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Abstract— Efficiently finding an occluded object in a lateral
access environment such as a shelf or cabinet arises in many
contexts such as warehouses, retail, healthcare, shipping, and
homes. While this mechanical search problem has commonly
been studied in the overhead access environment, the lateral
access setting introduces novel constraints both on the poses
of the objects and on available grasp actions that can render
pushing actions more efficient in this setting. We propose LAX-
RAY (Lateral Access maXimal Reduction in support Area of
occupancY distribution): a system that combines a target object
occupancy distribution predictions with a mechanical search
policy that sequentially pushes occluding objects to efficiently
reveal the target. For scenarios with extruded polygonal objects
occluding a known stationary target, we introduce two lateral
access search policies that encode a history of predicted target
distributions and can plan up to three actions into the future.
We evaluate these policies both in 200 random shelf environ-
ments per policy using a novel First-Order Shelf Simulator
(FOSS) and in 5 physical shelf environments using a Fetch robot
with an embedded PrimeSense RGBD Camera and an attached
blade, where they outperform baselines by up to 25% and up to
60% in physical experiments as the number of occluding objects
increases. Additionally, the two-step prediction policy is the
highest performing in simulation with an 87.3% average success
rate, suggesting a tradeoff between future information and
prediction errors. Code, videos, and supplementary material
can be found at https://sites.google.com/berkeley.
edu/lax-ray.

I. INTRODUCTION

While researchers have explored the problem of Mechan-
ical Search in unstructured clutter (in which objects have
significant freedom in both position and orientation) [6, 7,
23, 28], mechanical search in semi-structured, lateral access
environments such as shelves, cabinets, and closets is a less
studied area despite its wide applicability. For instance, a
service robot at a pharmacy or hospital may need to find
supplies from a cabinet, an industrial robot may need to find
kitting tools from shelves in warehouses, or a service robot
in a retail store may need to search shelves for requested
products from customers. Searching for an object in a
lateral access environment poses new challenges not faced
in unstructured environments, namely, limited action spaces,
complex motion planning requirements, and a potentially
limited perception view.

In previous mechanical search instantiations [7, 28, 35],
the target object lies in a bin or on a tabletop and is occluded
from an overhead view by other objects. The lateral access
environment introduces additional constraints, specifically:
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Fig. 1: Lateral-access mechanical search with LAX-RAY. The
search starts with an RGBD image of the environment. LAX-RAY
perception predicts a distribution over target object locations at
the current step (yellow), the previous time step (blue), and the
minimum of the two (white). The policy computes a push action
indicated by the green arrow, and the robot executes it.

1) objects lie in stable poses due to gravity and do not
rest on each other, 2) available grasps are limited due to
space constraints within the environment, 3) objects must
remain within the environment (i.e., cannot be relocated to
an alternate staging area) during the search, and 4) only a
lateral view of the environment is available. Grasping objects
in structured clutter, including in lateral access environments,
has been studied [10, 27, 30], with a major focus on finding
an obstacle-free grasping path for a partially occluded object.
However, few papers focus on the problem of searching
for fully occluded objects in lateral access environments as
opposed to grasping visible or partially occluded ones. In
practice, collision-free grasping actions in a crowded lateral
access environment can be limited due to the size of the
gripper or the robot’s wrist. Additionally, keeping objects
inside the lateral access environment is often preferred to
removing them entirely. These constraints motivate stable
pushing actions using a narrow blade end-effector such as
the one shown in Figure 1 within such a partially observable
environment. With such an end-effector, even more collision-
free actions are feasible than in previous works that consider
pushing actions, and the actions can be more efficient than
iteratively grasping occluding objects while keeping the
objects within the environment.

In this work, we train a neural network to predict an
occupancy distribution, similar to X-RAY for the overhead
access environment [6], using a novel dataset generation
method that accounts for shelf depth and camera perspective
effects. We propose pushing polices that address the chal-
lenges brought by the unique problem setting by encoding a
history of the occupancy distribution predictions to account
for object motion within the scene and looking ahead to avoid
repeated actions. An overview of the resulting policy, Lateral
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Access X-RAY (LAX-RAY), is shown in Figure 1 and an
example push action in the physical environment is shown
in Figure 2.

The contributions of this paper are:
1) LAX-RAY Perception: a novel dataset generation

pipeline and neural network that predicts target occu-
pancy distributions in lateral-access environments.

2) LAX-RAY Pushing Policies: two classes of lateral ac-
cess mechanical search policies that reveal target objects
in shelves based on a history of lateral occupancy
prediction and multi-step lookahead, respectively.

3) The First Order Shelf Simulator (FOSS), a lightweight
and dynamics-free, open-access framework for generat-
ing initial shelf configurations and rapidly rolling out
lateral access search policies.

4) Experiments in simulation and on a physical robot
evaluating the policies. Results from 1400 total sim-
ulated and 35 total physical trials with 2 to 9 occluding
objects suggest that policies leveraging both a history
of lateral occupancy distribution predictions and multi-
step lookahead outperform baselines without occupancy
prediction or without lookahead.

II. RELATED WORK

While recent work in interactive perception and mechan-
ical search [3, 7, 18, 23, 31, 36] influences our work most
strongly, work on Bayesian search - the problem of searching
for one or more objects located in one of m locations [20] -
dates back to the 1940s. Assaf and Zamir [1] illustrated that,
in many cases, this problem has an optimal greedy solution.
Kress et al. [22], Lavis et al. [24], and Wen et al. [32] further
extended this work to consider cases of false-positive target
detection, moving targets, and the production of sequences
of optimal actions, respectively.

Mechanical search extends the classic Bayesian search
formulation by introducing physical interaction with objects
in the scene, where a robot must uncover, identify, and extract
a known target object among unknown distractor objects.
Danielczuk et al. [7] formalized and explored heuristic me-
chanical search policies in the overhead bin picking setting
and later improved the policy using a neural network-based
perception system that predicts areas of the scene likely to
occlude the target object [6]. Yang et al. [35] extend pushing
and grasping work from Zeng et al. [37] to the target-specific
problem in a tabletop block environment, also with overhead
observations, using both a Bayesian exploration policy and a
target-centric coordinator policy. Kurenkov et al. [23] and
Novkovic et al. [28] learn nonlinear continuous pushing
policies that can reveal a specified target that is partially or
fully occluded, respectively. However, each of these papers
considers an overhead view of the scene and assumes the
objects are lying on a tabletop or in a bin. In lateral access
environments, view is limited to lateral access bringing more
unknown objects states.

In lateral access environments, where objects lie in their
stable poses and not on top of other objects, manipulation is
also constrained so that the robot does not collide with the

Fig. 2: The physical experiment with a Fetch robot and a shelf
environment with random objects. The robot pushes an object a
distance and direction calculated by LAX-RAY taking inputs of a
RGBD image from the embedded PrimeSense camera.

environment. The Amazon Picking Challenge required teams
to pick from or place objects into shelves [15, 38], but did
not require object search within the shelf. Dogar et al. [12]’s
connected components algorithm and POMDP solvers [25,
34] have been used to iteratively remove or rearrange objects
in a lateral access environment until the target is revealed,
outperforming greedy baselines by reasoning about visibility
and accessibility constraints. Bejjani et al. [2] use continuous
pushing actions generated with a learned prior and lookahead
policy in a shelf environment to reach for and successfully
grasp a target with up to 10 obstacles in simulation, allowing
collisions with other objects. In contrast to their work, we
consider 3D object geometries (as opposed to 2D) with a
diverse set of target objects. Wong et al. [33] also use a
geometric prior to inform the search, but they iteratively
remove objects from the scene. Gupta et al. [17] present a
multi-step look-ahead object search algorithm in a shelf envi-
ronment using a PR2; their problem formulation is the most
similar to ours, but we leverage a learned geometric prior
to inform the search and use a 1D distribution over possible
target poses instead of their 3D octree representation. We
don’t have the grid world assumption in both simulation and
physical experiments. We also don’t have grasping action
available in contrast to their setting.

Given these constraints, pushing is a critical action for
moving occluding objects to reveal the target without remov-
ing them from the scene entirely. Significant developments
have recently been made in the study of singulating cluttered
objects on a plane [4, 8, 11, 13, 19, 21, 39]. Notably,
Hermans et al. [19] propose a pushing policy that includes a
history of past actions used to determine when termination
should occur. Eitel et al. [14] select push actions through the
use of a neural network trained on physical data collected
from robots interacting with cluttered scenes. The majority of
the environments explored in these studies have relaxed con-
straints regarding object configurations and possible pushing
actions compared to environments such as shelves, where a
limited number of pushing actions are viable.

III. PROBLEM STATEMENT

We consider an instance of the mechanical search problem
in a lateral access environment (e.g., a shelf). In this problem,
an agent searches for a target object resting in a stable



Fig. 3: Target objects spanning a variety of aspect ratios (noted
below each object) used in simulation testing (left) and in physical
experiments (right).

pose on the shelf, initially occluded by other objects. The
geometry of the target object is known, and the agent has an
RGBD camera with a fixed side-view of the shelf and known
intrinsics. The agent reveals the target object by pushing
objects on the shelf to the left and right using a narrow
blade, shown in Figure 2, but cannot remove objects from
the shelf.

We make the following assumptions:
• Exactly one instance of the search target exists in the

environment.
• All objects are extruded polygons and are not stacked.
• Toppling does not occur.
• The target object is not moved during the search.
We model the problem as having states, observations,

actions, and a termination condition. The state st at time
t consists of the scene object geometries and their poses
within the shelf. At each time t, the camera takes an RGBD
image observation of width w and height h, yt ∈ Rh×w×4

+ ,
of the scene from its fixed pose. The robot then takes a push
action at = (q, d), where q ∈ R3 is the pushing starting
point in the camera frame and d ∈ R is the pushing distance
along the camera’s x-axis, which results in a new state and
observation. This process continues until at least k% of the
target object is visible to the camera or no further pushing
actions can be taken by the robot.

Our objective is to find a policy π that, given an obser-
vation yt of the underlying state st at each time step, can
minimize the number of actions taken to reveal the target
object.

IV. METHODS

LAX-RAY combines (1) a perception pipeline predicts
an occupancy distribution for the (partially) occluded target
object that spans across the visible objects in the scene
given the depth image and target object segmentation mask
with (2) a search policy that chooses pushing actions to
reveal the target based on a history of predicted occupancy
distributions.

A. LAX-RAY Perception

Predicting an occupancy distribution in the lateral access
environment differs from the overhead environment in two
main ways: 1) the objects are known to be in a stable pose
resting on the plane of the shelf, so target object translations
are restricted to the xz plane of the camera, and 2) camera
perspective effects can result in different occupancy predic-
tions for the same occluding object depending on its depth

within the shelf. In contrast, X-RAY predictions consider
flat objects that can assume any rotation and may translate
within a single depth plane of the camera [6]. We address
these differences by sampling target object transformations
within the camera’s xz plane and rendering images for each
transformation.

We generate a large dataset of synthetic depth images,
target object segmentation masks, and ground truth target
object occupancy distributions to train a neural network to
predict the target object occupancy distribution within the
image plane, as in X-RAY. However, the method of dataset
generation must be extended beyond iteratively dropping
objects in a heap for the lateral access environment. A scene
is generated using a dataset of object meshes by first placing
the target on the shelf in one of its stable poses and apply a
random translation such that it does not collide with the walls
of the shelf. Occluding objects are sampled randomly from
a dataset of 88 Google Scanned Objects [16] models and are
iteratively placed in the same manner such that they do not
collide with each other, the target, or the shelf. We sample
N ∼ U(10, 20) occluding objects per scene. A 256×256
depth image and target object segmentation mask is rendered
from the side view looking into the shelf. Note that if the
target object is fully occluded, the target segmentation mask
will be blank.

We then consider 2992 target object transformations along
a uniform 2D grid in the camera frame, 17 translations
along the camera’s x axis, 22 translations along the camera’s
z axis, and 8 rotations about the camera’s y axis. We
choose this number of transformations to trade off ground-
truth distribution accuracy with dataset generation time -
doubling the number of rotations for a fixed number of
translations results in a total variation distance of only 6e−4
between the two distributions as computation time increases
by 74% and doubling the number of translations for a fixed
number of rotations similarly yields a total variation distance
of 0.002 as computation time increases by 51%. Thus,
incorporating more transformations into the ground truth
occupancy distribution results in a similar result at the cost of
significantly increased computation time. For each of these
transformations, we render a binary image of the target object
by itself and a depth image of the scene with the transformed
object. If the depth image of the scene with the transformed
object matches the original scene depth image, we add the
binary image to the ground truth occupancy distribution. The
final ground truth occupancy distribution is a normalized sum
of the binary images that correspond to target transformations
resulting in the same scene depth image (i.e., all possible
pixels that could contain any part of the target object, with
values corresponding to their relative likelihood). We render
these images and compute the corresponding distribution
across 5 camera positions uniformly sampled from a range
of the view sphere for each scene to mitigate uncertainty of
the camera position in physical experiments.

We repeat this process for 6,000 unique scenes and gen-
erate a total of 30,000 depth image, target object mask, and
ground-truth occupancy distribution training tuples. Due the



Fig. 4: LAX-RAY occupancy distribution predictions on a simulated image from the test set for a target object with 1:2 aspect ratio in a
fully occluded case. The fourth to sixth images show the network predictions for aspect ratios from 1:1 to 4:1. The large variation in the
predictions implies the critical influence of the target aspect ratios on the occupancy distribution.

Fig. 5: Validation of the pre-trained model on physical experiment environment for 5 different target object with aspect ratios from 1:2
to 4:1 in a fully occluded case. The top row shows 2D occupancy distribution from the pre-trained model and the second row shows the
corresponding 1D occupancy distribution along x axis in camera frame overlaid with the depth observation. A significant difference for
predictions of each aspect ratio is shown validating the accuracy of the pre-trained model for real applications.

aspect ratio’s dominating effect on the occupancy distribu-
tion, we used five cuboid target objects with varying aspect
ratios from 1:2 to 4:1 and apply the prediction from the
aspect ratio closest to the target object at test time. About
50% of these images include a fully occluded target object.
We also render 10,000 images using occluding object models
sampled from 44 object models unseen in training from the
Google Scanned Objects dataset [16] with realistic target
objects, shown in Figure 3, to create a test set.

We split the data into training and validation sets with a
4:1 ratio. We train a fully convolutional network (FCN) with
a ResNet backbone with 33 million parameters on the dataset
using stochastic gradient descent with a momentum 0.99 for
60000 iterations with batch size 32 and learning rate 10−5.
Training takes approximately 5 hours on a Tesla V100 GPU.

B. LAX-RAY Search Policies

We propose two classes of policies that leverage the LAX-
RAY perception output over several timesteps and iteratively
attempt to reduce either the support or the entropy of the
history of predicted target occupancy distributions.

In all policies, we first generate a set of candidate
pushes by considering possible push starting locations q =
(qx, qy, qz) and associated distances d based on the other
objects in the scene. In addition to the output provided by
the perception pipeline, all policies receive a segmentation
image of the scene as input. In practice, we use ground-

truth segmentation masks in simulated experiments and a
gradient-based edge detector segmentation method in phys-
ical experiments, although any state-of-the-art segmentation
method could be used.

For each object segmentation mask, up to two possible
push candidate qx values are generated using the edges of
the mask, depending on available space to both insert the
blade and push the object. We choose the blade height qy
to be a fixed value just above the support surface such that
objects will not topple as they slide, and we choose the blade
depth qz to be at the midpoint of the object depth, assuming
that the object depth is linearly proportionally to its width.
Note that both of these choices might be further improved by
introducing shape completion [29] and explicitly estimating
object centers of mass. The horizontal pushing distance d
given a starting point q is the distance the object can be
pushed until it collides either with another object or the shelf
and its sign is given by the relative position of q to the
object to be pushed. This collision avoidance pushing actions
allows us to maintain the stationary target object position
assumption by avoiding pushing in an unknown area.

Then, we make use of both the current predicted distribu-
tion Pt(x) and an encoding of previous predicted distribu-
tions P ′t−1(x) at each timestep. Our first insight is that we
can reduce the 3D or 2D distributions over possible target
object poses from previous work [6, 17, 29] to a 1D distri-
bution in the shelf setting, since all objects lie on the shelf’s



support surface. Specifically, we collapse the 2D prediction
pt(x, y) generated by LAX-RAY perception by summing
over the y-axis of the image: Pt(x) =

∑h−1
y=0 pt(x, y), as

seen in Figure 5. Our second insight, consistent with [17],
is that an encoding of previous observations is necessary
to avoid repeated actions, since objects cannot be removed
from the shelf. In our policies, we encode the history of
previous observations via the minimum of the current 1D
predicted distribution and the previous encoding: P ′t (x) =
min

{
Pt(x), P

′
t−1(x)

}
. For the first timestep, we set P ′t (x) =

Pt(x). Our third insight, similar to [6], is that minimizing the
entropy of the 1D distribution over target object poses across
multiple timesteps should reveal the target object, where the
entropy is defined as:

ct = −
w−1∑
x=0

P ′t (x) log(P
′
t (x)),

Given these insights, we propose two classes of policies:
Distribution Area Reduction (DAR) computes a score
based on the width of the push object’s segmentation
mask in the image, weighted by P ′t (x) at those pixels:∑w−1

x=0 Io(x)P
′
t (x), where Io(x) ∈ {0, 1} indicates whether

an object o’s segmentation mask is nonzero at that x
value in the image (for any y value). It then considers
the difference in this score before and after each action is
taken, and selects the action that reduces the score the most.
The post-action score is computed by translating the object
segmentation mask in the image according to the action and
recomputing based on the same P ′t (x). If the target object
is partially revealed, the policy does not take an action that
would cover the target more. This policy is maximizing the
occupancy information gain by minimizing the overlap of
the object with the occupancy distribution.
Distribution Entropy Reduction over n steps (DER-n)
estimates the 1D distribution P̂ ′t+n after taking n actions
and chooses the action it predicts will produce the smallest
entropy value ĉ(t+ n) at time step t+ n (assuming optimal
actions are taken given the current information), for n ≥ 1.
First, the observation yt+1 is predicted by translating the
pixels belonging to the object to be pushed across the
image. Pixels behind the moving object are assumed to
be of maximum depth unless a partially observed object
lies behind them. This assumption to decrease the number
of predicted actions which increases exponentially with
prediction steps. Then, the occupancy distribution P̂ ′t+1 is
predicted for the estimated observation and the process is
repeated for n steps.

V. FIRST ORDER SHELF SIMULATOR (FOSS)

To evaluate the proposed policies, we develop a First
Order Shelf Simulator (FOSS), a Python-based simulator that
uses trimesh [9] and pyrender to model object pushing
actions within a parametrizable shelf environment without
explicitly modeling contact dynamics such as friction. In
contrast to commonly-used simulators such as pybullet [5],
Isaac Sim, or others that use physics-based simulation [26],

Fig. 6: The DER-1 policy reveals a hidden object with 6 occluding
objects. First row shows color images at each step with a green
blade, and a green arrow denoting push direction and distance. The
occupancy distribution at the bottom of each depth image (second
row) includes: predicted distribution from previous time step (blue),
predicted distribution at current time step (yellow), and minimum
of the two (white). Target is revealed in last image, where the
occupancy distribution has a very dense probability.

FOSS only performs collision checking between objects -
all actions are taken by translating objects along a line
parallel to the shelf support surface. The lack of dynamic
simulation allows FOSS to be more efficient than other
simulators for pushing for use in large-scale policy rollouts
while maintaining a feasible scene configuration at all times.

FOSS represents objects as extruded polygons (cuboids
and cylinder approximations). Cuboids uniformly range from
0.02 to 0.10 m for the square base and are 0.1 m tall.
Cylinders uniformly range from 0.02 to 0.05 m for the base
radius and are between 0.1 and 0.2 m tall. A green target
object cube with sides of size 0.07 m and aspect ratio of 1:1
is used.

FOSS checks collisions between targets and shelf wall. If
an object collides with another object during the push, both
objects move together for the remainder of the push in the
push direction. When an object collides with the shelf wall,
the push action stops. Notice the pushing action given by the
policy will avoid potential collision between objects.

Although FOSS allows for pushes in 2D, we focus on 1D
lateral pushes in this paper. For simulation runs we place
objects randomly on the shelf while checking for collisions,
as described in Section IV-A, to ensure object separation.
Furthermore, to guarantee possible initial pushes, objects are
initialized with at least the blade thickness away from the
wall. FOSS can produce both RGBD images and ground
truth segmentation masks at each timestep.

VI. EXPERIMENTS

We evaluate both the perception system and the proposed
policies both in simulation and in a physical shelf environ-
ment (W:50cm, H:40cm, D:56cm).

A. Perception Experiments

We benchmark the model in simulation using an
intersection-over-union metric defined as the sum of positive
pixels in both the ground truth and predicted distributions
divided by the sum of total positive pixels in either distri-
bution. We binarize the prediction into positive and negative



Fig. 7: The DER-1 policy reveals the target object among 9 occluding objects in a physical experiment. The plotted occupancy distributions
at the bottom of each depth image including three parts as in Figure 6. Top: RGB image with green push action arrow denoting the
pushing direction and distance. Bottom: depth image with occupancy distributions.

pixel predictions by thresholding at a normalized value of 0.1
and measuring error to the ground truth distribution. Pixels
with values greater than 0.1 within 0.2 of ground truth are
labeled as true positives, and values less than 0.1 within
0.2 of ground truth are true negatives [6]. On images in
simulation, the model yields a validation IoU of 0.79 and
a test IoU of 0.53. Example images from the test set are
shown in Figure 4 in the case where the target object is
fully occluded. The predicted distributions vary significantly
across target object aspect ratios, indicating that the predicted
distributions is correctly sensitive to the aspect ratio.

We also benchmark the model on images from the physical
setup, using green target objects with similar sizes and aspect
ratios to those used in simulation, including cuboids and
cylinders, as shown in Figure 3. We put common household
objects on a white shelf and use a PrimeSense RGBD camera
embedded on a Fetch robot to acquire color and depth
images. We segment the target object if it is visible using
HSV color thresholding to detect the green target object.
Figure 5 shows the prediction results of the pre-trained model
on a shelf with randomly arranged objects in a fully occluded
case for five target objects with varying aspect ratios. Qual-
itatively, the model transfers well to the real images and the
predicted distribution again varies significantly with different
aspect ratios.

B. Search Policy Simulation Experiments

We use FOSS to rapidly test LAX-RAY across many
scenarios and evaluate the insights noted in Section IV. We
evaluate whether minimizing entropy over multiple future
time steps can outperform a greedy policy by comparing
DAR and DER-n. In addition, we evaluate whether 1) LAX-
RAY outperforms iteratively searching, 2) the predicted
LAX-RAY occupancy distribution can help the policy reveal
the target more efficiently, 3) a history encoding of past
observations aids shelf exploration. To this end, we introduce
three baseline policies:
Scan first pushes all objects to one side of the shelf, and
then, when no pushes in that direction can be found, pushes

TABLE I: Simulation results for 7 policies over 200 simulated
rollouts each. 50 trials were executed for 2, 4, 6, and 8 occluding
objects each, and for each we show the Success Rate followed by
the Average of Steps and Standard Deviation of steps. As DER-
n assume no unseen objects are behind the pushed object, DER-n
policies have higher prediction errors as n increases. Addressing
this is an important topic for future research.

No. Results SCAN GUPTA-2013 M-DAR DAR DER-1 DER-2 DER-3

2 Succ. 98% 97% 90% 98% 98% 97% 94%
Step Avg 1.53 1.34 1.37 1.36 1.36 1.80 1.99
Step Std 0.95 0.56 0.72 0.77 0.67 0.93 1.19

4 Succ. 82% 88% 76% 96% 92% 92% 89%
Step Avg 3.24 2.27 2.13 2.33 2.37 2.57 3.21
Step Std 2.42 1.48 1.52 1.78 1.79 1.93 2.02

6 Succ. 62% 71% 58% 87% 79% 89% 85%
Step Avg 3.06 2.99 2.58 2.79 3.04 3.32 3.82
Step Std 2.56 2.21 2.00 2.06 2.30 2.14 2.44

8 Succ. 58% 46% 53% 66% 63% 71% 66%
Step Avg 3.59 3.61 2.44 3.40 3.13 3.94 4.08
Step Std 2.30 2.75 1.68 2.47 2.25 2.65 2.54

Avg Succ. 75.0% 75.5% 69.3% 86.8% 83.0% 87.3% 83.5%
Step Avg 2.86 2.56 2.13 2.47 2.48 2.91 3.28

TABLE II: Physical experiment results. The first column shows the
number of occluding objects. The remaining columns show task
success (top) with Y denoting success and N denoting fail and
the number of actions to succeed (bottom number). The last row
shows the average of the 5 experiments.

No. Results SCAN GUPTA-2013 M-DAR DAR DER-1 DER-2 DER-3

2 Success Y Y N Y Y Y Y
Steps 3 3 10 3 3 1 1

4 Success Y Y Y Y Y Y Y
Steps 4 1 1 1 2 1 1

6 Success N Y Y Y Y Y Y
Steps 3 3 4 4 4 6 6

8 Success N N N N Y Y Y
Steps 4 4 6 6 3 4 3

9 Success Y N N Y Y Y Y
Steps 3 9 3 5 5 3 5

Avg Success 60% 60% 40% 80% 100% 100% 100%
Steps 3.4 4 4.8 3.8 3.4 3 3.2

the objects to the other side of the shelf. The initial direction
is set as the direction that will push objects towards the less-
occluded half of the shelf based on the depth observation
at t = 0. Pushes are executed in the order of how far the
pushed object moves.
Gupta-2013 is an analogue of the policy in [17] without
grasping and lookahead, but with a history encoding. [17]
maximize a 3D information gain; here, we maximize a 2D
information gain in width considering the gravity constraint
brought by the lateral access environment. This policy can



also be thought of an analogue of the “largest” policy with
additional history encoding in the overhead setting [6, 7]. It
can be interpreted as forming an occupancy distribution that
informed by the target object shape, only by the occluding
object shapes, which is an ablation of DAR policy without
target object geometric prior.
Markov-DAR (M-DAR) is an ablation of the DAR policy
without encoding a history of occupancy distributions. At
each time step, this policy plans an action based on the
current observation. This policy addresses the importance of
remembering history in the environment where objects are
not removed and an explored area may be occluded again
the future.

We generated 50 random scenes, as described in Sec-
tion V, with 2, 4, 6, and 8 occluding objects, giving us
200 scenes in total per policy. We tested 3 prediction steps
of DER-n for n ∈ {1, 2, 3} on each scene. A rollout is
considered successful if at least 90% of the target object
is revealed within 10 actions. The policies’ performance
in simulation is summarized in Table I with an example
successful DER-1 policy rollout shown in Figure 6.

Table I shows Scan performs better than Gupta-2013 and
M-DAR in general but much worse than DAR and DER in
most cases suggesting the limitation of iteratively searching
in the lateral access environment setting. DAR policies
perform better than the Gupta-2013 policy, especially as
the number of objects increases. This discrepancy suggests
that taking the target object’s shape into account for the
occupancy distribution prediction aids policy efficiency. A
better performance of DAR compared to M-DAR implies the
importance of history encoding avoiding repeated actions.
The results validate the efficiency and novelty of LAX-
RAY by integrating the target geometric prior though percep-
tion pipeline with history encoding and looking ahead. All
policies’ performances drop when the number of occluding
objects increases since more steps are needed to reveal
the target. For higher numbers of occluding objects, DER-
2 outperforms both DAR and DER-3. This result suggests
both that minimizing the distribution’s entropy over several
timesteps can outperform a policy that greedily tries to
maximally reduce the distribution at the current timestep
and that a tradeoff emerges between prediction accuracy
and prediction lookahead. The prediction of the next step
assumes no unseen objects are behind the pushed object,
which can deviate from reality. DER-1 does not perform
as well as DER-2 because not enough future information
is revealed while DER-3 performs worse because prediction
error accumulates. When there are fewer objects, prediction
errors dominate this tradeoff, which could explain the better
performance of DAR in this setting.

C. LAX-RAY Physical Experiments

To evaluate the policies in a physical lateral access envi-
ronment with the perception pipeline, we placed household
kitchen and bathroom objects on a shelf and executed the
insertion and pushing actions using a Fetch robot with a
blade attached to the gripper. An embedded PrimeSense

camera is used for taking RGBD observations. Figure 2
shows the setup. At each time step, we execute the pushing
action planned by the policy in 5 steps starting and ending
at the same fixed position. By dividing the pushing action
into those 5 steps, we avoid the occlusion of the robot
arm to the camera and any potential collisions. We tested
5 different layouts for each policy with 2 occluding objects,
4 occluding objects, 6 occluding objects, 8 occluding objects
and 9 occluding objects respectively. The target object with
aspect ratio of 1:2 from Fig. 3 is used and is fully occluded
in all layouts.

The performance of each policy is summarized in Table II.
The results suggest consistency with the simulation results
in that the M-DAR baseline policy has the lowest success
rate. And in physical experiments, DER-2 shows the best
performance with lowest average number of steps. DAR
and DER-n outperforms all the baseline policies showing
the validation of LAX-RAY in practical environment with
perception noise and diverse objects. Figure 7 shows an
action series for experiment 5 with DER-1. In step 4, where
the middle white bottle has the highest sum of occupancy
distribution, the policy pushes the brown bottle away firstly
to make pushing space for the pushing the white bottle which
is occluding the target.

VII. CONCLUSION AND FUTURE WORK

This paper considers the Mechanical Search problem in
the lateral access environment with pushing actions, a setting
with many practical applications. We introduce additional
challenges that distinguish our work from previous work with
overhead views or where grasping is less constrained and
motivates a novel target occupancy distribution prediction
pipeline as well as pushing actions such that objects remain
confined to the shelf. The evaluation results of LAX-RAY
both in simulation and on the physical system suggest
history encodings, learned target occupancy distributions,
and multi-step lookahead are all key parts of an efficient
mechanical search policy. While our current policy does
not explicitly consider pushing multiple objects, stacked
objects, or choosing pushes that may rotate objects in the
scene, we look to address these challenges in future work.
While traditional grasping using a gripper is limited in this
environment, using pneumatically-activated suction cups to
lift and pull occluding objects from the shelf may also create
more available actions.
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based active search for occluded objects,” in Proc. IEEE Int. Conf.
Robotics and Automation (ICRA), IEEE, 2013, pp. 2814–2819.

[34] Y. Xiao, S. Katt, A. ten Pas, S. Chen, and C. Amato, “Online plan-
ning for target object search in clutter under partial observability,”
in Proc. IEEE Int. Conf. Robotics and Automation (ICRA), IEEE,
2019, pp. 8241–8247.

[35] Y. Yang, H. Liang, and C. Choi, “A deep learning approach to
grasping the invisible,” IEEE Robotics & Automation Letters, vol. 5,
no. 2, pp. 2232–2239, 2020.

[36] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian,
T. Armstrong, I. Krasin, D. Duong, V. Sindhwani, and J. Lee,
Transporter networks: Rearranging the visual world for robotic
manipulation, 2020. arXiv: 2010.14406 [cs.RO].

[37] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T.
Funkhouser, “Learning synergies between pushing and grasp-
ing with self-supervised deep reinforcement learning,” in Proc.
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
IEEE, 2018, pp. 4238–4245.

[38] A. Zeng, K.-T. Yu, S. Song, D. Suo, E. Walker, A. Rodriguez,
and J. Xiao, “Multi-view self-supervised deep learning for 6d pose
estimation in the amazon picking challenge,” in Proc. IEEE Int.
Conf. Robotics and Automation (ICRA), IEEE, 2017, pp. 1386–
1383.

[39] C. Zito, R. Stolkin, M. Kopicki, and J. L. Wyatt, “Two-level
rrt planning for robotic push manipulation,” in Proc. IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), IEEE, 2012,
pp. 678–685.

http://pybullet.org
http://pybullet.org
https://app.ignitionrobotics.org/GoogleResearch/fuel/collections/Google%20Scanned%20Objects
https://app.ignitionrobotics.org/GoogleResearch/fuel/collections/Google%20Scanned%20Objects
https://app.ignitionrobotics.org/GoogleResearch/fuel/collections/Google%20Scanned%20Objects
https://arxiv.org/abs/2010.14406

	Introduction
	Related Work
	Problem Statement
	Methods
	LAX-RAY Perception
	LAX-RAY Search Policies

	First Order Shelf Simulator (FOSS)
	Experiments
	Perception Experiments
	Search Policy Simulation Experiments
	LAX-RAY Physical Experiments

	Conclusion and Future Work

