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Abstract— Analytic grasp planning algorithms typically ap-
proximate compliant contacts with soft point contact models to
compute grasp quality, but these models are overly conservative
and do not capture the full range of grasps available. While
area contact models can reduce the number of false negatives
predicted by point contact models, they have been restricted
to a 3D analysis of the wrench applied at the contact and so
are still overly conservative. We extend traditional 3D friction
cones and present an efficient algorithm for calculating the 6D
friction cone (6DFC) for a non-planar area contact between
a compliant gripper and a rigid object. We introduce a novel
sampling algorithm to find the 6D friction limit surface for a
non-planar area contact and a linearization method for these
ellipsoids that reduces the computation of 6DFC constraints to
a quadratic program. We show that constraining the wrench
applied at the contact in this way increases recall, a metric
inversely related to the number of false negative predictions, by
17% and precision, a metric inversely related to the number of
false positive predictions, by 2% over soft point contact models
on results from 1500 physical grasps on 12 3D printed non-
planar objects with an ABB YuMi robot. The 6DFC algorithm
also achieves 6% higher recall with similar precision and 85x
faster runtime than a previously proposed area contact model.

I. INTRODUCTION

Grasping objects of arbitrary geometry with a robotic

gripper or hand remains an active area of robotic research and

has applications such as warehouse automation and manufac-

turing as well as household tasks such as decluttering. When

exact or approximate 3D models of the objects to be grasped

are available, analytic grasp planning models are often used

to determine grasp quality given the object and contacts [31].

Among the quality metrics used, wrench-based metrics are

popular due to their relative ease of computation and ability

to model general and specific tasks [13, 17, 23].

These models rely on accurate estimation of the forces

and torques applied at the contacts between the gripper and

object to form the Grasp Wrench Space (GWS), or the set of

wrenches that can be applied to the object by a set of gripper

jaws. By computing the GWS, we can determine which

wrenches the grasp can resist. In previous work, area contact

models made up of multiple points or regions have been

considered, but these either assume a planar contact area [9,

10, 16] or can be inefficient for fine surface geometries [11].

In this paper, we consider non-planar soft area contacts

from a compliant gripper and formulate constraints for the

wrenches that can be applied at each contact, as shown in

Figure 1. We extend the 6D ellipsoidal model proposed by

1The Autolab at University of California, Berkeley. 2Technical University
of Munich, Chair of Media Technology. {jingyi xu, mdanielczuk, gold-
berg}@berkeley.edu, eckehard.steinbach@tum.de

Fig. 1: (a) A non-planar area contact is created when a compliant
gripper jaw surface contacts a non-planar object’s surface. (b) An
enlarged view of the deformed jaw and the contact profile obtained
by the REACH model [11]. The non-planar contact area consists
of triangles and the redder colors represent higher pressure due to
larger deformation of the jaw pad at that point. (c) A projection
of the 6D friction cone that constrains the wrenches that can be
applied at the contact. Each ellipsoid represents a projection of the
friction limit surface for a given gripper closing force and its center
corresponds to the wrench created by the contact pressure.

Xu et al. [43] by more efficiently sampling wrenches on

the 6D friction limit surface (FLS) without Finite Element

Analysis (FEA) and combining the 6D FLS with the normal

wrench imposed at the contact. We present a novel 6D

friction cone (6DFC) that fully constrains the normal and

frictional wrenches that can be applied at a contact by

varying the grasp force. We then show how a linearized GWS

can be formed from the 6D friction cones at each contact and

can be directly used to evaluate grasp quality as a quadratic

program. We believe that the 6DFC is particularly relevant

to the family of compliant grippers both for grasp planning

and for grasp robustness analysis when the exact grasp force

is unknown. 6DFC subsumes both the friction cone created

from planar contacts from rigid grippers and grasp analysis

with known closing forces.

This paper provides three contributions:

1) A generalization of the 3D friction cone to a 6D

friction cone for grasp reliability computation.

2) The 6DFC sampling algorithm for efficiently construct-

ing the 6D friction limit surface and 6D friction cone

for a non-planar area contact.

3) Results comparing 1500 physical grasps of 12 3D

printed non-planar objects on an ABB YuMi robot with

predictions from 4 algorithms that suggest the 6DFC

algorithm can decrease false negatives by 17% over

soft point contacts and 6% over a previously proposed

area contact model.



II. RELATED WORK

A. Contact Models

The contact between a robot gripper jaw and an object can

be described as the jaw exerting a 6D wrench on the object

with 3D force and 3D torque components, expressed in an

object reference frame.

Among the many models introduced [4, 21, 36, 38], the

most common models used in practice are point contact

models with friction or soft point contact models [2, 28].

Under the Coulomb friction model, these contacts can exert

forces in the plane tangent to the contact surface and a

torsional moment (for soft point contacts) about the contact

normal [9, 10, 19, 20, 22]. The tangential force and torsional

moment that a soft point contact can exert can also be jointly

constrained by the FLS [15, 25, 33], which Howe et al. [19]

approximated with an ellipsoid for computational efficiency.

Planar area contact models are used to construct a 3D

ellipsoidal FLS [10, 18, 40]; these area contact models jointly

constrain forces in the contact plane and torque about the

normal, but do not consider non-planar area contacts. Xu et

al. [42] analyzed a 3D subspace of 6D friction constraints for

curved contact areas and generalized the 3D FLS ellipsoid

to 6D to model friction for non-planar surfaces. The 6D FLS

is computed by densely sampling body twists and fitting the

downsampled wrenches with an ellipsoid via convex opti-

mization [43]. We also use a sampling method to form the

6D FLS, but without densely sampling over the entire space

for increased efficiency. Danielczuk et al. [11] considered

non-planar soft contacts by discretizing the area contact as

a triangular mesh, but the REACH model did not consider

the coupling between contact triangles, instead formulating

constraints for each triangle independently. This formulation

also resulted in slow runtime due to the number of contact

wrench constraints in the grasp optimization problem scaling

with the number of triangles in the contact area.

B. Grasp Analysis

Evaluating grasp quality requires determining the grasp’s

ability to constrain the motion of the object by applying

forces and torques at the contacts to resist external distur-

bances without violating the frictional constraints at each

contact [3]. To evaluate this quality, many metrics have

been developed based on the grasp wrench space (GWS),

or the space of wrenches that the contacts can apply to the

object [37]. For example, force-closure ensures the contacts

can resist any external wrenches with arbitrarily high grasp

forces [26, 32, 34]. While metrics analyzing the entire GWS

can be useful for unknown tasks [8, 37, 41], force-closure

grasps are conservative for many tasks, such as lifting an

object, as they require the grasp to be able to resist wrenches

that will not be applied to the object during the task.

For unknown or complex tasks, formulating the 6D Task

Wrench Space (TWS) ellipsoid can be complicated [26], but

for simple tasks such as lifting an object, the task wrench

space can be formulated as the wrenches applied to the

surface of the object (object wrench space) or its center of

mass (mass wrench space) that must be resisted [5, 17, 27,

39]. Mahler et al. used a mass wrench space of the gravity

wrench, corresponding to a grasp’s ability to lift and hold

the object [28, 29]. We use the same metric as Mahler et al.

in that we characterize a grasp as successful if the grasp can

resist the gravity wrench.

C. Grasp Wrench Space Formulation

A common approximation of the GWS is to find the

convex hull of the union or Minkowski sum of the discretized

friction cones at each contact [5, 13, 32]. Krug et al. noted

that the independent contact bounds via the Minkowski sum

more accurately represent fully-actuated grippers than that

of the sum-bounded union [24]. However, for soft point

contact models or area contact models that consider a 3D

friction limit surface, only the union or Minkowski sum

of the ellipsoids created by the maximal normal force is

considered (e.g., the ellipsoids generated by normal forces

between zero and the maximal normal force are ignored) [8,

9, 24]. In contrast, we formulate the GWS using independent

contact bounds and the full 6D friction limit surface ellipsoid

for each normal force that can be applied at the contact. The

6D friction cone captures both normal wrench and frictional

wrench constraints.

D. Contact Wrench Cones

In addition to grasping applications, contact models are

also commonly used to form contact wrench cones in

legged robotics. The contact wrench cone (CWC) describes

wrenches acting on the center of mass of a humanoid robot,

determined by the friction cones at discrete contact points

where the robot contacts the ground [1, 35]. Caron et al. [6]

built the 6D CWC for non-coplanar contacts using surface

contact wrenches. Carpentier and Mansard [7] approximated

the CWC with a 6D cone. While the algorithms in [6, 7]

consider 3D wrench constraints at each point or planar area

contact, the proposed 6DFC models 6D wrench constraints

for each non-planar area contact from compliant grippers.

III. PROBLEM STATEMENT

We consider the problem of predicting grasp reliability, or

probability of grasp success, by building a 6D friction cone

of each non-planar area contact from compliant jaws.

A. Assumptions

We make the following assumptions:

1) Quasi-static physics (inertial terms are negligible) and

Coulomb friction with constant friction coefficient µ

over the contact area.

2) Objects to be grasped are rigid with known geometry.

3) The gripper has known geometry and two parallel jaws,

each with a linear-elastic material at the tips.

4) Both gripper jaws make contact simultaneously.

5) Force is applied normally to the object surface at each

point within the contact area.



B. Definitions

We define a state x that contains a single object O
(including its geometric, material, and frictional properties)

and its pose TO. We also define a parallel-jaw grasp action

u parametrized by a nominal grasp center p ∈ R
3 and an

angle ϕ ∈ S3. The jaws close with force of magnitude

fC around the grasp center and are oriented according to

the grasp angle. A binary reward function R describes the

grasp success, where R = 1 if the grasp lifts the object

(meaning the contacts resist the wrench applied to the object

by gravity) and R = 0 otherwise. To account for uncer-

tainty in the state as well as imprecision in control of the

robot, we consider a grasp reliability distribution Q(x,u) =
P(R |x,u) that describes the probability of grasp success

for a state x and action u [29]. We evaluate reliability in

simulated environments by perturbing object pose, mass, and

frictional properties and in physical experiments by repeating

the same nominal grasp multiple times under uncertainty in

the robot grasp pose accuracy and object registration. We

approximate Q(x,u) with the sample mean of N Monte

Carlo samples: Q(x,u) = 1

N

∑N

i=1
Ri(x,u) [30].

C. Objective

We evaluate the accuracy on a dataset of physical grasp

experiments. Specifically, we seek to maximize average pre-

cision (AP), defined as the mean of precision values at each

recall threshold weighted by the difference in recall thresh-

olds, which measures the area under the precision-recall

curve. Additionally, we seek to maximize the average recall

(AR) on the dataset for a given AP, as this metric indicates

the ability to correctly predict positive grasps. Both metrics

measure binary classification performance and are commonly

used in computer vision for unbalanced datasets [12]. A

combination of high AP and AR indicates that the algorithm

predicts few false positives while also predicting few false

negatives. We select AP and AR as metrics to evaluate the

algorithm in reducing false positives and negatives.

IV. NON-PLANAR AREA CONTACT CONSTRAINTS

A. Background

We define the 6D wrench that can be applied at the contact

as w =
[

fx fy fz τx τy τz
]T

, which corresponds to

a force and torque that can be applied about each axis defined

in the contact frame. The set of these contact wrenches

(e.g., all wrenches that can be applied at the contact) forms

the contact wrench space (CWS). Additionally, we define a

maximum closing force fC,max ∈ R+ with which the jaw

can contact the object such that 0 ≤ fC ≤ fC,max.

For frictional point contacts using Coloumb friction, we

can define the axis for the contact such that the z-axis is

aligned with the negative surface normal and the x and y

axes are in the plane. Then, fz = fC and the CWS is defined

by [33]:

W = {w ∈ R
6 | 0 ≤ fz ≤ fC,max,

√

f2
x + f2

y ≤ µfz,

τx = τy = τz = 0} (IV.1)

Fig. 2: In each image, warmer colors indicate increasing gripper
closing force magnitude fC . (a) For frictional point contacts, the
friction cone is circular and extends along the fz axis. (b) For soft
point contacts, the cone is 4D and elliptical; fx, fy and τz are jointly
constrained at each value of fz by an ellipsoid approximating the
friction limit surface. Here we show a projection of the 4D cone.
(c) In the non-planar area contact case, the cone is 6D and may
not align with any axis, resulting in non-axis-aligned 6D ellipsoids
approximating the friction limit surface at each value of the closing
force. Here we show a projection of the 6D cone.

Equation IV.1 limits the forces that can be applied at the

contact with a 3D friction cone, as shown in Figure 2(a),

where the tangential forces fx and fy that can be applied

increase with fz .

This idea can be extended to the case of soft point contacts,

where the jaw can also apply a torque τz around the z-axis.

In this case, the torque τz and the tangential forces fx and fy
are jointly constrained by the so-called friction limit surface

(FLS) [15, 25, 33], which can be approximated as a 3D

ellipsoid [19]:

W =

{

w ∈ R
6

∣

∣

∣

∣

f2
x + f2

y

µ2
+

τ2z
γ2

≤ fC,max, τx = τy = 0

}

In previous work, the largest ellipsoid is used to constrain the

wrench applied at the soft point contact [9, 24]. Thus, the

CWS is a 3D ellipsoid. We note that this formulation can

easily be expressed in the same way as the previous case

by replacing fC,max with fz and independently constraining

0 ≤ fz ≤ fC,max, resulting in a 4D cone that extends along

the fz axis and 3D ellipsoidal cross sections at each value

of fC as shown in Figure 2(b).

In both cases, the CWS can be discretized into k samples:

W = [w1, . . . ,wk]

and the GWS for n contacts is formed either through the

convex hull of the union or Minkowski sum of the n

discretized contact wrench spaces [13].

B. Friction Cones in 6D

In this section, we generalize the friction cone to the

6D space. When considering a non-planar area contact, the

friction wrenches that can be applied at the contact and the

wrench impressed by the normal pressure, defined as the

normal wrench, are 6D, as the force and torque are both 3D.

Xu et al. suggest that the friction wrenches are bounded with

a 6D ellipsoid centered at the origin [43]. We propose that

the total wrench applied at a contact with a grasp force fC
can be modeled with a 6D ellipsoid that is centered at the 6D

normal wrench, so that varying the value of fC results in a



6D friction cone, whose center lies along the vector fN ∈ R
6

and has 6D frictional ellipsoids as contours for each value

of fC , similar to the one shown in Figure 1. We can express

this cone as:

(w − fCfN)
T
A (w − fCfN) ≤ f2

C ,

0 ≤ fC ≤ fC,max (IV.2)

Figure 2(c) shows a 3D projection of the 6D friction cone

that is produced from a non-planar area contact.

C. Finding 6D Friction Limit Surface Cone Constraints

For the 3D frictional point contact or 4D soft point contact

case discussed above, the ellipsoid that approximates the 2D

or 3D friction limit surface can be easily found, since it is

axis-aligned. Then, by finding the maximum values for fx,

fy , and τz (in the soft point contact case), we can construct

the ellipsoid. However, in the 6D case, the ellipsoid that

approximates the friction limit surface may be rotated, since

when one friction wrench component reaches its maximum

value, the other dimensions might not be zero. This scenario

can occur from an asymmetric pressure distribution over

the contact area or from the geometry of the contact area

itself [18]. Thus, we find an equation that describes the

ellipsoid by explicitly sampling its surface, then fitting an

ellipsoid to the sampled wrenches. We describe this process

in detail in the following sections.

1) Computation of Friction Wrench Samples: First, we

extract the contact area patch on the object using the same

method as in [11]: the constructive solid geometry inter-

section between the gripper pad at its maximum depth of

deformation and the object is the contact area patch. This

resulting contact patch can be discretized into m triangles.

However, unlike [11], which treats each triangle in the

discretized patch as a separate planar contact, we find the

6D friction limit surface for the entire patch.

To find the 6D friction limit surface for the patch contact,

we sample points that lie on the surface, similar to Xu et

al. [43]. However, unlike [43], we do not evenly sample axes

of rotation at various distances from the contact, since finding

extreme points on the surface requires sampling axes at both

small distances from the contact (to maximize torques) and at

infinite distances (to maximize forces) [18]. Thus, we sample

wrenches with large torques or large forces separately.

First, we sample k1 tuples consisting of a unit axis of

rotation ωi and a 3D center point ci, where ωi is sampled

uniformly from the unit sphere and ci is sampled randomly

within a radius r of the pressure center of the contact patch.

For each tuple, we find the instantaneous unit velocity vector

in the plane normal to ωi at each triangle. We project the

unit velocity vector onto the surface of each triangle to find

the projected velocity vector v̂i,t at the t-th triangle in the

contact area patch. For wrenches with maximum forces, we

uniformly sample k2 unit velocities vi, similar to sampling

ωi, and project them onto each triangle plane to find v̂i,t.

Then, we can calculate the magnitude of force that can be

resisted in the triangle plane, depending on the force applied

normal to that triangle, denoted as fNt
. The force that can

be applied in the frame of the triangle is −µfNt
v̂i,t. By

transforming each of these forces into the contact patch frame

using the triangle’s adjoint matrix Adt, we can then form the

full 6D wrench that can be applied at the contact:

wi = −

m
∑

t=1

µAdtfNt
v̂i,t

2) Fitting the 6D Ellipsoid: Given the k samples

{w1,w2, . . . ,wk}, we then fit a 6D ellipsoid to the data

using linear least squares. To fit the ellipsoid, we find the

positive semidefinite matrix A∗:

A∗ = argmin
A

k
∑

i=1

‖wT
i Awi − 1‖22

We can solve this equation exactly using least squares since it

is linear in A. Note that this method of solving for A∗ is not

guaranteed to result in an ellipse if the matrix is not positive

semidefinite (in fact, a hyperboloid could also be returned),

so in practice, we first determine the dimensionality of the

data by using principal component analysis (e.g., if the

contact area is planar, then the ellipsoid will only be 3D),

then fit an ellipsoid of the determined dimensionality to the

data rotated to the PCA frame. We fill out the remaining

dimensions with axes lengths of a small value ǫ > 0, then

rotate the fitted 6D ellipsoid back to the original non-PCA

frame. Thus, this case subsumes the soft point contact case

above; if the contact is planar, it reduces to the case where

the normal wrench is along fz and the FLS is 3D.

3) Linearizing the Ellipsoidal Constraints: Although the

ellipsoidal constraint is itself a convex constraint, quadratic

programs with linear constraints can be solved more effi-

ciently. We formulate a quadratic program to determine if a

grasp resists gravity. We approximate the ellipsoid with a set

of linear constraints for computational efficiency.

To find these constraints, we first resample the ellipsoid.

For many contacts, the initial random sampling process

results in data that is not evenly sampled due to the geometry

of the contact surfaces; thus, we resample points evenly over

the surface of the ellipsoid to better approximate it. Then, for

each resampled point xi on the ellipsoid, its outward-facing

normal vector is given by A∗xi. This normal vector defines

the hyperplane tangent to the ellipsoid at xi; by finding

many of these hyperplanes, we can construct a set of linear

constraints that approximate the ellipsoid. The constraint set

is of the form:

F = {z ∈ R
6 : zTA∗xi ≤ xT

i A
∗xi = 1, ∀i}

4) Formulating Cone Constraints: Once the constraints

are found for the unit closing force, we can shift the planar

constraints along the normal force vector and scale them by

an arbitrary closing force:

F =

{

z ∈ R
6 : zTA∗xi − fC(1 + fNA∗xi) ≤ 0, ∀i

fC ∈ R : 0 ≤ fC ≤ fC,max

}

Note that although the ellipsoidal constraint in Equation IV.2

is quadratic, by first approximating the unit closing force



ellipse with a set of planes, we can take advantage of the fact

that the ellipse grows linearly with increasing closing force

to express the planar constraints linearly with fC . This set of

linear constraints can be used directly in a quadratic program

to determine the ability of contacts that apply wrenches z̃ =
[

z1 fC,1 . . . zn fC,n

]T
to resist the gravity wrench t:

min
z̃

‖Gz̃+ t‖22 s.t. F z̃ ≤ h (IV.3)

Here, F and h are generated by concatenating the constraints

F for each contact. The matrix G ∈ R
6×7n transforms z̃

from the contact frames to the object frame.

V. EXPERIMENTS

We evaluate the 6DFC algorithm proposed in Section IV-

C against three baseline algorithms that generate frictional

and normal wrench constraints for each contact to determine

which most accurately can predict grasp success.

A. Baseline Algorithms

1) Soft Point Contact: As described in Section IV-A,

this algorithm constrains the wrench applied at the contact

through a 3D ellipsoid representing the friction limit surface

corresponding to the maximum normal force that can be

applied at the contact. We linearize these constraints to solve

the quadratic program in Equation IV.3.

2) REACH: The area contact model proposed by Daniel-

czuk et al. [11] discretizes the contact area into a triangular

mesh and develops constraints of a similar form to the soft

point contact model for each triangle. It can be modified

to consider only a maximum number of triangles for each

contact (e.g., the 10 largest triangles), which increases com-

putational efficiency without significantly reducing accuracy.

3) Maximum Force Ellipsoid (MFE): This algorithm con-

structs the 6D FLS ellipsoid as described in Section IV-C, but

constrains the wrench applied at the contact to the ellipsoid

generated by the maximum closing force. This method is

similar to that proposed by Xu et al. [43].

B. Soft Non-Planar Area-Contact Physical Robot Grasps

To evaluate the precision and recall of 6DFC and the

baseline algorithms, we use a subset of 1,500 grasps on

12 3D-printed objects from the Soft Area-Contact Physical

Robot Grasp Dataset, collected on a physical ABB YuMi

robot with a compliant parallel-jaw gripper [11]. The exerted

forces are not actively controlled, as the gripper does not

have force sensors. The subset of objects chosen from the

dataset have non-planar contacts for all grasps. Note that the

assumptions in Section III do not necessarily hold for the

physical grasps that the algorithms are tested on (e.g., the

jaws do not always make contact simultaneously, quasi-static

assumptions do not hold).

We measure both average precision (AP) and average

recall (AR) for each object using the dataset’s ground-

truth physical grasp labels and each algorithms predictions.

We consider a physical grasp to be successful if it lifts

and transports an object from a bin to a receptacle. We

measure performance with mean average precision (mAP)

Algorithm Precision Recall
Runtime

(ms/grasp)

Point 0.80± 0.01 0.50± 0.01 13.0± 2.7

REACH 0.83± 0.01 0.61± 0.01 207.1± 35.3

MFE 0.83± 0.02 0.60± 0.01 247.9± 9.6

6DFC 0.82± 0.01 0.67± 0.01 251.6± 14.2

TABLE I: Mean average precision (mAP) and mean average
recall (mAR) and their standard deviations for each algorithm’s
predictions of grasp quality, for 5 runs of the 1,500 grasps collected
on the physical robot. 6DFC outperforms the point, REACH, and
MFE algorithms by 17%, 6%, and 7% in mAR, respectively,
suggesting that cone constraints can reduce false negatives on
objects with non-planar surfaces.

and mean average recall (mAR), which are the AP and AR

of the algorithm averaged over all objects to account for

discrepancies in the number of successful grasps for each

object. We also measure runtime per grasp computation for

each model on the an Ubuntu 16.04 machine with a 12-core

3.7 GHz i7-8700k processor. For each algorithm, parameters

such as the friction coefficient, elasticity coefficient, and

robustness sample standard deviation were chosen using

leave-one-out cross validation.

The results for each algorithm are shown in Table I. These

results suggest that formulating the 6DFC algorithm can

increase the number of successful grasps on the physical

system that can be recalled by as much as 17% over existing

algorithms while maintaining a similar number of false

positives predicted. We find that grasps found only by 6DFC

are often of the kind shown in Figure 1, where the contact

area is small with high surface curvature, and the grasp may

include slight dynamic effects such as a bowing of the jaws.

We hypothesize that allowing for reduced closing forces

in this scenario could more accurately model the changing

contact profile that occurs.

C. Grasp Planning Results

We also evaluate the reliability of each algorithm as part

of a grasp planning policy via a second experiment. We

hypothesize that our algorithm can find grasps in scenarios

where a point contact algorithm would not return any high-

quality grasps due to predicted collisions with other objects,

environmental constraints, or motion-planning constraints.

To test this hypothesis, we place each of the 12 objects in

their 3 most probable stable poses [14] and attempt the top

3 grasps that each algorithm labels as the highest reliability

grasps for that stable pose. We remove nearby grasps so

that the algorithm cannot choose 3 similar grasps, simulating

other objects blocking the grasp from being executed. If

multiple grasps are labeled with the same probability, one

of them is chosen at random.

We evaluated 875 unique grasps in total for 32 stable

poses of the 12 objects. Both algorithms found successful

grasps in at least one stable pose that the other could not

(Figure 4 shows two examples), but overall the point grasps

surprisingly succeeded more often (339 successes compared

to 272 for the 6DFC algorithm). This result may be due

to an inflation in grasp quality in the 6DFC algorithm; we



Fig. 3: Mean average precision (mAP) and mean average recall (mAR) for each algorithm as a function of (a) the number of robustness
samples Nr , (b) the robustness standard deviation σr with error bars showing the standard deviation of 5 runs of each algorithm with the
given parameter for the dataset of 1500 physical grasps. Adding robustness samples and spreading the samples increases mAP up to 10
samples and σr = 0.003 m. After this point, mAR continues to decline, but mAP remains constant or decreases (in the case of σr). (c)
Runtime analysis of the sampling algorithms with different numbers of wrenches, averaged over 1000 runs. 6DFC is up to 30% faster
than [43]. Timing analysis for each algorithm is shown in (d), averaged over 6000 grasps. The numbers below the REACH algorithm
indicate the number of triangles considered in computation. The 6DFC algorithm is of similar time to the other algorithms that analyze
area contacts, but is 85x faster when analyzing the same number of triangles as REACH.

found that many grasps that had large contact areas were

rated highly but did not succeed, as shown in the bottom

row of Figure 4. We will investigate this discrepancy further

in future work.

Fig. 4: Left: An example where the 6DFC algorithm finds a robust
grasp when the Point algorithm does not. Right: An example where
the Point algorithm finds a robust grasp when the 6DFC algorithm
does not. In the first case, the thin part of the object results in a
low-quality prediction for the point contact algorithm, whereas in
the second case, the large contact area produces a false positive
prediction from the 6DFC algorithm.

D. Sensitivity Analysis

As each of the algorithms contains several parameters such

as friction and elasticity coefficients, robustness parameters,

we include an analysis of each algorithm’s sensitivity to a

subset of these parameters.

1) Effect of Robustness Parameters: All of the algorithms

benefit from “robustness”, or sampling grasp poses around

the nominal pose and averaging the predicted grasp qual-

ities. We sample a random 3D translation from a zero-

mean Gaussian with variance σ2
r and a uniformly random

3D rotation with angle θ proportional to σ2
r and apply

them to the nominal grasp. Figure 3(a-b) shows sensitivity

of the algorithms to the number of samples Nr and the

standard deviation σr. At Nr = 10 and σr = 0.003, mAP

and mAR are maximized. Adding more samples after this

point does not increase mAR and may moderately increase

mAP but does result in the standard deviation (shaded area)

decreasing. Increasing σr results in lower mAR as sampled

grasps no longer resemble the nominal grasp.

2) Effect of Number of Samples and Contact Triangles:

Figure 3(c) shows the sampling runtime with different num-

ber of wrenches and suggests that the proposed algorithm

described in Section IV-C.1 is up to 30% faster than [43].

The runtime of REACH strongly depends on the number of

triangles in the area contact analyzed. The 6DFC algorithm

runtime scales with the number of contacts as opposed to

the number of triangles in each contact, resulting in the 85x

faster runtime on the same surface patch mesh, as shown in

Figure 3(d).

VI. DISCUSSION AND FUTURE WORK

We present 6DFC, an algorithm that generalizes 3D fric-

tion cones to non-planar soft area contacts, constraining both

the contact normal and frictional wrenches. We sample the

6D friction cone using projections of instantaneous velocity

vectors onto each triangle of the surface patch mesh. We

show 6DFC outperforms point contact and area contact

model baselines on a dataset of physical grasps.

We note that one reason for predicted false positives is

that the 6DFC algorithm allows different contact forces of

each jaw, which is not feasible with the current physical

setup. In future work, we plan to evaluate 6DFC with a

three-jaw gripper that allows fully controllable forces to

further investigate this effect. We also plan to relax the

simultaneous jaw contact assumption as part of a dynamic

contact analysis.

VII. ACKNOWLEDGMENTS

This research was performed at the AUTOLAB at UC Berkeley in
affiliation with the Berkeley AI Research (BAIR) Lab. The authors were sup-
ported in part by NSF National Robotics Initiative Award 1734633, National
Science Foundation Graduate Research Fellowship Program under Grant
No. 1752814, and by donations from Google, Siemens, Amazon Robotics,
Toyota Research Institute, Autodesk, ABB, Samsung, Knapp, Loccioni,
Honda, Intel, Comcast, Cisco, Hewlett-Packard and by equipment grants
from PhotoNeo and NVIDIA. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the Sponsors. We thank our colleagues
who provided helpful feedback and suggestions, especially Jeff Ichnowski
and Matt Matl.



REFERENCES

[1] D. J. Balkcom and J. C. Trinkle, “Computing wrench cones for
planar rigid body contact tasks,” Int. Journal of Robotics Research

(IJRR), vol. 21, no. 12, pp. 1053–1066, 2002.
[2] F. Barbagli, A. Frisoli, K. Salisbury, and M. Bergamasco, “Simu-

lating human fingers: A soft finger proxy model and algorithm,” in
Proc. IEEE Int. S. on Haptic Interfaces for Virtual Environment and

Teleoperator Systems, 2004.
[3] A. Bicchi, “On the closure properties of robotic grasping,” Int.

Journal of Robotics Research (IJRR), vol. 14, no. 4, pp. 319–334,
1995.

[4] A. Bicchi and V. Kumar, “Robotic grasping and contact: A review,”
in Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), 2000.

[5] C. Borst, M. Fischer, and G. Hirzinger, “Grasp planning: How to
choose a suitable task wrench space,” in Proc. IEEE Int. Conf. on

Robotics and Automation (ICRA), IEEE, vol. 1, 2004, pp. 319–325.
[6] S. Caron, Q.-C. Pham, and Y. Nakamura, “Leveraging cone double

description for multi-contact stability of humanoids with applica-
tions to statics and dynamics,” in Proc. Robotics: Science and

Systems (RSS), Jul. 2015.
[7] J. Carpentier and N. Mansard, “Multicontact locomotion of legged

robots,” IEEE Trans. Robotics, vol. 34, no. 6, pp. 1441–1460, 2018.
[8] M. Ciocarlie, H. Dang, J. Lukos, M. Santello, and P. Allen, “Func-

tional analysis of finger contact locations during grasping,” in Proc.

IEEE Eurohaptics Conf. and S. on Haptic Interfaces for Virtual

Environment and Teleoperator Systems, IEEE, 2009.
[9] M. Ciocarlie, C. Lackner, and P. Allen, “Soft finger model with

adaptive contact geometry for grasping and manipulation tasks,” in
Proc. IEEE Eurohaptics Conf. and S. on Haptic Interfaces for Virtual

Environment and Teleoperator Systems, 2007.
[10] M. Ciocarlie, A. Miller, and P. Allen, “Grasp analysis using de-

formable fingers,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots

and Systems (IROS), 2005.
[11] M. Danielczuk, J. Xu, J. Mahler, M. Matl, N. Chentanez, and K.

Goldberg, “Reach: Reducing false negatives in robot grasp planning
with a robust efficient area contact hypothesis model,” in Int. S.

Robotics Research (ISRR), 2019.
[12] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and

A. Zisserman, “The pascal visual object classes (voc) challenge,”
International journal of computer vision, vol. 88, no. 2, pp. 303–338,
2010.

[13] C. Ferrari and J. Canny, “Planning optimal grasps,” in Proc. IEEE

Int. Conf. on Robotics and Automation (ICRA), 1992.
[14] K. Goldberg, B. V. Mirtich, Y. Zhuang, J. Craig, B. R. Carlisle, and

J. Canny, “Part pose statistics: Estimators and experiments,” IEEE

Trans. Robotics and Automation, vol. 15, no. 5, 1999.
[15] S. Goyal, A. Ruina, and J. Papadopoulos, “Planar sliding with dry

friction part 1. limit surface and moment function,” Wear, vol. 143,
no. 2, 1991.

[16] K. Harada, T. Tsuji, S. Uto, N. Yamanobe, K. Nagata, and K.
Kitagaki, “Stability of soft-finger grasp under gravity,” in Proc.

IEEE Int. Conf. on Robotics and Automation (ICRA), IEEE, 2014,
pp. 883–888.

[17] R. Haschke, J. J. Steil, I. Steuwer, and H. J. Ritter, “Task-oriented
quality measures for dextrous grasping.,” in CIRA, Citeseer, 2005,
pp. 689–694.

[18] R. D. Howe and M. R. Cutkosky, “Practical force-motion models
for sliding manipulation,” Int. Journal of Robotics Research (IJRR),
vol. 15, no. 6, pp. 557–572, 1996.

[19] R. D. Howe, I. Kao, and M. R. Cutkosky, “The sliding of robot
fingers under combined torsion and shear loading,” in Proc. IEEE

Int. Conf. on Robotics and Automation (ICRA), IEEE, 1988, pp. 103–
105.

[20] I. Kao and M. R. Cutkosky, “Quasistatic manipulation with compli-
ance and sliding,” Int. Journal of Robotics Research (IJRR), vol. 11,
no. 1, pp. 20–40, 1992.

[21] I. Kao, K. Lynch, and J. W. Burdick, “Contact modeling and
manipulation,” in Springer Handbook of Robotics, Springer, 2008.

[22] I. Kao and F. Yang, “Stiffness and contact mechanics for soft
fingers in grasping and manipulation,” IEEE Trans. Robotics and

Automation, vol. 20, no. 1, pp. 132–135, 2004.
[23] D. Kirkpatrick, B. Mishra, and C.-K. Yap, “Quantitative steinitz’s

theorems with applications to multifingered grasping,” Discrete &

Computational Geometry, vol. 7, no. 3, pp. 295–318, 1992.

[24] R. Krug, Y. Bekiroglu, and M. A. Roa, “Grasp quality evaluation
done right: How assumed contact force bounds affect wrench-
based quality metrics,” in Proc. IEEE Int. Conf. on Robotics and

Automation (ICRA), 2017.
[25] Y. Li and I. Kao, “A review of modeling of soft-contact fingers

and stiffness control for dextrous manipulation in robotics,” in Proc.

IEEE Int. Conf. on Robotics and Automation (ICRA), IEEE, vol. 3,
2001, pp. 3055–3060.

[26] Z. Li and S. S. Sastry, “Task-oriented optimal grasping by multi-
fingered robot hands,” IEEE Journal on Robotics and Automation,
vol. 4, no. 1, pp. 32–44, 1988.

[27] Y. Lin and Y. Sun, “Grasp planning to maximize task coverage,” Int.

Journal of Robotics Research (IJRR), vol. 34, no. 9, pp. 1195–1210,
2015.

[28] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J.
Aparicio, and K. Goldberg, “Dex-net 2.0: Deep learning to plan
robust grasps with synthetic point clouds and analytic grasp metrics,”
in Proc. Robotics: Science and Systems (RSS), 2017.

[29] J. Mahler, M. Matl, X. Liu, A. Li, D. Gealy, and K. Goldberg,
“Dex-net 3.0: Computing robust vacuum suction grasp targets in
point clouds using a new analytic model and deep learning,” in
Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), 2018.

[30] J. Mahler, F. T. Pokorny, B. Hou, M. Roderick, M. Laskey, M.
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