closure properties for 50 perturbed
grasps sampled near g.

For each transfer of a grasp g to a grasp g′, we com-
puted the change in robustness ∆R = R(g) − R(g′). A
histogram of these differences for our segmentation-based
algorithm is shown in Figure 7. The distribution of ∆R
was approximately normal for both our segmentation-based
algorithm and the baseline, with a large spike of grasp pairs
near ∆R = 0 appearing in both. The sample mean for the
baseline was µ∆R = −0.102 with a standard deviation of
σ∆R = 0.240, while the statistics for our algorithm were
µ∆R = −0.087 and σ∆R = 0.217. Thus, we can say with
95% confidence that, on average, our algorithm increases
∆R by 0.015± 0.005 over the baseline.



Overall, our algorithm only loses around 8.7% in ro-
bustness during grasp transfer, which could partially be
accounted for by local differences in mesh topology be-
tween the source and target segments. Additionally, the
segmentation-based transfer algorithm ignores some global
information about the target mesh that was used to compute
the initial robustness metric, such as the relative locations of
the target’s center of mass and the transferred grasp. A grasp
re-planner that looks at the target mesh’s global topology and
adjusts the final configuration of the transferred grasp could
likely be used as in [9] to recover these small losses in
robustness.

Additionally, while the baseline seems to preserve grasp
robustness nearly as well as our algorithm, it fails to find a
transferred grasp at all during 18% of attempts. These failed
transfers cannot be re-optimized at all with a local planner,
which weakens the baseline relative to our segmentation-
based algorithm. Finally, the baseline does not guarantee that
transferred grasps will be functionally similar at all to their
original grasps, while our segmentation-based algorithm at
least ensures that transferred grasps are placed on similarly-
shaped subsegments across each dataset.

VIII. DISCUSSION AND FUTURE WORK

We have shown that our algorithm successfully transfers
grasps between similar subsegments of 3D mesh models with
only a modest loss of robustness. Additionally, we showed
that transferring grasps between subsegments significantly
improves transfer success rates over a baseline algorithm that
transfers grasps between full mesh models.

In order to further improve our algorithm, we will examine
other strategies for transferring grasps between segments
and optimizing the final configuration of each grasp. For
example, we could adopt the nonlinear warping and local re-
planning strategies of [9], [10]. In future work, we will also
integrate our transfer pipeline with human-labeled meshes
and methods such as PointNet [25] that can semantically
label object segments, with the goal of moving towards a
robust, scalable system for planning functional, task-specific
grasps on a large database of objects.
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