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Abstract— Learning meaningful visual representations in an
embedding space can facilitate generalization in downstream
tasks such as action segmentation and imitation. In this paper,
we learn a motion-centric representation of surgical video
demonstrations by grouping them into action segments/sub-
goals/options in a semi-supervised manner. We present Mo-
tion2Vec, an algorithm that learns a deep embedding feature
space from video observations by minimizing a metric learning
loss in a Siamese network: images from the same action segment
are pulled together while pushed away from randomly sampled
images of other segments, while respecting the temporal order-
ing of the images. The embeddings are iteratively segmented
with a recurrent neural network for a given parametrization of
the embedding space after pre-training the Siamese network.
We only use a small set of labeled video segments to semantically
align the embedding space and assign pseudo-labels to the
remaining unlabeled data by inference on the learned model
parameters. We demonstrate the use of this representation
to imitate surgical suturing kinematic motions from publicly
available videos of the JIGSAWS dataset. Results give 85.5%
segmentation accuracy on average suggesting performance
improvement over several state-of-the-art baselines, while kine-
matic pose imitation gives 0.94 centimeter error in position per
observation on the test set. Videos, code and data are available
at: https://sites.google.com/view/motion2vec

I. INTRODUCTION

A long-standing goal in artificial intelligence is to learn
new skills by observing humans. Learning manipulation
skills from video demonstrations by imitation can provide
a scalable alternative to traditional kinesthetic and teleoper-
ation interfaces. Generalizing these skills to new situations
requires extracting disentangled representations from obser-
vations such as the relationships between objects and the
environment while being invariant to lighting, background,
and other geometric properties such as position, size of
external objects and viewpoint of the camera.

When the demonstrations have sequential, recursive, re-
lational or other kinds of structure, structured representa-
tions can be useful to infer meaningful hidden associa-
tions. *2Vec models such as Word2Vec [1], Grasp2Vec [2],
and Demo2Vec [3] capture such data-centric relationships
by bringing similar observations together in an embedding
space. In this paper, we present Motion2Vec, an algorithm
that acquires motion-centric representations of manipulation
skills from video demonstrations for imitation learning (see
Fig. 1). Consistency, interpretability and supervisory burden
are a key concern in imitation learning as it is often difficult
to precisely characterize what defines a segment and labeling
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Fig. 1: Motion2Vec groups similar action segments together in an embed-
ding space in a semi-supervised manner. The embedding space is represented
above with a t-SNE plot. Pseudo-labels for the unlabeled training data are
obtained by inference on a RNN that is trained iteratively for a given
parametrization of the Siamese network. The learned representation is
applied to surgical suturing segmentation and pose imitation in simulation
and real on the da Vinci robot.

can be time-consuming. We seek to encode the observations
with weak supervision using a small set of labeled videos,
while allowing better generalization and interpretability for
new situations. Consider, for example, the surgical suturing
task that may be decomposed into temporally connected
movement primitives or action segments like needle inser-
tion, needle extraction, needle hand-off and so on. Such a
hierarchical decomposition is analogous to the speech recog-
nition and synthesis problem where words and sentences are
synthesized from phoneme and triphone based segments [4].
Other related domains include activity recognition in com-
puter vision [5], [6], options in hierarchical reinforcement
learning [7] and parts of speech tagging in natural language
processing [8].

The focus of the paper is on extracting disentangled rep-
resentations from video demonstrations in a semi-supervised
manner for downstream tasks of action segmentation and
imitation. We use metric learning with a Siamese network to
bring similar action segments – images with same discrete
labels – together in an embedding space. After pre-training
the network, we use a recurrent neural network to predict
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pseudo-labels on unlabeled embedded sequences that are fed
back to the Siamese network to improve the alignment of the
action segments. Motion2Vec moves the video observations
into a vector domain where closeness refers to spatio-
temporal grouping of the same action segments.

We evaluate its application to segment and imitate surgical
suturing motions on the dual arm da Vinci robot from pub-
licly available videos of the JIGSAWS dataset. We compare
the proposed approach with several state-of-the-art metric
and sequence learning methods including temporal cycle-
consistency (TCC) [9], single-view time contrastive network
(svTCN) [10], temporal convolutional network (TCN) [11],
hidden Markov model (HMM) [4], hidden semi-Markov
model (HSMM) [12], conditional random fields (CRF) [13],
and obtain better segmentation accuracy of 85.5% on the
leave one super trial out test set than reported in the liter-
ature, e.g., [14], [11] report accuracy of 83.3% and 81.4%
respectively. Moreover, we introduce pose imitation results
on the da Vinci robot arms with 0.94 centimeter error in
position per observation respectively.

A. Contributions

This paper makes the following contributions:
1) A novel Motion2Vec representation learning approach

for spatio-temporal alignment of action segments/sub-
goals/options in an embedding space using a small set of
labeled video observations in a semi-supervised manner.

2) Performance analysis with different combinations of
supervised and unsupervised approaches to metric and
sequence learning for extracting meaningful segments
from surgical videos.

3) Learning surgical suturing segments and kinematic imi-
tation of poses on da Vinci robot arms from publicly
available videos of the JIGSAWS dataset suggesting
performance improvement over several state-of-the-art
methods.

II. RELATED WORK

Imitation learning provides a promising approach to
teach new robotic manipulation skills from expert demon-
strations. Common approaches to imitation learning include
behaviour cloning and inverse reinforcement learning (IRL)
with Dynamic Movement Primitives [15], Gaussian mix-
ture models [16], task-parametrized generative models [17],
Generative Adversarial Imitation Learning [18], one-shot
imitation learning [19], Dagger [20], and behavior cloning
from observation [21] (see [22] for an overview). In contrast
to direct trajectory learning approaches from demonstra-
tions [23], we focus on self-supervised and semi-supervised
approaches to learn skills from video observations where
only a few segment labels may be available.

Weakly Supervised Learning from Videos: Uncontrolled
variables such as lighting, background and camera viewpoint
pose a challenge to robot learning from video observations.
Learning from multiple viewpoints, labeled action segments,
weakly supervised signals such as order of sub-actions,
text-based annotations or unsupervised learning are feasible

alternatives to pixel-wise labeling of videos. Kuehne et
al. presented a generative framework for end-to-end action
recognition by extracting Fisher vectors from videos and
sequencing them with HMMs [24], followed by a weakly
supervised approach for temporal action segmentation with
RNN-HMM [25]. Tang et al. learn temporal structure in the
videos for complex event detection [26]. Liu et al. learn
a translation invariant policy between the expert and the
learner contexts [27]. Doersch et al. use spatial coherence
in the neighbouring pixels for learning unsupervised visual
representations [28]. Misra et al. propose shuffle and learn
to maintain temporal order in learning the visual represen-
tation [29]. Wang and Gupta use triplet loss to encourage
the first and the last frame of the same video together in the
embedding space, while pushing away the negative sample
from another class [30]. Sermanet et al. [10] use metric
learning loss for getting a temporally coherent viewpoint
invariant embedding space with multi-view or single view
images and use nearest neighbours in the embedding space
for imitation learning. Dwibedi et al. extend the approach to
multiple frames in [31], and use a temporal cycle consistency
(TCC) loss by matching frames over time across videos
in [9]. Finn et al. present a deep action-conditioned visual
foresight model with model-predictive control for learning
from pixels directly [32], [33].

Siamese networks learn a similarity function across images
in an embedding space [34], [35], [36], [37], [38]. In this
paper, we encode the video observations based on spatio-
temporal alignment of action segments/options, in contrast
to using time only with self-supervised representations [10].
We use triplet loss to attract similar action segments in
an embedding space and repel samples from other action
segments in a semi-supervised manner. We only use a
small set of labeled video segments to semantically align the
embedding space and predict pseudo-labels for the remaining
unlabeled data by iteratively segmenting and learning the
embedding space with a hybrid DNN-RNN model.

Surgical Suturing: Surgical suturing automation has been
studied in several contexts such as needle path planning [39],
collaborative human-robot suturing [40], and learning from
demonstrations by trajectory transfer via non-rigid registra-
tion in simulation [41]. The suturing motions are decompos-
able into simpler sub-tasks or surgemes that can be inferred
from demonstrations [42], [43], [44]. In this work, we apply
the Motion2Vec approach to infer action segments/surgemes
and end-effector poses on the dual arm da Vinci robot
from publicly available suturing videos of the JIGSAWS
dataset [45]. Results suggest performance improvement in
segmentation over state-of-the-art baselines [14], [46], while
introducing pose imitation on this dataset with 0.94 cm error
in position per observation respectively.

III. MOTION2VEC LEARNING FROM VIDEOS

A. Problem Formulation

Consider {In,t}N,Tn

n=1,t=1 as a set of N video demonstra-
tions, where In,t ∈ R640×480×3 denotes the RGB image at
time t of n-th demonstration comprising of Tn datapoints.



Each demonstration describes a manipulation skill such as
pick-and-place or surgical suturing task, collected from a
third-person viewpoint that does not change in a demon-
stration but may change across demonstrations. We assume
access to a supervisor that assigns segment labels to small set
of the demonstrations as belonging to one of the segments
zm,t ∈ {1 . . . C} such as reach, grasp etc., resulting in
a set of labeled demonstrations {Im,t, zm,t}M,Tm

m=1,t=1 with
M � N . Without loss of generality, we drop the indices n
and m to denote an image frame as It for the rest of the
paper.

We seek to learn a deep motion-centric representation of
video observations fΘD : It → ξt with ξt ∈ Rd and d �
|It| such that similar action segments are grouped together
in the embedding space while being invariant to the nuisance
variables such as lighting, background and camera viewpoint.
The representation needs to semantically align the unlabeled
demonstrations with a small set of labeled demonstrations in
a semi-supervised manner. We predict pseudo-labels ẑt−l:t

for the unlabeled training mini-batch of length l with a
sequence learning model hΘS : ξt−l:t → ẑt−l:t and feed
them back to the embedding network to align the action
segments. After pre-training the embedding network, the
pseudo-labels and the deep embedding space are alternatively
updated for a given estimation of the sequencing model Θ̂S
and the deep embedding space Θ̂D in an iterative manner,
i.e.,

ξt = f(It;ΘD, Θ̂S) (1)

ẑt−l:t = h(ξt−l:t; Θ̂D,ΘS) (2)

The learned networks are subsequently used to train the
control policy in the embedding space πΘR

: ξt → ut where
ut ∈ Rp corresponds to the end-effector pose of the robot
arm to imitate the manipulation skill in the video demon-
strations. In this work, we assume access to the kinematic
poses of the end-effector in the video demonstrations, and
defer autonomous learning of the manipulation skill from
the embedded observations to the future work.

We follow a three-step alternating methodology to learn
the Motion2Vec representation (see Fig. 1): 1) learn the
deep embedding space to pull together similar segments
close while push away other far segments with a metric
learning loss, 2) train the sequence model parameters using
the labeled embedded observations, and 3) infer the most
likely segments for the video observations as pseudo-labels
for the unlabeled training data to refine the embedding space.

B. Deep Embedding Space

The deep embedding space reflects the task relevant at-
tributes of the objects in the videos and how they can be
mapped onto the robot end-effector. Sample and time com-
plexity of collecting/labelling videos at pixel level to reflect
such associations can be very high for training vision-based
deep models in robotics. The trajectory-centric invariant for-
mulations as in [15], [47], [48] may not readily generalize to
the video demonstrations. First, transforming the images with

respect to an arbitrary viewpoint is non-trivial as it requires
the full 3D reconstruction of the environment. Second, the
variance across images per pixel may not be indicative of
the representative features in the demonstrations.

In this work, we learn a deep embedding representation
using a metric learning loss which pulls together observations
from the same action segment in the embedding space, while
pushing away observations from other action segments that
functionally correspond to different sub-goals or movement
primitives. We use triplet loss for metric learning in this
work [34]. Note that the contrastive loss or the magnet loss
may also be used in a similar way [49]. During training,
the loss operates on the tuple corresponding to the anchor
image embedding ξt, a positive sample belonging to the
same action segment ξ+t and a negative sample randomly
chosen from another action segment ξ−t . The segment labels
for the unlabeled training data are predicted by inference on
the current estimate of the sequence model parameters (see
Sec. III-C). Triplet loss posits that the distance of the anchor
to the positive sample in the embedding space is less than
the distance to the negative sample by some constant margin
ζ, i.e.,

L(ΘD, Θ̂S) =
1

T

T∑
t=1

{
‖ξt − ξ+t ‖22−‖ξt − ξ

−
t ‖22 + ζ

}
+
,

(3)
where {.}+ is the hinge loss and the representation ξt is
normalized to extract scale-invariant features similar to [34].
We compare the triplet metric learning loss with other
embedding approaches including: 1) incremental principal
component analysis (iPCA) to project video observations
into an uncorrelated embedding space [50], 2) temporal
cycle consistency (TCC) to align the embedding space by
matching frames over time across video demonstrations [9],
3) time-contrastive network (svTCN) with single view
using a window of 6 neighbouring frames in the sequence to
find the positive sample for each anchor image and negative
sample from a window of 12 neighbouring frames [10],
4) N-pairs metric that takes pairs of images from same
segment labels where a pair is used as an anchor and a
positive image respectively, while each pair in the mini-
batch may have different labels. The n-pairs loss repels a
positive sample from all negative samples in comparison to
the nearest negative sample in triplet loss [51]. Note that
iPCA, TCC and svTCN are used in an unsupervised way,
whereas we use triplet loss and n-pairs loss in a (semi-
)supervised manner.

C. Sequence Learning and Inference of Action Segments

We capture the spatio-temporal dependencies in the em-
bedded observations to predict action segments with a se-
quence learning model. We use a recurrent neural network
(RNN) to discriminatively model the action assignment to
the observation sequence P (ẑt−l:t | ξt−l:t) using a stride of
length l in a mini-batch. A RNN maintains an additional
hidden state and uses the previous hidden state and the
current input ξt to produce a new hidden state and the



output ẑt. The hidden state preserves the effect of previous
observations in predicting the current output. We use the bi-
directional Long Short-Term Memory (LSTMs) [52] in this
work that can also preserve the effect of future observations
within a sequence. We minimize the cross-entropy loss
between the true and the predicted labels during training
with backpropogration through time [53]. We infer the most
likely sequence of action segment labels on the unlabeled
training data after pre-training the network and only keep
the top-k pseudo-labeled examples for each action segment.
The psuedo-labels have the same effect as that of entropy
regularization that pushes the decision boundaries to be in
well-separated low density regions [54].

We compare RNNs with k-nearest neighbours (KNN)
classification accuracy in the embedding space, along with
other sequence learning models, namely: 1) Conditional
Random Fields (CRFs) that encode the conditional prob-
ability distribution of the output labels sequence given the
input observation sequence in a discriminative manner [13],
[55], [56], 2) Hidden Markov Models (HMMs) that aug-
ment the deep embedding space with latent states that se-
quentially evolve over time in the embeddings [4], 3) Hidden
Semi-Markov Models (HSMMs) that relax the Markovian
structure of state transitions in a HMM by relying not
only upon the current state but also on the duration/elapsed
time in the current state, i.e., the underlying process is
defined by a semi-Markov chain with a variable duration
time for each state [12], [57]. Note that CRFs and RNNs
are discriminative models trained in a supervised manner,
while HMM and HSMMs are generative models used in
an unsupervised way (see supplementary materials for more
details of the compared approaches along with temporal
convolution networks [11]).

The sequence labels ẑ1:T on unlabeled data are estimated
for a given set of embedding and sequence model parameters,
and further used to update the parameters of the deep
embedding space. Step III-B and Step III-C are repeated until
convergence.

D. Imitating End-Effector Poses

Given the learned model parameters of the embedding
network, we map the embedded observation ξt to the end-
effector pose ut of the robot arm by behaviour cloning with a
feedforward neural network πΘR

. The feedforward network
is defined on top of a pretrained embedding network whose
parameters are frozen during the learning process. The pose
imitation loss is a weighted combination of the position
loss measured in terms of the mean-squared error between
the ground-truth and the predicted end-effector position,
and the orientation loss measured in terms of the cosine
distance between the ground-truth and the predicted end-
effector orientation in quaternion space.

IV. EXPERIMENTS, RESULTS AND DISCUSSIONS

We evaluate Motion2Vec representation for imitating sur-
gical suturing motions on the dual arm da Vinci robot from
the publicly available JIGSAWS dataset [45]. Note that we

do not model contact dynamics with the needle and the
suturing phantom, and only imitate the suturing motions
on the kinematic level. We empirically investigate: 1) what
metric/sequence learning representations generalize better in
terms of the segmentation accuracy, 2) the effect of relative
proportion of labeled examples in semi-supervised learning,
and 3) the usefulness of the learned embeddings in imitating
the end-effector poses on the da Vinci arms.

A. JIGSAWS Dataset

JIGSAWS dataset contains video demonstrations of three
surgical tasks, namely suturing, needle-passing and knot-
tying. We only present results for imitating surgical su-
turing motions in this work. The suturing dataset con-
sists of 8 surgeons with varying skill levels performing
the suturing demonstrations 5 times each on the dual arm
da Vinci robot. Each demonstration consists of a pair of
videos from the stereo cameras, kinematic data of the end-
effector of the robot arms, and the action segment label
for each video frame among a distinct set of 11 suturing
sub-tasks as annotated by the experts. The discrete labels
correspond to no activity stage [IDLE], reach needle with
right hand [REACH-N-R], position needle [POS-N], push
needle through tissue [PUSH-N-T], transfer needle from
left to right [TRANS-L-R], move to center [MOVE-C],
pulling suture with left hand [PULL-L], orienting needle
[ORIENT-N], tighten suture with right hand [TIGHT-R],
loosening suture [LOOSE-S], and dropping suture at the
end [DROP-S]. The viewpoint of the camera, lighting
and background is fixed in a demonstration, but changes
slightly across demonstrations. The suturing style, however,
is significantly different across each surgeon. We use a total
of 78 demonstrations from the suturing dataset downsam-
pled at 3 frames per second with an average duration of
3 minutes per video. 62 demonstrations with 4 randomly
chosen demonstrations from each surgeon are used for the
training set (1 demonstration from a surgeon is corrupted and
not used for training), while the remaining demonstration
from all surgeons are used as the test set for a total of 16
demonstrations.

B. Network Architecture(s)

The Siamese network takes as input a downsampled 3-
channel RGB 320×240 image. The network is augmented on
top of the Inception architecture, pre-trained on the ImageNet
dataset. We add two convolutional layers of depth 512 each
on top of ‘Mixed-5d’ layer followed by a spatial softmax
layer [58], a fully connected layer of 2048 neurons and an
embedding layer of 32 dimensions. We use the same Siamese
network architecture in all the experiments. This embedding
is trained on the triplet loss with a margin of ζ = 0.2. We use
a batch size of 128 and 64 for Siamese network and RNN
respectively. Note that 64 batch size at 3 fps corresponds to
online segmentation window of 21.3 seconds.

The embedding sequence is fed to a 1-layer bi-directional
LSTM of 256 hidden neurons. The CRFs network uses
32 potential functions. The HMM/HSMMs are trained in



TABLE I: Segmentation accuracy performance comparison on the eval-
uation set averaged over 4 iterations. Rows correspond to a different
embedding space approach, columns correspond to a different segmentation
method. KNN results are on training with a Siamese network only. CRF,
RNN, N-pairs and Triplet models are trained in a supervised manner, while
KNN, HMM, HSMM, PCA, TCC and svTCN are unsupervised. Motion2Vec
(M2V) uses triplet loss with RNN, while M2V-T combines the triplet and
svTCN loss for temporal alignment.

KNN HMM HSMM CRF RNN
iPCA 0.586 0.395 0.392 0.415 0.721
TCC 0.667 0.662 0.642 0.601 0.727

svTCN 0.792 0.676 0.661 0.723 0.812

Images 0.748 0.716 0.712 0.811 0.835
N-Pairs 0.835 0.799 0.794 0.824 0.854

M2V 0.829 0.831 0.812 0.838 0.855
M2V-T 0.844 0.828 0.822 0.801 0.843

MOVE_CREACH_N_R ORIENT_N POS_N PUSH_N_T PULL_L TRANS_L_R DROP_S

Ground Truth:
KNN:

HMM:
HSMM:

CRF:
M2V(RNN):

Fig. 2: (top) Qualitative performance comparison of different segmentation
policies on top of Motion2Vec with the ground-truth sequence for surgical
suturing. Test set image sequence for the first suture is shown on (top),
while the imitation sequence on da Vinci robot arms is shown on (bottom).
KNN, HMM, HSMM are unsupervised, while CRF and RNN are supervised
approaches. In comparison to KNN, RNN gives temporally consistent
segments by using the sequential information in the embedded vectors.

an iterative manner with K = 30 hidden states and a
multivariate Gaussian in the observation distribution by
pooling all the data from the embedding layer after every
1000 iterations. The number of hidden states are empirically
chosen between 1− 50 components to get best classification
accuracy on the training set. The feedforward network for
pose imitation consists of 6 hidden units with 512, 256, 128,
64, 32 and 16 neurons. The output network corresponds
to 3-dimensional Cartesion position of the end-effector, 4-
dimensional quaternion orientation of the end-effector, and
a jaw angle for each of the two arms.

C. Role of Supervision in Metric & Sequence Learning

Table I summarizes the performance comparison of Mo-
tion2Vec with different combinations of supervised and un-
supervised approaches to metric and sequence learning. We
use segmentation accuracy on the test set as the performance
metric defined by the percentage of correct segment predic-
tions in comparison to the ground-truth segments annotated
by human experts. We observe that svTCN performs better
among the unsupervised metric learning approaches without
using any of the action segment labels. The unsupervised
metric learning approaches perform well with RNN, but

Fig. 3: Normalized confusion matrix of Motion2Vec with RNN on suturing
test set, suggesting similar action segments are grouped together in the
embedding space.

other sequence models including HMMs/HSMMs and CRFs
find it difficult to encode the action segments. On the other
hand, Motion2Vec representation with triplet loss performs
well with both the supervised and the unsupervised sequence
learning approaches by better grouping the action segments
with the use of labeled demonstrations. Triplet loss with
RNN gives better performance among all the compared
approaches. Moreover, M2V-T, a variant of Motion2Vec with
a combination of labeled triplet and svTCN loss, better aligns
the images temporally with nearest neighbour imitation ac-
curacy of 84.4% in the embedding space.

Fig. 2 gives a qualitative performance analysis of different
sequence learning approaches on a suturing demonstration
from the test set. The sequence learning models are able
to predict temporally robust action segments on Motion2Vec
trained embeddings. Although the video frames in the test set
are not observed, Motion2Vec is able to associate them with
complex segments such as needle insertion and extraction,
while being invariant across camera viewpoint, background
and skill level of the surgeons in the observations.

Fig. 3 shows the confusion matrix instance of Motion2Vec
with an overall evaluation segmentation accuracy of 86.07%
respectively. We observe that the similar neighbouring seg-
ments in the test set tend to be more often confused sug-
gesting that the related activities are closely grouped in the
embedding space.

D. Effect of Labeled Examples in Semi-Supervised Learning

We empirically investigate the effect of unlabeled training
data and the relative sample size of labeled training data
in Fig. 4. As the percentage of labeled demonstrations
increases in the training set from 1 labeled demonstration
to all 62 labeled demonstrations, the segmentation accuracy
of RNN with unsupervised svTCN and supervised triplet
loss increases. The segmentation accuracy of HMM grows
steadily with supervised triplet loss, but not with svTCN due
to lack of grouped action segments. Note that for HMM, the
hidden states are assigned to one of the segment labels in



Fig. 4: Effect of percentage of labeled demonstrations on the segmen-
tation accuracy: Motion2Vec performs better than competing unsupervised
approaches using 25% or more labeled demonstrations. Results are averaged
over 5 iterations.

a greedy manner during training, and the same component
to segment label map is used after Viterbi decoding on the
unlabeled training demonstrations to evaluate the segmen-
tation accuracy. Semi-supervised learning with Motion2Vec
(triplet-rnn-ss) using 25% or more labeled demonstrations
gives better segmentation accuracy over other competing
approaches. The results suggest that the time-driven self-
supervised embedding approaches can leverage upon a small
set of labeled examples to group the action segments and
semantically align the embedding space.

E. Kinematic Imitation on da Vinci Robot

We investigate two scenarios with Motion2Vec embed-
dings: 1) a single pose imitation model for all surgeons,
2) a separate pose imitation model for each surgeon. Re-
sults of pose imitation from Motion2Vec in comparison to
decoding from raw videos are summarized in Table II. We
get comparable performance on the test set for all surgeons
with raw videos and Motion2Vec embeddings, while the
per surgeon pose decoding model with Motion2Vec gives
better performance with position error of 0.94 centimeter
per observation on the test set. We further test the robustness
of the embeddings by adding a Gaussian noise of variance
0.15 on top of preprocessed images and observe that Mo-
tion2Vec robustly preserves the spatio-temporal alignment
of the videos. Fig. 5 shows the mean of decoded positions
(with and without noise) from the embedded observations in
comparison to the ground-truth and the raw videos decoded
positions. We encourage the readers to see supplementary
materials for imitation in simulation and real on da Vinci
robot arms.

V. CONCLUSIONS AND FUTURE WORK

Learning from video demonstrations is a promising ap-
proach to teach manipulation skills to robots. We present
Motion2Vec representation learning algorithm that groups
similar action segments in a deep embedding feature space
in a semi-supervised manner, improving upon the inter-
pretability and the segmentation performance over several
state-of-the-art methods. We demonstrate its use on the dual
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Fig. 5: Pose imitation on da Vinci robot arms from the Motion2Vec
embedded video sequences using a feedforward neural network for left
arm on (top) and right arm on (bottom) in comparison to ground-truth and
image decoded poses. Results suggest 0.94 centimeter error in position per
observation on the evaluation set. Ground-truth in blue, raw videos in green,
predicted in red.

TABLE II: Pose imitation error in terms of median cosine quaternion loss
and root mean squared error (RMSE) in Cartesian 3-dimensional position
space in centimeters on the test set. Rows indicate pose imitation of: all
surgeons from raw videos (images-all); all surgeons on Motion2Vec (M2V-
all); per surgeon pose decoding on M2V (M2V-per). Motion2Vec robustly
preserves the spatio-temporal alignment in the observations.

Noise Median Cosine RMSE
Quat Loss Position

Images - All − 63.87 1.04
0.15 89.97 1.50

M2V - All − 61.49 1.15
0.15 59.89 1.34

M2V - Per − 36.49 0.94
0.15 37.21 1.12

arm da Vinci robot arm to imitate surgical suturing poses
from video demonstrations. In future work, we plan to learn
closed loop policies on the real robot from the embedded
video representations. We are also interested in providing
useful feedback for training and assistance in remote surgical
procedures [59], [60].

A number of directions have evolved from this work.
First, there is an inherent coupling between the two arms
in sub-tasks such as needle hand-off suggesting the need
of bimanual coordination in the planning stage. Second, the
learned disentangled representations may not generalize if
there is a large difference between the videos and the real
robot environment. A more feasible approach can be to
learn domain invariant feature representations such as with
adversarial learning [61]. Finally, the inherent cyclic nature
of suturing task calls for learning compositional structure of
the action segments.
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