
Dex-Net AR: Distributed Deep Grasp Planning
Using an Augmented Reality Application and a Smartphone Camera

Harry Zhang, Jeffrey Ichnowski, Yahav Avigal, Joseph Gonzales, Ion Stoica, and Ken Goldberg1

Abstract— Recent consumer demand for augmented reality
in mobile phone applications has accelerated performance of
structure from motion methods that build a point cloud from
a sequence of RGB images taken by the camera on a mobile
phone as it is moved around an object. Smartphone apps, such
as the Apple ARKit, have potential to expand access to deep
grasp planning systems such as Dex-Net. However, the resulting
point clouds are often noisy due to estimation errors. We present
a distributed pipeline, Dex-Net AR, that allows point clouds to
be sent to our lab, cleaned, and evaluated by Dex-Net grasp
planner to generate a grasp axis that is returned and displayed
as an overlay on the original object. We implement Dex-Net
AR using the iPhone and ARKit to generate point clouds and
compare results with those generated with high-performance
depth sensors.

I. INTRODUCTION

Grasping real-world objects using a robot gripper is
complicated due to the limitations of sensing modalities.
In highly controlled environments, such as industrial ware-
houses, sensing modalities such as depth sensors can be
calibrated to their environment. However, in everyday life,
such controlled circumstances are unlikely. To address this
problem, we propose using structure from motion (SfM) to
generate point clouds that can be used to generate grasps.
To use and generate the data for SfM, one needs to move
an RGB camera (such as one found on most smartphones)
through 3D space to create a representative image set. Then,
SfM extracts points from the images, reflecting the location
of objects located in a 3D space. As the camera moves
through space, the density of the point cloud increases, better
detecting and defining the object’s surfaces for grasping.

In this paper, we propose a system called Dex-Net AR that
collects images, generates and cleans a point cloud, feeds it
to a deep learning system, and generates high-quality grasp
points for a robot such as Dex-Net 2.0 [1]. In our testing,
we used an iPhone and ARKit [2], a popular consumer
smartphone and a free software developer kit from Apple
Inc., to generate a point cloud from which Dex-Net AR
can compute grasp points and a mobile manipulator robotic
grasp. Dex-Net AR can generate grasps with accuracy similar
to state-of-the-art systems that rely on expensive, industry-
grade depth sensors. Compared to depth camera systems that
capture images from a fixed view, usually top-down, Dex-
Net AR allows the user to move the smartphone camera all
around the object, collecting three-dimensional point cloud

1The authors are with the University of California at
Berkeley, Berkeley, CA, USA 94720 {harryhzhang, jeffi,
yahav avigal, jegonzal, istoica, goldberg}
@berkeley.edu

(a) Object (b) Noisy point cloud

(c) Cleaned point cloud (d) Planned grasp

(e) AR grasp overlay (f) ABB YuMi physical grasp

Fig. 1. Distributed deep grasp planning applied on a 3D printed object.
Top row: Original object, and the visualization of raw point cloud data
which exhibit a large amount of noise, collected by iPhone ARKit. Middle
row: point cloud data after removing ground plane using RANSAC and a
kNN-based cleaning process, and the planned grasp simulated by GQ-CNN.
Bottom row: Augmented reality grasp overlay and real grasp by an ABB
YuMi robot.

data. Such data are able to reflect more geometric details and
features from other facets of the objects that are less likely
to be captured by any depth camera from a top-down view,
which can potentially reveal better grasp points in areas that
are usually occluded or poorly inferred from a single fixed
view.

This paper contributes:

1) A pipeline to record point cloud data of objects using
commodity smartphones, clean up the collected data
using an outlier removal algorithm based on Random
Sample Consensus (RANSAC) and k-Nearest Neigh-
bors (kNN) to clean up the point cloud data, and feed
the point cloud data to a deep learning grasp planning

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1559 submitted to 2020 International Conference on
Robotics and Automation (ICRA). Received September 15, 2019.

tool, GQ-CNN, to plan grasps on the objects.
2) A method to show multiple facets of the objects to the

robot in order to generate grasps with higher qualities.
3) Experiments measuring the advantage of 3D point

clouds as input over traditional depth maps, that point
clouds reveal more geometric information of the ob-
jects.

II. RELATED WORK

a) Augmented Reality: Augmented reality (AR) is an
interactive experience of a real-world environment where
the objects in the real-world can be enhanced by perceptual
information generated by a computer. It was first introduced
by USAF Armstrong Labs [3] in order to create a virtual
augmentation of a real environment to improve human
performance in physical tasks. Recently, researchers have
combined AR with computer vision techniques to recognize
and classify objects in a real-world environment [4], [5], [6].

b) Structure from Motion: In 3D reconstruction, Struc-
ture from Motion (SfM) is used when 3D point positions are
not known in advance [7]. SfM simultaneously recovers the
3D structure and pose of the camera from image correspon-
dences given multiple frames of RGB images. In this way,
SfM estimates the 3D locations of points on the object’s
notable geometric features from continuous frames. One
limitation of SfM is that the objects being reconstructed must
have notable geometric features such as contours, edges,
and vertices. Thus, the objects need to be non-reflective and
chromatic for the feature points to be detected and recorded.

c) Point Cloud Cleaning: To clean the SfM-generated
3D point cloud, we use a k-Nearest Neighbors (kNN) based
approach which removes remote and isolated outliers. Ning
et al. [8] developed a method to locally fit a plane using kNN
and then project the near-surface, non-isolated outliers to the
plane, further making the surface smoother and cleaner. In
addition, Rakotosaona et al. [9] suggested a learning-based
approach to denoise dense point cloud data. We build on
this line of research by cleaning point cloud recorded by a
smartphone to generate better quality grasps.

d) Grasp Planning: Grasp planning considers the prob-
lem of finding a gripper configuration that maximizes the Q
value of grasp. There are several different approaches. An-
alytic approaches typically assume knowledge of the object
and gripper state and consider the capability of constraining
the object’s motion [10] under perturbations and noises.
Examples include GraspIt! [11], OpenGRASP [12], and the
Dexterity Network (Dex-Net) 2.0 [1]. In order to fully satisfy
the assumption of known state, analytic methods use a
registration-based perception system: matching sensor data
to known 3D models available in the existing database [13],
[14], [15], [16], [17]. Empirical approaches [18] use learning-
based methods to develop models that map sensor readings
to success labels from humans or physical trials [19]. Both
classes of approaches often use depth images taken from
high-end depth cameras for both training and real data. In
contrast, we explore planning grasps from relatively low-
cost point cloud data taken from commodity devices, such

as iPhones.

III. PROBLEM DEFINITION

We wish to take a sequence of images of an object from
moving the camera of a commodity smartphone, and plan
a grasp on the object. Suppose we move a camera around
an object to scan it, during the recording process, which we
define as a session, n frames are recorded. In each frame i,
the camera captures an RGB image fi, where fi ∈ RW×H×3.
W and H are the width and height of fi, and they vary
depending on the camera we are using. Therefore, the input
F is a sequence of captured RGB images:

F = {f1, f2, ..., fn}

In each frame, SfM can detect notable geometric features
of the object in the RGB image, and record the features as
points, where each point is a 3D vector in R3, representing
the (x, y, z) coordinates in the camera’s local coordinates
system. Multiple features detected in a frame can then be
recorded as a point cloud of this frame. Thus, from F , we
use SfM to generate point cloud data:

Craw = c1 ∪ c2 ∪ ... ∪ cn
where ci is the set of points extracted from image fi. In
each frame, we also record the frame number, a camera
transformation matrix, and the points’ unique identifiers.
However, for SfM to generate point clouds with higher
qualities, the scanned objects should not be monochromatic,
reflective, or small. Thus, the objects that perform better in a
session are those with a decent amount of texture variation.
Points extracted by SfM also contain a large amount of noisy
points, so Craw, as an aggregation of all point clouds that are
recorded, contains both point cloud of the object of interest
and points from noise. Let Q ⊂ R3 be the actual points of
the objects’ surfaces captured in F , and let X ⊂ R3 \Q be
the noise points that are captured. We want to clean Craw by
removing X from it to obtain a point cloud with less noise:

Cclean = f(Craw)

where f is our cleaning method applied to the aggregation
of all point clouds from different frames.

With a cleaner aggregated point cloud of the object, we
transform the data to a depth map D:

D = g (Cclean, dplane,nplane, Int, T)

where dplane and nplane are the depth and the normal vector,
respectively, of the ground plane or desktop on which the
object is placed, and Int is the known camera intrinsics
matrix of a depth camera, and T ∈ R4×4 is the camera
pose transformation matrix.

To plan a grasp, we feed D into a convolutional neural
network architecture N called GQ-CNN [1], [20], [21]:

Q = N (D)

where the output value Q ∈ [0, 1] represents the quality of
the grasp planned. The objective is to generate a robust grasp
while maintaining a relatively high Q value, which largely
relies on high-quality point cloud data.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1559 submitted to 2020 International Conference on
Robotics and Automation (ICRA). Received September 15, 2019.

Record RGB
images F

Extract noisy
point cloud Craw

Clean up the
noisy point
cloud and

obtain Cclean

Transform into
depth map D

Feed into
GQ-CNN and

return the grasp
quality value Q

Fig. 2. Pipeline of Dex-Net AR

IV. METHOD

Our distributed system is divided into five steps. Fig 2
shows the pipeline of our method.

A. Point Cloud Data Recording

The purpose of the first and second steps of Fig 2 is to
record the point cloud data of the object of interest. The input
data F is a set of RGB images. SfM extracts the point cloud
data, and points’ unique identifiers from the RGB images.
The aggregated point cloud generated from F contains large
amounts of noise from the ground plane that the object is
placed on. As a result, after extracting Craw from F , we have
an extremely noisy and dense point cloud that contains large
amounts of noise (X) such as from the ground plane which
is not usable for the experiments because in this case grasp
planning tool is likely to grasp the noise.

B. Point Cloud Data Cleaning

We observed a noise problem that we refer to as “drifting”.
During a session, the same geometric feature of an object
is likely to be recorded multiple times across different
frames, resulting in multiple points of the same geometric
feature. Such points share the same unique identifier, but
have different (x, y, z) coordinates. The points that share
the same unique identifier tend to fit a straight line, hence
the notion of a drift. However, different lines don’t share
the same direction, so the drift effect does not appear to be
uniform across the point cloud.

Fig. 3. Drifted points in a point cloud. Points that are extracted by the
ARKit from the same feature and are from different frames are colored by
the same color. A magnified window at the upper left corner exhibits the
drift and shows that the drifting points roughly lie on the same line.

To clean up Craw we average out points with same unique
identifiers as the first cleaning technique. Suppose we record
geometric feature k of the object and m drifts occur in total.

We have m points with the same identifier, but different
(x, y, z) coordinates. Each point p of geometric feature k
has its coordinates (px, py, pz), and the set of all points for
geometric feature k is Pk, so m = |Pk|. We update feature
k’s points as follows:

p′ =
1

m

∑
p∈Pk

p

As illustrated in Fig 3, when a point drifts, it roughly creates
a straight line, and in most cases, the actual geometric feature
point of the object lies right in the middle of the line.
Thus, we are able to recover the actual geometric feature
points by taking an average over drifted points. We iterate
through every point of geometric feature based on its unique
identifier. After this step, each geometric feature only has
one point. While we have reduced the drifting problem, we
now have a sparser point cloud, which we denote as U .
Our assumption, that the drifting problem originates from a
linear transformation (rotation and translation), is reinforced
by different point cloud registration methods we have tried
(iterative closest point and bundle adjustment [7]). However,
the results are similar to the averaging method while these
methods are much more time-consuming.

Having reduced the drifts, we proceed to further clean up
and denoise the new point cloud. First, we need to eliminate
the dense ground plane that camera captures during a session.
The points on the ground plane are a major source of noise
in the point cloud. They are as dense as the feature points
from the object, so it is essential to get rid of the noise points
from the plane. We fit and remove the plane using RANSAC.
After running RANSAC [22], [23] on U , we obtain two
output values dplane,nplane, where dplane is the threshold
value in locally fit z-direction, representing the approximate
z-coordinate of the plane that we are trying to get rid of, and
nplane ∈ R3 is the approximate normal vector of the plane
calculated by RANSAC. Using dplane and nplane, we can
cut off the points on the ground plane by rejecting any point
p with:

pz 6 dplane

(
nplane · k̂

)
The above criterion separates the object from the plane in
the point cloud U . We call the separated object point cloud
without plane Uobj .

After rejecting the points from the ground plane noise
in the point cloud, outliers still exist, and they are either
near-surface or isolated. Such outliers are easier to remove
because they are usually sparser than regular data points.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1559 submitted to 2020 International Conference on
Robotics and Automation (ICRA). Received September 15, 2019.

Algorithm 1 kNN-Based Outliers Removal
Require: Uobj , k, and ε

1: for p ∈ Uobj do
2: knn = k-Nearest Neighbors of p
3: dist = 0
4: for nn ∈ knn do
5: dist ← dist + ‖p− nn‖
6: dist ← dist / k
7: if dist > ε then
8: Uobj ← Uobj \ {p}
9: return updated Uobj as Cclean

We propose an algorithm based on k-Nearest Neighbor
(kNN) to rid the point cloud of the sparse outliers by iterating
through every point p in Uobj .

In Algorithm 1, for each point p, we calculate its kNN,
and we reject the selected point if the average distance from
it to its kNN is above a threshold value ε, meaning that
the point is potentially a sparse outlier. Here, k and ε are
hyperparameters.

The updated Uobj point cloud contains substantially less
noise from the ground and isolated outliers. As a result, we
obtain a better-quality point cloud data, and we can convert
the updated Uobj into a depth map that is compatible with
GQ-CNN. We denote the updated Uobj as Cclean.

C. Transformation to a Depth Map

We want to transform the point clouds to depth maps
because most grasp planning tools are based on the depth
images captured by a depth camera. To generate a depth
map, we first create an artificial depth camera, and we fix
the camera at depth 0. Then to create an artificial “bin” to
emulate regular robot grasping and bin-picking tasks, we use
the output from RANSAC. First, since dplane

(
nplane · k̂

)
represents the approximate z-coordinate of the ground plane
in camera’s local coordinates, we use this value as the depth
of the bin or the desk in grasping scenarios, which should
be the farthest from the camera.

One of the potential advantages of point clouds over
traditional depth images is that a point cloud contains richer
geometric information about the object: depth images only
contain top-down views. Since we artificially create a depth
camera, we can manipulate the camera pose in order to view
the object from different angles, thus revealing more geome-
try of the objects which is potentially useful to generate more
robust grasps. We use a camera pose matrix T to adjust the
view orientations of the object, which can potentially reveal
more information about grasp locations on other facets of
the object.

One caveat about changing view orientation is that the
system is not aware of the ground after we change view an-
gle. Under this circumstance, the robotic arm might interfere
with the plane when it is trying to grasp from the side. Even
though such grasps have high Q values, interfering with the
ground plane makes such grasps not applicable. To address

this, we introduce a constraint function c, where c takes in
a grasp, analyzes its pose, and outputs a boolean value. If
the parallel jaws try to grasp some point beyond the plane
limit, we reject the grasp, and c outputs False. Since GQ-
CNN samples all possible grasps and outputs the grasp with
the highest Q, we will return the grasp G with the highest
Q such that it does not interfere with the ground plane and
c(G) returns True.

After setting the camera pose and defining the grasp
constraint function, we obtain a depth map converted from
the point cloud. Note that this depth map may have some
holes in it because of the sparsity of the point cloud data. The
resulting depth map is likely to be porous, where each hole is
a group of zero-valued pixels. So one last step we do before
feeding the image into GQ-CNN is to inpaint [24] the image.
This step fills in the zero-valued pixels in the holes based on
the values of surrounding pixels using OpenCV [25]. Having
reduced the number of holes, we can then feed the image into
GQ-CNN to plan a grasp.

D. Feeding into GQ-CNN

In this step, the pre-trained network GQ-CNN takes in a
depth image and generates 100 potential grasps, where each
potential grasp should satisfy the constraint function c. The
output grasp will be the grasp with the highest Q value. We
visualize the grasp with the overlaid grasp vector onto the
depth map and record the Q value of the grasp.

V. RESULTS

A. Simulation

To record the point cloud, we use an iPhone X with
ARKit. ARKit uses SFM to extract feature points from
an RGB image sequence [2]. As shown in Fig 1 and 3,
the points collected by ARKit is extremely noisy. We use
the default setting of the iPhone’s camera, which is 60fps.
In the simulation, we use parallel-jaw grippers with jaw
widths of 5 and 10 centimeters. Therefore, the objects are
chosen according to that size limit for the grippers to grasp
successfully. We use ε = 0.005 and k = 10, and this
combination of hyperparameters gives us the best point cloud
cleaning result. To add an artificial depth camera, we use
the intrinsics of a Photoneo PhoXi camera, which is the
camera that was used in GQ-CNN’s training process, and the
intrinsics are: fx = 1122.0, fy = 1122.0, cx = 511.5, cy =
384.0.

To test the proposed pipeline, we run the method on
nine different objects. Other than the size limit, the objects
should have relatively complex physical shapes in order to
reflect discrepancy in geometry when viewed from different
orientations. Object 9 in Fig 4 is actually a failure case. Such
an object demonstrates the drawback of SfM, which is that
it does not recognize features on reflective, monochromatic,
or small objects.

In the trials, for each object, we record 5 point clouds of
the object separately. For each point cloud, we plan 9 grasps
based on 9 different view orientations of the camera: one
grasp from traditional top-down view, four grasps from 45

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1559 submitted to 2020 International Conference on
Robotics and Automation (ICRA). Received September 15, 2019.

Obj 1 Obj 2 Obj 3 Obj 4 Obj 5 Obj 6 Obj 7 Obj 8 Obj 9

Q = 0.996 Q = 0.999 Q = 1.000 Q = 1.000 Q = 0.981 Q = 0.785 Q = 0.980 Q = 0.876 Q = N/A

Fig. 4. Results with nine objects and their Q values. Top Row: photos. Middle Row: the cleaned and denoised point clouds. Bottom Row: planned
grasps on the transformed depth images. Note that Obj 9 is a failure case due to the reflective and monochromatic feature of the object.

(a) Without constraint (b) With constraint (c) Physical grasp

Fig. 5. The usage of constraint functions prevents GQ-CNN from grasping
ground noise. When the ground noise exists, we set the constraint function
such that the gripper will not grasp any point near the ground surface

degrees camera poses, with each pose 90 degrees apart, and
four grasps from 90 degrees camera poses, with each pose
90 degrees apart. In total, we end up having a dataset with
360 different grasps. From this dataset, we choose the best
grasp of each object based on point cloud data quality, Q
value, and grasp location. In the cases where a top-down view
depth image cannot reveal enough geometric information, the
generated grasps on those objects are not physically robust.
Generally, when one view limits geometric information from
view, the planned grasp is possibly bad, despite being the
best grasp from that view. Therefore, viewing it from other
directions such as 90 degrees or 45 degrees is likely to reveal
more geometry of the objects, thus generating grasps with
higher robustness.

In Fig 4, the grasps planned on Obj 2, Obj 3, and Obj 7
are not based on top-down view depth maps. In contrast, Obj
2’s grasp is based on 45 degrees view orientation, and Obj
3 and 7’s grasps are based on 90 degrees view orientation.
The result grasps have better qualities than traditional grasps
based on top-down view depth maps and are inaccessible
from top-down views.

Good point cloud quality is an essential element to satis-
factory grasps. When the cleaning process is not sufficiently
aggressive, some noise on the ground plane fails to be
removed. In such a case, GQ-CNN is likely to grasp noisy
points on the ground plane. We resolve this problem by
using the RANSAC procedure with higher threshold values

and decreasing ε in the kNN-based outliers removal method.
Meanwhile, we try to add in and fine-tune the constraint
function that we create in order to prevent the parallel jaws
from grasping any point on the ground plane surface or
interfering with the ground plane. In most cases, when the
parallel jaws do not collide with the ground plane, they
are less likely to grasp noises. Hence, making use of and
adjusting the constraint functions also alleviates the noise
problem if we are planning grasps on a point cloud with bad
quality. Fig. 5 shows a failure case when planning a grasp
on Obj 3 from a 90 degrees view orientation that without a
constraint function, GQ-CNN is planning to grasp the ground
noise when it persists after RANSAC, and with a constraint
function that keeps the gripper from grasping any point near
the ground surface, even though the noise remains the same,
the gripper now tries to grasp the object instead.

The pipeline takes approximately 3 minutes for an object
to plan a grasp from any angle. The majority of the time
is allocated to data collecting part of the pipeline. In order
to sufficiently collect the geometry of the object, we need
to carefully scan each facet three to four times, and we
also need to reduce the speed of movement in order to
keep the drifting minimal and stable. Therefore, the scanning
process takes 2 minutes, and we fix this amount of time to
all objects. Cleaning a recorded point cloud using RANSAC
and Algorithm 1 typically takes 30 seconds, and converting
the point cloud into a depth image and feeding the resulting
depth image to GQ-CNN to plan a grasp takes less than 10
seconds.

B. Physical Experiments

To test Dex-Net AR on a physical robot, we execute it
on an ABB YuMi robot. We reroute YuMi robot’s input
from depth images taken from a PhoXi depth camera to the
artificial depth map converted from the point clouds recorded
by an iPhone. For each object, we run the algorithm on 5
depth maps converted from 5 point clouds in top-down view
orientation. For each depth map, we grasp the corresponding
object twice. Therefore, we grasp each object 10 times in

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1559 submitted to 2020 International Conference on
Robotics and Automation (ICRA). Received September 15, 2019.

Objects
Obj 1 Obj 2 Obj 3 Obj 4 Obj 5 Obj 6 Obj 7 Obj 8 Obj 9 Total

Success Rate (%) 100 100 90 100 90 100 80 100 N/A 95
Processing Time (sec) 25 37 49 30 28 48 33 24 N/A 34.25

Fig. 6. Physical experiments result on 8 different objects, that were successfully recorded by SFM. Ten trials on each object.

total. To measure the performance, we use metrics in [1]:
1) Success Rate: as the percentage of grasps that we were

able to lift, transport, and hold a desired object without
collision when approaching the object.

2) Processing Time: as the amount of time spent to clean
up the point cloud using RANSAC and Algorithm 1.

Since we keep the scanning time for all objects identical
(2 minutes), the major difference of running time for the
objects comes from the cleaning process. As the geometric
complexity of the object increases, the number of points that
are recorded by SfM also increases correspondingly, so the
running time of running Algorithm 1 on the point cloud
also increases. For example, Obj 8 in Fig 4 has the simplest
geometry among all objects, so it requires the least cleaning
time as shown in Fig 6.

From Fig 6, the average success rate for all eight objects
(we have excluded Obj 9 whose point cloud failed to be
recorded) is 95%.

VI. CONCLUSION

We present Dex-Net AR: a pipeline to plan grasps from
data taken from commodity smartphones. With appropriate
post-processing and cleaning methods, the point clouds col-
lected by a smartphone can be used to plan robust grasps
from different view orientations using Dex-Net, and used as
input to pass into a physical robot to grasp the objects.

However, the time spent on data collection is exceedingly
high: one needs to spend at least 120 seconds to scan the
object in order to record sufficient data. Therefore, one
potential improvement is that we can try to bring down the
amount of time in video capturing using a learning-based
method to augment and complete the point cloud data given
that only limited data are available. Emerging smartphones
may also have depth cameras [26], so we are planning on
utilizing such smartphones to collect cleaner point clouds.

Furthermore, reconstructing the meshes from the point
clouds is also another option to generate better grasps.
Cleaner point clouds are also expected to be beneficial to
grasp planning, so we are working on some faster algorithms
to further clean the recorded point cloud.

ACKNOWLEDGEMENTS

This research was performed at the AUTOLAB at UC Berkeley in
affiliation with the Berkeley AI Research (BAIR) Lab, Berkeley Deep
Drive (BDD), the Real-Time Intelligent Secure Execution (RISE) Lab, and
the CITRIS ”People and Robots” (CPAR) Initiative. This research was
supported in part by: the Scalable Collaborative Human-Robot Learning
(SCHooL) Project, NSF National Robotics Initiative Award 1734633 and by
a Google Cloud Focused Research Award for the Mechanical Search Project
jointly to UC Berkeley’s AUTOLAB and the Stanford Vision Learning Lab.
The authors were supported in part by donations from Siemens, Google,
Toyota Research Institute, Autodesk, Honda, Intel, Hewlett-Packard and by

equipment grants from PhotoNeo, NVidia, and Intuitive Surgical. We thank
our colleagues who provided helpful feedback and suggestions, in particular
Priya Sundaresan, Jackson Chui, Michael Danielczuk, Kate Sanders, and
Ajay Tanwani.

REFERENCES

[1] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea,
and K. Goldberg, “Dex-net 2.0: Deep learning to plan robust grasps
with synthetic point clouds and analytic grasp metrics,” 2017.

[2] (2019) ARKit: Apple Developer Documentation. [On-
line]. Available: https://web.archive.org/web/20190912200131/
https://developer.apple.com/documentation/arkit

[3] L. B. Rosenberg, “The use of virtual fixtures as perceptual overlays
to enhance operator performance in remote environments.” Stanford
Univ Ca Center for Design Research, Tech. Rep., 1992.

[4] T. Lee and T. Hollerer, “Handy ar: Markerless inspection of augmented
reality objects using fingertip tracking,” in 2007 11th IEEE Interna-
tional Symposium on Wearable Computers. IEEE, 2007, pp. 83–90.

[5] M. Billinghurst, A. Clark, G. Lee et al., “A survey of augmented
reality,” Foundations and Trends R© in Human–Computer Interaction,
vol. 8, no. 2-3, pp. 73–272, 2015.

[6] T. Starner, S. Mann, B. Rhodes, J. Levine, J. Healey, D. Kirsch,
R. W. Picard, and A. Pentland, “Augmented reality through wearable
computing,” Presence: Teleoperators & Virtual Environments, vol. 6,
no. 4, pp. 386–398, 1997.

[7] R. Szeliski, Computer vision: algorithms and applications. Springer
Science & Business Media, 2010.

[8] X. Ning, F. Li, G. Tian, and Y. Wang, “An efficient outlier removal
method for scattered point cloud data,” PloS one, vol. 13, no. 8, p.
e0201280, 2018.

[9] M.-J. Rakotosaona, V. La Barbera, P. Guerrero, N. J. Mitra, and
M. Ovsjanikov, “Pointcleannet: Learning to denoise and remove out-
liers from dense point clouds,” in Computer Graphics Forum. Wiley
Online Library, 2019.

[10] A. Rodriguez, M. T. Mason, and S. Ferry, “From caging to grasping,”
The International Journal of Robotics Research, vol. 31, no. 7, pp.
886–900, 2012.

[11] C. Goldfeder, M. Ciocarlie, H. Dang, and P. K. Allen, “The columbia
grasp database,” in 2009 IEEE International Conference on Robotics
and Automation. IEEE, 2009, pp. 1710–1716.

[12] B. León, S. Ulbrich, R. Diankov, G. Puche, M. Przybylski, A. Morales,
T. Asfour, S. Moisio, J. Bohg, J. Kuffner et al., “Opengrasp: a
toolkit for robot grasping simulation,” in International Conference
on Simulation, Modeling, and Programming for Autonomous Robots.
Springer, 2010, pp. 109–120.

[13] P. Brook, M. Ciocarlie, and K. Hsiao, “Collaborative grasp planning
with multiple object representations,” in 2011 IEEE International
Conference on Robotics and Automation. IEEE, 2011, pp. 2851–
2858.

[14] M. Ciocarlie, K. Hsiao, E. G. Jones, S. Chitta, R. B. Rusu, and
I. A. Şucan, “Towards reliable grasping and manipulation in household
environments,” in Experimental Robotics. Springer, 2014, pp. 241–
252.

[15] C. Hernandez, M. Bharatheesha, W. Ko, H. Gaiser, J. Tan, K. van
Deurzen, M. de Vries, B. Van Mil, J. van Egmond, R. Burger et al.,
“Team delft’s robot winner of the amazon picking challenge 2016,” in
Robot World Cup. Springer, 2016, pp. 613–624.

[16] B. Kehoe, A. Matsukawa, S. Candido, J. Kuffner, and K. Gold-
berg, “Cloud-based robot grasping with the google object recognition
engine,” in 2013 IEEE International Conference on Robotics and
Automation. IEEE, 2013, pp. 4263–4270.

[17] S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige,
N. Navab, and V. Lepetit, “Multimodal templates for real-time de-
tection of texture-less objects in heavily cluttered scenes,” in 2011

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1559 submitted to 2020 International Conference on
Robotics and Automation (ICRA). Received September 15, 2019.

international conference on computer vision. IEEE, 2011, pp. 858–
865.

[18] J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven grasp
synthesis—a survey,” IEEE Transactions on Robotics, vol. 30, no. 2,
pp. 289–309, 2013.

[19] D. Wang, D. Tseng, P. Li, Y. Jiang, M. Guo, M. Danielczuk, J. Mahler,
J. Ichnowski, and K. Goldberg, “Adversarial grasp objects.”

[20] J. Mahler and K. Goldberg, “Learning deep policies for robot bin pick-
ing by simulating robust grasping sequences,” in Proceedings of the 1st
Annual Conference on Robot Learning, ser. Proceedings of Machine
Learning Research, S. Levine, V. Vanhoucke, and K. Goldberg, Eds.,
vol. 78. PMLR, 13–15 Nov 2017, pp. 515–524.

[21] V. Satish, J. Mahler, and K. Goldberg, “On-policy dataset synthesis
for learning robot grasping policies using fully convolutional deep
networks,” IEEE Robotics and Automation Letters, 2019.

[22] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[23] M. Y. Yang and W. Förstner, “Plane detection in point cloud data,” in
Proceedings of the 2nd int conf on machine control guidance, Bonn,
vol. 1, 2010, pp. 95–104.

[24] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image
inpainting,” in Proceedings of the 27th annual conference on Computer
graphics and interactive techniques. ACM Press/Addison-Wesley
Publishing Co., 2000, pp. 417–424.

[25] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[26] (2019) Samsung Galaxy S10. [Online]. Available:
https://www.samsung.com/us/mobile/galaxy-s10/camera/

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1559 submitted to 2020 International Conference on
Robotics and Automation (ICRA). Received September 15, 2019.

