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Abstract— Robot grasping of deformable hollow objects such
as plastic bottles and cups is challenging, as the grasp should
resist disturbances while minimally deforming the object so
as not to damage it or dislodge liquids. We propose minimal
work as a novel grasp quality metric that combines wrench
resistance and object deformation. We introduce an efficient
algorithm to compute the work required to resist an external
wrench for a manipulation task by solving a linear program.
The algorithm first computes the minimum required grasp force
and an estimation of the gripper jaw displacements based on
the object’s empirical stiffness at different locations. The work
done by the jaws is the product of the grasp force and the
displacements. Grasps requiring minimal work are considered
to be of high quality. We collect 460 physical grasps with a
UR5 robot and a Robotiq gripper. We consider a grasp to be
successful if it completes the task without damaging the object
or dislodging the content. Physical experiments suggest that the
minimal work quality metric reaches 74.2% balanced accuracy,
a metric that is the raw accuracy normalized by the number
of successful and failed real-world grasps, and is up to 24.2%
higher than classical wrench-based quality metrics.

I. INTRODUCTION

For rigid objects, wrench-based quality metrics [8, 16] are

widely used to optimize grasp placements and to estimate

grasp success [11, 25], since they quantify grasps and are

suitable for both general and task-oriented grasps. However,

grasping deformable objects is more challenging. In addi-

tion to resisting external disturbances, grasps should also

minimize the deformation of the object to avoid damage or

dislodging liquids, for instance, when grasping plastic cups

and bottles. Existing grasp planning for deformable objects

focuses on either holding planar deformable objects [9, 12,

26] or lifting 3D objects with a pre-selected grasp place-

ment [18, 34]. The former papers do not consider gravity, as

they operate in the plane, while the latter do not incorporate a

quality metric for comparison to other grasp placements and

cannot be applied to other tasks besides lifting the object.

We propose the minimal work quality metric, a novel

quality metric that considers both task-specific wrench re-

sistance and object deformation. Figure 1 shows an example

of planned grasps for a plastic cup with the proposed metric.

To compute the quality of a grasp, we decouple the wrench

analysis and object deformation computation so that the

grasp quality can be efficiently computed without using

Finite Element Method (FEM) simulation or repeatedly de-

termining wrench resistance. We first estimate the minimum

grasp force required to resist a specified external wrench

without considering deformation by assuming the object is
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Fig. 1: Plastic cup example. Left: stiffness of cup, blue

indicates high stiffness and red indicates low stiffness. Intu-

itively, the cup is stiffer near the rim and bottom, where the

shape provides reinforcement. Middle: three planned grasps,

shown as cylinders representing the grasp axis for a parallel-

jaw gripper, where green indicates high quality and red

indicates low quality according to the minimal work metric.

Right: execution of the highest quality grasp according to

the minimal work grasp metric with a Robotiq gripper.

rigid. We use the Robust Efficient Area Contact Hypothesis

(REACH) model [6] to estimate the contact area and the

pressure distribution and model the friction wrenches of

the non-planar area contacts with a 6D ellipsoidal limit

surface [33]. We formulate an optimization problem to solve

for the minimum grasp force subject to the contact friction

wrench constraints. The jaws’ displacements are approxi-

mated as the object’s deformation when using the computed

minimal grasp force. The product of these displacements and

the minimum grasp force is the minimal work necessary to

resist the external wrench.

This paper provides the following contributions:

1) A novel minimal work grasp quality metric for 3D

deformable hollow objects that considers both grasp

wrench resistance and object deformation.

2) An efficient algorithm to compute the minimal work

quality metric for a task-specific 6D external wrench

by solving a linear program.

3) Physical experiments that suggest predicting grasp

success with the minimal work quality metric leads

to 74.2% balanced accuracy, 24.2% and 12.7 % higher

than when predicting with the grasp wrench resistance

metric and the minimal force metric, respectively.

II. RELATED WORK

We summarize related work in wrench-based grasp quality

metrics for rigid objects and grasp planning for deformable

objects. Excellent surveys for contact modeling can be found



in [2, 13, 27, 31], for grasp quality metrics in [28], and for

deformable object manipulation in [29].

A. Grasping Rigid Objects

A common grasp quality metric, force closure [24], eval-

uates a grasp by whether it can resist any external 6D

disturbance wrench with an arbitrarily large grasp force. The

volume of the grasp wrench space (GWS) [16] and the ǫ-
metric [8] are also widely used to quantify grasp quality.

While the volume reflects the quality of the entire grasp,

the ǫ-metric identifies the weakest point of a grasp, as ǫ is

the shortest distance between the origin and any facet of

the GWS. The GWS used to evaluate grasps is typically

constructed with a bounded sum-magnitude of grasp forces

for computational efficiency. Krug et al. [14] suggest that

such a construction is over-conservative for fully actuated

grippers, as the force of each jaw is limited independently.

Task-oriented grasp quality metrics are well-suited for spe-

cific tasks with known external disturbances. A task wrench

space (TWS) describes expected disturbance wrenches dur-

ing the manipulation and is typically modeled as the set

of all possible wrenches that will be imposed on an object

during a task [3, 25], or a 6D ellipsoid [16]. The quality

of a grasp is the maximum scale of the TWS such that it

remains within the GWS [16]. In contrast, the grasp quality

can also be measured with the minimal force required for a

task [10] or minimal coefficient of friction [11]. Boyd and

Wegbreit [4] efficiently computed the minimal grasp force by

formulating a semidefinite programming problem. Lin and

Yu [19] observed that some disturbance wrenches happen

more often than others during task execution and selected

the grasp whose corresponding GWS covers most frequent

disturbances. They extend their analysis to select the grasp

which additionally minimizes the required motion effort of

the end effector to fulfill a certain task [20].

B. Grasping Deformable Objects

Manipulating deformable objects has been an active area,

with applications such as food handling [21], fabric manip-

ulation [15, 30], and elastic rod manipulation [5]. When

a frictionless grasp immobilizes a rigid object, it is de-

fined as form closure. Gopalakrishnan and Goldberg [9]

generalized this concept to holding deformable objects with

frictionless contacts, where a grasp is defined as deform

closure when positive work is required to release the object.

Wakamatsu et al. [32] introduced the bounded force closure

metric to grasp deformable objects, which guarantees a force

closure grasp under a maximal allowable external force.

Delgado et al. [7] reduced object deformation for a holding

task by computing the maximum allowed force to be exerted

on an object. Jia et al. [12] proposed a grasping strategy to

squeeze deformable planar objects based on work performed

by the jaws. When two jaws squeeze and immobilize an

object, and a third jaw tries to break the grasp by pushing the

object, the strategy selects the translations of the two pushing

jaws that minimize the required work to balance the object.

Since the metric targets planar objects, the 3D geometry or

the gravity is not considered and a point contact model is

used for friction analysis. Lin et al. [17, 18] addressed the

problem of lifting a deformable object based on an object

mesh model and jaw positions. An FEM formulation com-

putes the object deformation based on the jaw displacements.

The object will be lifted if the majority of the contact

points are sticking. Similarly, Zaidi et al. [34] used FEM

simulations to manipulate objects with large deformations,

such as objects made of foam or rubber. Alt et al. [1]

also used FEM simulations and heuristics to plan grasps for

deformable hollow objects.

Inspired by [9] and [12], the proposed minimal work

quality metric optimizes grasp placements to manipulate

3D deformable hollow objects. Furthermore, the metric is

suitable for tasks that can be modeled as target wrenches to

be resisted.

III. PROBLEM STATEMENT

We consider the problem of grasp planning and grasp

success prediction for 3D deformable hollow objects with

compliant jaw pads based on the ability of a grasp to resist

target wrenches and the deformability of the object at the

grasp location.

A. Assumptions

We make the following assumptions:

1) Quasi-static analysis and Coulomb friction with a

known coefficient of friction.

2) The geometry and the stiffness are known for the

objects to be grasped.

3) A linear elastic model (linear stiffness) of soft jaw pads

and objects.

4) Object’s local deformation is small such that the con-

tact profile remains unchanged during the grasp.

B. Notation

• w ∈ R
6: a contact wrench, consisting of a 3D force

and a 3D torque.

• Ci: the constraint set that limits the maximum possible

friction wrench and the wrench impressed by the normal

pressure of the i-th contact.

• W : the work performed by the gripper jaws

• t ∈ R
6: a target wrench to be resisted by a grasp

C. Metrics

We consider a grasp to be successful if it completes the

manipulation task without damaging the object or dislodging

contents and to be failed otherwise. The predicted grasp

success is binary and evaluates to 1 if the metric is higher

than a threshold. We use balanced accuracy to evaluate the

predictions made by a given metric by comparing them with

real-world grasp success labels. Balanced accuracy is suitable

for imbalanced datasets and is computed by weighting each

sample with the inverse prevalence of its true class when

finding accuracy.



IV. MINIMAL WORK GRASP QUALITY METRIC

To evaluate a grasp candidate, we compute the minimal

work of the gripper jaws required to complete a manipulation

task. We first model the frictional contacts and compute the

minimal grasp force by solving a linear program (LP). We

then estimate the object deformation based on the force and

object stiffness at the contact locations. The work of each

gripper jaw is the product of the grasp force and the jaw

displacement. The sum of the work of each jaw forms the

work of the grasp.

The proposed algorithm to compute the minimal work can

use different contact models and object stiffness acquisition

methods. We use the REACH model [6] to obtain the contact

profile and a 6D ellipsoidal limit surface [33] to model the

maximal friction wrench that can be applied at each contact.

The stiffness is collected empirically by grasping each object

at a set of locations with a physical robot. Details can be

found in Sections V and VI-A.

For a grasp with N contacts, we denote G ∈ R
6×6N as

the grasp matrix, wi ∈ R
6 as the wrench applied at the i-th

contact, and F = [F1, . . . , FN ]T as a vector of grasp forces,

where Fi is the grasp force at the i-th contact. The minimal

required grasp force to resist a target wrench t is:

min
F ,w1,...,wN

F • 1N

subject to G









w1

...

wN









= −t,

wi ∈ Ci, ∀i ∈ {1, . . . , N}.

(1)

Denoting di as the displacement of the i-th jaw and si
as the object stiffness at the i-th contact, the work W is

computed based on Hooke’s law:

W =

N
∑

i=1

Fi • di, with di =
Fi

si
+ ǫ, (2)

where ǫ is a small positive number, which allows the minimal

work quality metric to also apply to rigid objects or objects

containing a rigid part. In this case, the displacement di is

equal to ǫ and the minimal work grasp quality metric reduces

to the minimal force metric.

Denoting Wmax as the maximal work, we compute the

minimal work grasp quality qw with:

qw = 1−
W

Wmax

. (3)

Wmax is for normalization and is selected based on the

collected data.

V. ALGORITHM

To compute the minimal required grasp force, classical

wrench-based grasp analysis algorithms first model the pos-

sible friction and normal wrenches for each contact and

then estimate the total wrench that a grasp can exert on an

object [4]. This wrench estimation highly depends on the

contact profiles. We first describe the method used in this

work to estimate contact area and pressure distribution.

Fig. 2: Contact profile with an enlarged view obtained by

the Robust Efficient Area Contact Hypothesis (REACH)

model [6]. The contact area consists of triangles and the

redder colors represent higher pressure due to larger defor-

mation of the soft jaw pad at that point.

A. REACH: Contact Profile

Danielczuk et al. [6] proposed the Robust Efficient Area

Contact Hypothesis (REACH) model for contact profile

estimation between soft jaw pads and rigid objects. Given

an object’s geometry modeled as a triangular mesh, the

contact area is computed as the constructive solid geometry

intersection of the extruded polygon of the jaw with the

object. The intersection estimates the deformation of the

soft pad around the object at each point on the contact

and the pressure distribution linearly scales with the gripper

pad deformation. The REACH model thus provides the

contact area, consisting of a triangular mesh, and the pressure

distribution over each triangle of the contact area mesh, as

illustrated in Figure 2.

We use the REACH model to estimate the profile for

contact between compliant jaw pads and deformable hollow

objects due to its computational efficiency compared to the

Finite Element Method. We note that the obtained contact

profiles may not be accurate for objects with low stiffness

since the model assumes that the deformation is small such

that the contact profile remains constant during the grasp.

B. 6D Ellipsoidal Limit Surface

Grasps with compliant jaws may result in a non-planar

contact area, where the friction wrench applied at the contact

is six-dimensional (6D). This work uses the 6D ellipsoid

proposed in [33] as the limit surface model to represent the

constraints on the friction wrench that can be applied at each

contact. Note that other friction models are applicable to the

proposed work computation algorithm as well.

We briefly summarize the algorithm to determine the 6D

ellipsoid and the friction constraints. For a given contact

area and pressure distribution, possible friction wrenches

are obtained by sampling the instantaneous relative motion,

defined as body twist in screw theory [23]. The direction of

frictional force of each triangle is obtained by projecting the

velocity onto the triangle plane, while the magnitude is the

product of the coefficient of friction and the normal force

applied at the triangle. The frictional torque is computed



with respect to the friction-weighted center of pressure. By

summing up the friction contributions of each triangle, we

obtain a friction wrench of the contact for each sampled

twist.

We then fit the sampled friction wrenches to a 6D ellipsoid

by solving a convex optimization problem. Given the ellip-

soid matrix A ∈ R
6×6, possible friction wrenches w ∈ R

6

of the contact are constrained by:

wT
Aw ≤ 1. (4)

For computational efficiency, we determine the linearized

constraints Ci of the i-th contact by evenly sampling the sur-

face of the corresponding ellipsoid at M points p ∈ R
6×M .

Each point and its outward normal form a hyperplane.

Denoting w⊥

i ∈ R
6 as the wrench impressed by the normal

pressure and ni as the normals of the ellipsoid represented

by Ai at the points pi, the friction wrench of the i-th contact

is constrained to the interior of the M hyperplanes:

Ci = {wi ∈ R
6 | ni •

(

wi −w⊥

i

)

≤ ni • pi},

with ni = Aipi.
(5)

We compute the minimal grasp force required to resist the

target wrench t by substituting Equation (5) into (1).

VI. EXPERIMENTS AND RESULTS

We describe the object’s stiffness acquisition required to

compute work. We further show planned grasps in simulation

and physical grasp prediction results with the proposed min-

imal work quality metric compared to two baseline metrics.

A. Acquisition of Object Stiffness

We estimate the object’s stiffness using its 3D mesh

and physical experiments. One can use the Finite Element

Analysis to compute the object’s deformation with a closing

force of the gripper. However, the stiffness of hollow objects

such as plastic bottles and cups highly depends on the wall

thickness, the geometry, and material of the object, which are

non-trivial to simulate. Therefore, we use a physical robot to

collect object’s stiffness at different locations in this work.

We estimate the object’s stiffness based on 1) a known

gripper closing force Fc, 2) the gripper opening Ls when

it first makes contact with the object, and 3) the gripper

opening Le when Fc is reached. We first plan antipodal

grasps in simulation for each object. The minimal distance

between the 3D object mesh and the gripper jaw along the

grasp axis provides an estimation of Ls.

At each planned grasp location, the Robotiq 2F-85 gripper

closes with a minimal possible force Fc = 20N . The object’s

stiffness si at the location i, the intersection point of the

grasp axis and the object surface is si = Fc/(Ls,i − Le,i).
We repeat each grasp 5 times and select the median of the

collected gripper opening after reaching Fc as Le,i.

We note that the actual grasp force of the Robotiq gripper

depends on the object’s material and the gripper closing

speed, so we measure the repeatability of the deformation

measurements by varying the gripper closing speed for a set

of grasps.

Fig. 3: Robotiq gripper repeatability test. The repeatability

is high at poses 4 and 5, where the object is rigid and wide,

but lower at poses 1-3, where the object is more deformable

and narrower.

An object with an open lid is grasped at five locations,

each with different stiffness. Figure 3 shows the mean and

standard deviation of the gripper opening at each grasp

location with different closing speeds ranging from 0 to

255, where 0 is the lowest speed. Although the absolute

gripper opening and the collected object’s stiffness measure-

ments may not be highly accurate, the relative stiffness is

reasonable, allowing for accurate comparison between grasp

qualities when computing optimal grasp placements.

B. Baseline Metrics

We compare the proposed minimal work grasp quality

metric with two baseline metrics.

1) Grasp reliability metric qr: We define a binary reward

R that describes the predicted grasp success. R = 1 if the

grasp is able to resist the target wrench t ∈ R
6 without

exceeding the maximum closing force and R = 0 otherwise.

The metric addresses uncertainties in actuation by using

Monte-Carlo sampling over the grasp pose similar to Dex-

Net 1.0 [22]. More specifically, we add isotropic Gaussian

uncertainty in gripper translation and rotation, resulting in

K perturbations for each grasp pose. The grasp quality qr
of the pose is the average reward over the K perturbations:

qr =
1

K

K
∑

k=1

Rk.

2) Minimal force metric qf : The grasp quality is the

averaged minimal required grasp force F to resist t given

the maximal force limit Fmax:

qf = 1−
F

Fmax

,

where Fmax is determined experimentally.

C. Grasp Planning in Simulation

We plan grasps on five objects based on their 3D meshes

and the interpolated stiffness maps, as shown in Figure 4(a)

and (b), where two objects are 3D printed using NinjaFlex

TPU flexible filament to provide diversity in object shape

and material. Note that some inaccuracies of the measured

stiffness exist, such as the rigid cap of the object 1 and the

neck of object 2.
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Fig. 4: Planned grasps for five physical objects with three metrics: grasp reliability, minimal force, and the proposed minimal

work. Objects 2 and 4 are 3D printed using NinjaFlex TPU flexible filament. (a) The five objects used in simulated and

physical experiments. (b) The interpolated stiffness map for each object, where red is low stiffness and blue is high stiffness.

(c-d) The planned grasps for a lifting task and a lifting and 90◦ rotation task, respectively. Each colored line represents a

grasp axis for the parallel-jaw gripper, and the color indicates quality according to the given metric. Red indicates low quality,

while green is high quality. While the grasp reliability and the minimal force metrics only consider wrench resistance, the

proposed minimal work metric computes grasps that resist gravitational disturbances without causing large deformations.

We sample antipodal grasp candidates and compute grasp

quality for 1) vertical lifting and 2) lifting and 90◦ rotation

tasks. Three quality metrics are compared: grasp reliability,

minimal force, and the proposed minimal work, as shown

in Figure 4(c) and (d). We model the two tasks with a 6D

gravity wrench to be resisted under one and three object

poses obtained by discretizing the manipulation trajectory,

respectively, since the gravity wrench remains the same for

the vertical lifting task. The lowest quality value of a grasp

among all object poses is selected as the value for each

metric. The colored lines represent the grasp axes; green

indicates high quality under the given metric, while red

indicates low quality. Figure 4 suggests that the planned

grasps using the proposed minimal work quality metric avoid

causing large deformations of the object while resisting the

gravitational disturbances of the manipulation tasks.
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Fig. 5: Examples of grasp quality predictions with the mini-

mal work quality metric. A grasp is considered successful

if the manipulation task succeeded while the content is

not dislodged and the object returns to its original shape

after grasping. An inflated balloon suggests liquids in the

container might have been dislodged.

D. Physical Experiments

We evaluate the planned grasps for three representative

objects (objects 1, 3, and 5) with physical experiments for the

two manipulation tasks. We select 46 grasp poses in total for

the three objects that cover different regions of each object.

Each grasp is repeated five times for each task, resulting in

460 total grasps. We consider a grasp to be successful if 1)

the task is completed, 2) the object returns to its original

shape when the grasp force is released, and 3) the content is

not dislodged during the grasp.

We filled the objects with wet towels to simulate the mass

of the object filled with liquid without changing the object’s

stiffness or damaging the electrical devices. Object 1 and 3

are sealed with a balloon to infer the content spillage. By

measuring the balloon’s inflation before and after the grasp,

the content is considered spilled if the inflation difference is

larger than a threshold.

We use balanced accuracy, or the accuracy weighted by

the number of successful and failed grasps in the collected

data, to evaluate the prediction accuracy. Each metric’s grasp

quality prediction is binarized by thresholding the quality at

a threshold σ = 0.5. Table I shows the balanced accuracy

of the three grasp quality metrics for the two manipulation

tasks and Figure 5 shows examples of correct and incorrect

predictions for the planned minimal work grasps. The pro-

posed metric reaches 74.2% and 71.3% balanced accuracy,

respectively, for the two tasks, up to 24.2% higher than the

grasp reliability and the minimal force metrics. However, we

note that the balanced accuracy for the minimal work quality

metric is relatively low for object 5 (a plastic cup) compared

to other objects. This suggests that the proposed algorithm

for minimal work computation may not perform well for

objects with large deformations. Furthermore, the minimum

grasp force with the Robotiq Gripper can be much larger than

the planned force and can cause large object deformations

and false positives.

TABLE I: Balanced accuracy of three quality metrics: grasp

reliability qr, minimal force qf , and the proposed minimal

work qw.

Object
Vertical lifting Lifting and 90

◦ rotation

qr qf qw qr qf qw

1 0.500 0.767 0.833 0.575 0.785 0.875

3 0.500 0.687 0.851 0.516 0.714 0.813

5 0.500 0.392 0.542 0.680 0.630 0.450

All 0.500 0.615 0.742 0.590 0.710 0.713

VII. DISCUSSION AND FUTURE WORK

This paper proposes a minimal work quality metric to plan

grasps for 3D deformable hollow objects. We evaluate the

proposed metric with real-world grasps for a vertical lifting

and for a lifting and 90◦ rotation task. Physical experiments

suggest that 74.2% and 71.3% balanced accuracy can be

achieved for the two tasks, respectively, up to 24.2% higher

than classical wrench-based quality metrics.

A. Limitations

We note that the proposed method may not perform well

for objects having large deformations due to the linear

stiffness assumption and the simplified model to acquire

contact profiles. To address this, one can simulate the contact

with the Finite Element Method and fit a strain-stress curve

for each grasp location by applying different loads. The

algorithms then use the obtained pressure distribution and

the deformed object shape to compute the grasp quality.

Furthermore, one reason for predicted false positives is

that the actual minimal grasp force of the Robotiq gripper is

higher than specified in the planned grasps. This issue can

be addressed by mounting force sensors on the gripper to

execute grasps with the desired grasp force.

B. Future Work

We note that the minimal work grasp quality metric is also

applicable to grasps on rigid objects with compliant gripper

jaws. We intend to further investigate this duality and plan

grasps for both rigid and deformable objects.
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