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Abstract— Disentangling two or more cables requires many
steps to remove crossings between and within cables. We for-
malize the problem of multiple cable disentangling and present
an iterative, graph-based algorithm, Iterative Reduction Of
Non-planar Multiple cAble kNots (IRON-MAN), that outputs
moves to remove crossings from the scene. We instantiate it
with a learned perception system, inspired by prior work in
single-cable untying, to disentangle two cable twists, three cable
braids, and knots of two or three cables, such as the overhand,
square, carrick bend, sheet bend, crown, and fisherman’s knots
from image input. IRON-MAN keeps track of task-relevant
keypoints corresponding to target cable endpoints and crossings
and iteratively disentangles the cables by identifying crossings
that are critical to knot structure and undoing them. Using
a da Vinci surgical robot, we experimentally evaluate the
effectiveness of IRON-MAN on the task of untangling a class
of multiple cable knots present in the training data, as well as
generalizing to novel classes of multiple cable knots involving
two to three cables. Results suggest that IRON-MAN is effective
in disentangling knots involving up to three cables with 80.5%
success, with generalization to knots that are never seen during
training on cables that are either distinct or uniform in color.

I. INTRODUCTION

Knots composed of multiple ropes and cables are found
in many environments, including electronic cords in homes,
offices, and concert stages, electrical wiring in warehouses,
ropes in sailboats and ships, and cables in manufacturing
settings [14, 18, 24, 25]. Furthermore, rope and cable dis-
entangling can be critical in life-saving systems for search-
and-rescue operations and disaster response [9, 15], where
disentangling knots and tangles is crucial for task success.
Designing robust systems for disentangling 1D deformable
objects, which we refer to as “cables,” is challenging. In this
paper, we propose methods based on the graphical structure
of knots to address this challenge.

This work considers cable disentangling, that is, separating
2 or more cables that are knotted or twisted together. While
prior work has studied the problem of untying knots in a
single cable [6, 13], disentangling multiple cables introduces
new challenges. First, multi-cable knots can contain more
crossings than single-cable knots, especially in cases where
the cable is stiff and has a large turning radius: multiple
cables can intertwine with each other with minimal turning,
while single cables would require a smaller turning radius to
achieve the same number of intersections. Second, perception
is complicated by the presence of additional cable endpoints,
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Fig. 1: Overview of IRON-MAN: IRON-MAN (Iterative Reduction Of
Non-planar Multiple cAble kNots) is an algorithm for disentanglement of
several knotted cables by sequentially employing Reidemeister (straight-
ening), Node Deletion (loosening) and Cable Extraction (removal) moves.
We present a sequence of moves planned by IRON-MAN on a three-cable
Carrick Bend knot. Following an initial Reidemeister move (A) which pulls
opposing cable endpoints apart, IRON-MAN takes several Node Deletion
moves (B-C, D-E, F-G) to reduce inter and intra-cable crossings. Finally, we
take three Cable Extraction moves (H-J) to isolate and remove each cable.

higher-density configurations with little space between adja-
cent cable segments, and a greater potential for occlusion.
Third, multiple cable systems have more cable endpoints to
track, making it difficult to track untangling progress along
specific cables. Fourth, the mechanics of cable manipulation
are also more complicated with multiple cables, as crowding
of cables can impede reachability.

Prior methods for single-cable untangling cannot be
straightforwardly adapted to the multi-cable setting due to
differences in cable configurations, untangling actions, and
perception [6]. Grannen et al. [6] present a geometric algo-
rithm for untangling a single cable that iteratively undoes
each cable crossing, starting from one endpoint of the cable
and working toward the other. A naive approach to multi-
cable untangling could consider each of the n cables sequen-
tially, and untie knots within each one by one. However,
multi-cable systems have many endpoints, which cannot
always be easily mapped to specific cables. Furthermore, the
presence of inter-cable crossings across cables in multi-cable
knots further complicates planning of disentangling actions
compared to the single-cable setting.

We propose Iterative Reduction Of Non-planar Multiple



cAble kNots (IRON-MAN), an algorithm for disentangling
multiple cables given a graphical representation of the knot
structure. IRON-MAN distills full configuration state in-
formation by defining a disentangling hierarchy over cable
crossings to generate bilateral disentangling actions on the
cables. IRON-MAN then prioritizes disentangling crossings
integral to the knot structure. To implement IRON-MAN
from visual observations, we employ keypoint regression
methods [6] to learn pull and hold keypoints. We plan
manipulation actions over the learned keypoints with two
manipulation primitives from knot theory and prior work [6,
13] and execute these actions with a learning-based controller
from Sundaresan et al. [22].

This paper contributes: (1) a formulation of the multiple
cable disentangling problem; (2) Iterative Reduction Of
Non-planar Multiple cAble kNots (IRON-MAN), a novel
geometric algorithm for disentangling multiple cables, (3) an
instantiation of Iterative Reduction Of Non-planar Multiple
cAble kNots (IRON-MAN) from image input by extending
the perception-driven single-cable planner from Grannen et
al. [6]; and (4) physical cable disentangling experiments on
multi-cable knots of 3 difficulty tiers consisting of combi-
nations of different types of multi-cable knots, twists, and
braids. Experiments suggest that the physical implementation
of IRON-MAN can completely disentangle all cables in
scenes containing up to three cables with 80.5% success.

II. BACKGROUND AND RELATED WORK

Deformable manipulation has gained significant traction
in the robotics research community in recent years [1, 7,
18]. Deformable manipulation poses a number of challenges,
as deformable objects can have complex dynamics, visually
uniform appearances, and a high potential for self-occlusion.
These properties introduce manipulation challenges that are
exacerbated with multiple deformable objects, as in the
task of disentangling complexly knotted cables. Prior work
has focused on developing long-horizon perception-driven
planners for deformable manipulation, but tend to focus on
handling a single object instance such as a cable, a bag, or a
piece of fabric. In contrast, this work embeds awareness of
both within and cross-instance geometry into a planner for
disentanglement of multiple cables.

A. Deformable Object Manipulation

A standard approach in robot manipulation of nonrigid
objects relies on inference of plannable visual state represen-
tations. One such method explicitly performs partial or full
state estimation of a deformable object. Yan et al. [26] and
Lui et al. [13] infer rope representations as sparse point sets
from learned and analytical methods, respectively. Similarly,
Chi et al. [2] demonstrate cloth and rope tracking based
on template shape registration. To generalize single-instance
perception models to multi-instance scenes, prior approaches
rely on instance segmentation, which is difficult to achieve
in the setting of homogeneous, tangled cables. Florence et
al. [4] propose mapping object images to a dense pixel-wise
descriptor embedding with which to recover object pose in

both single and cluttered multi-instance scenes for semantic
grasping. Dense descriptors have proven effective in rope
knot-tying [23] and cloth folding and smoothing [5], but
global descriptors lack robustness to severe deformation and
occlusion as in the case of multiple overlapping cables.

In contrast, other approaches circumvent state estimation
by performing end-to-end visuomotor learning for goal-
conditioned tasks. These include rope shape-matching and
knot-tying by learning dynamics models [16, 17]; cable
vaulting by behavioral cloning [27]; cloth smoothing and
folding from video prediction models [3, 8], latent dynamics
models [12], reinforcement learning [11], and imitation
learning [20, 21]; and bag manipulation by inferring spatial
displacements [19]. While general, these algorithms do not
leverage the geometric structure specific to the cable manipu-
lation problem, which makes them difficult to apply to highly
complex tasks such as cable disentangling, in which fine-
grained perception and manipulation is critical for success.

B. Cable Untangling Methods

Prior work has studied the task of single-cable untangling
from both loose [13] and dense [6, 22] initial configurations,
where dense configurations lack space between crossings.
Lui et al. [13] propose modeling a cable configuration
via a graphical abstraction representing cable crossings and
endpoints, and approximate this model from RGB-D input
through analytical feature-engineering. This method assumes
reliable segmentation of crossings to construct the graph, and
as a result does not readily adapt to untangling dense, non-
planar knots within or across cables. Grannen et al. [6] define
a single-cable untangling algorithm, HULK (Hierarchical
Untangling from Learned Keypoints), which rather than
explicitly reconstructing a cable graph as in [13], learns to
predict untangling actions from RGB image observations,
given examples of actions taken by a graph-based algorithmic
supervisor. In particular, HULK learns to infer actions from
predicted pin and pull keypoints corresponding to the first
under-crossing in a cable, sensed relative to the rightmost
endpoint. However, while HULK addresses the semi-planar
cable knot untangling problem, it does not account for
disentangling, or separation of multiple cables in non-planar
knots. HULK also does not apply out-of-the-box to the multi-
cable setting due to ambiguity in selecting knot-loosening
actions when there are many cable endpoints from which to
trace under-crossings. In this work, we extend the graphical
abstraction from [13] to accommodate inter-cable crossings
and propose IRON-MAN. IRON-MAN extends HULK to
resolve ambiguity in action selection and termination, thus
reasoning about the many cable endpoints and developing a
scheme for systematically disentangling multiple cables.

III. TASK FORMULATION

A bilateral robot aims to disentangle a knotted configura-
tion of n cables, where n > 1 in the initial configuration, by
removing one crossing at a time by learning visual features
to plan hold and pull actions given an input RGB image.
The objective is to reach a fully disentangled state with



Fig. 2: Graph Representation: Provided a dense initial square knot (A), we take a Node Deletion move specified by hold (green) and pull (dark blue)
keypoints, yielding a looser configuration shown in (B). We use a graphical abstraction to model the state of intertwined cables, extending previous work
on modelling single cable configurations [6, 13, 22]. In this graph, endpoints and intra/inter-cable crossings constitute nodes, and edges denote over (+)
and under (-) crossings. shown in (C). We prioritize removing crossings that are non-trivial, such as (3) rather than trivial ones such as (4), which can be
easily undone by a Reidemeister move without substantially loosening the configuration.

no crossings (defined below). In this section, we define the
workspace and notation for cable untangling (Section III-
A), present a graphical abstraction to represent the state of
multiple cables in the workspace (Section III-B), discuss
the set of actions which can be used to manipulate the
cables (Section III-C), and finally present the objective of
the multiple cable disentangling problem (Section III-D).

A. Workspace Definition

We define a Cartesian (x,y,z) coordinate frame for the
workspace and assume that the workspace contains a bi-
lateral robot. Without loss of generality, we assume that
the manipulation surface lies in the xy-plane. For planning
purposes, we define three points, wl , wr, wc, respectively
located on the left bound, right bound, and center of the
manipulation surface. This workspace setup resembles that
in Grannen et al. [6], but differs from prior work in that
rather than containing only a single cable, the scene now
contains n cables that can be knotted or twisted together.
With these n cables occupying the same workspace as a
single cable in prior work, we now require improved cable
slack management in the workspace. Let ci denote the ith

cable, where i∈{1, . . . ,n}, and let ρi > 0 denote the radius of
cable ci. We assume the existence of a termination area to the
right of the manipulation workspace, into which cables are
relocated as they become fully disentangled. The termination
area is centered at the point pterm ∈ R3 and can be reached
by the robot’s grippers.

We define intra-cable crossings to be crossings that only
involve a single cable, while inter-cable crossings are cross-
ings involving at least two cables. The structure of crossings
between cables is not directly observable, and must instead
be inferred from RGB images. At time t, an image It is the
input to the algorithm to generate manipulation actions.

B. Configuration Graph

Previous works define a graph structure to concisely
represent the configuration space of single-cable knots [6,
13, 22], and introduce algorithms that operate on this com-
pressed representation to perform untangling. We extend this
representation to model n-cable knots. The graph contains
vertices (also referred to as nodes) v ∈ V , which represent
any cable endpoints and crossings in the structure, and edges
e ∈ E, which represent cable segments without crossings
between vertices defined as e = (u,v) for u,v ∈V . While the

graph representations defined in prior work limit crossings
to 2 or 3 cable segments [6, 22], in this work, each vertex
v that represents a crossing of k segments has a degree
of 2k, since there are 2k cable segments extending from
the crossing. The graph vertices do not distinguish between
intra-cable and inter-cable crossings. All vertices have a
degree of 2k, except endpoints, which have a degree of one.
Additionally, we annotate every (vertex, edge) pair with a
label X(v,e) ∈ {−1, . . . ,−(k− 1)} ∪ {+1}, where k is the
number of segments in the crossing at vertex v, according
the definition below:

X(v,e) =

+1
if v is an endpoint or if e crosses over
all other edges at v

−m if e crosses under m edges at v
(III.1)

Intuitively, X(v,e) indicates the depth of edge e at the
crossing represented by vertex v. Observe that this graph can
have multiple edges, as illustrated in Figure 2, but no two
pairs of contiguous edges will have the same two annotations.

C. Action Space

We define the possible actions at time t in terms of global
workspace coordinates:

at,right = (xt,r,yt,r,θt,r,∆xt,r,∆yt,r,11grasp)

at,left = (xt,l,yt,l,θt,l ,∆xt,l,∆yt,l,11grasp).

With 11grasp = 1, gripper k ∈ {r, l} grasps the topmost
cable—defined as the cable with the highest zt,k at (xt,k,yt,k).
We use a top-down grasp with orientation θt,k about the z-
axis and with a 30◦ approach angle relative to the vertical.
Upon grasping, the jaw moves by (∆xt,k,∆yt,k) and releases
its hold. With 11grasp = 0, the arms execute the same motions
with the gripper jaws remaining open throughout, preventing
a secure grasp. This motion is crucial for implementing Cable
Extraction moves, which grasp the terminated cable with one
arm and ”pin” a different cable endpoint, if available, with
the other arm for retrieval of only the target cable. We use
11grasp = 0 for an effect of soft pinning, allowing slack to slip
through the jaws, in the case that only cable is left in the
scene and predicted endpoints lie on the same cable. This
primitive is discussed in detail in Section V-B.2. The actions
at,right and at,left are executed simultaneously by both arms,
and single-arm actions can be performed by letting the other
arm’s action be null. We will describe specialized motion



primitives defined in terms of this general action definition
in Section IV-C and Section V-B.

We assume access to a transformation between pixel
coordinates (px, py) and global positions (x,y,z). Because the
perception systems operate in pixel space, we will present
positions in terms of pixels, overloading the action notation
with pixel coordinates instead of workspace positions.

D. The Multiple Cable Disentangling Problem

The objective of the multiple cable disentangling problem
is to remove all intra-cable and inter-cable crossings in the
scene with a minimal number of actions while recognizing
and sequentially removing fully untangled cables. In terms of
the graphical representation of the knotted structure’s state,
the goal is to reach a configuration graph with two vertices
per cable, one corresponding to each endpoint, where the
two vertices belonging to each cable are connected to each
other by an edge with positive annotations on both ends. At
time t, the algorithm receives an image observation It and
outputs a linear, bilateral action at = (at,right,at,left).

IV. PRELIMINARIES

A. Assumptions

We make the following assumptions: 1) cables distin-
guishable: the cables are visually distinguishable from the
background via color thresholding, but need not be dis-
tinguishable from each other; 2) visible endpoints: at least
two endpoints are visible in the initial cable configuration;
3) linear pull actions sufficient: we assume all cables are
within reachable limits of the robot, thus ensuring the
robot can successfully perform grasping and pulling actions.
Unlike Grannen et al. [6], who assume a semi-planar knot
structure—i.e., at most two cable segments per crossing—we
allow non-planar knots, where more than two cable segments
can be involved in each intersection.

B. Physical Disentangling System

In this section, we describe three methods used in prior
work for single cable untangling: HULK, LOKI, and SPi-
DERMan. IRON-MAN modifies HULK to be well-defined
for multiple cables and additionally adds new motion prim-
itives. The planned grasps are executed using the grasp
refinement steps from LOKI. IRON-MAN also modifies
SPiDERMan to be defined for multiple cables.

1) HULK—Hierarchical Untangling from Learned Key-
points: HULK [6] senses four task-relevant keypoints in the
scene that are used to plan motion primitives. Each keypoint
is a pixel coordinate that corresponds to a semantically
relevant point on the cable. For a single cable, HULK senses:

1) p̂l : The estimated pixel coordinate of the left endpoint.
2) p̂r: The estimated pixel coordinate of the right endpoint.
3) p̂hold: The estimated pixel coordinate of the topmost

segment of cable at the first undercrossing c from the
rightmost endpoint.

4) p̂pull: The estimated pixel coordinate of the cable seg-
ment edge labeled −i exiting the first undercrossing c
traced from the rightmost endpoint.

For each keypoint p̂, HULK learns a mapping f :
R640×480×3 7→ R640×480×1 which maps an RGB image to a
heatmap centered at p̂. HULK is trained from images, where,
given a hand-specified keypoint annotation for an image, we
compute a ground truth 2D Gaussian distribution centered
at the annotated pixel and with σ = 8px as in [6, 22]. In
Section V-A, we will redefine these keypoints analogously
for the multi-cable setting.

2) LOKI—Local Oriented Knot Inspection: LOKI [22]
is a low-level grasp planner that computes a robust grasp
by refining a coarse grasp location input to center it on
a cable and infer a grasp orientation that is orthogonal to
the cable’s path. These refinement prevent near-miss grasps.
LOKI maps a local crop of an image in R200×200 centered
at one of the keypoints— p̂r, p̂l , p̂pull, and p̂hold—to 1) θ : an
angle about the z-axis for top-down grasp orientation; and
2) (poff,x, poff,y): a local offset in pixel space to recenter the
keypoint along the cable width. For an input keypoint p̂, we
let p̃ denote its refined grasp location (in pixels) and θ̃ (from
0◦ to 180◦ denote its grasp orientation.

3) SPiDERMan—Sensing Progress in Dense Entangle-
ments for Recovery Manipulation: SPiDERMan [22] ad-
dresses four manipulation failures modes observed in
Grannen et al. [6]. Here we implement SPiDERMan’s
recovery manipulations Wedge Recovery and Re-posing
(translation) that are relevant to the task of disentangling
multiple cables. Wedge Recovery detects when a gripper
is wedged between cable segments. If the right gripper is
wedged between cable segments, the right gripper brings the
stuck cable to the center of the workspace wc and opens
the gripper jaws. The left gripper pins the cable at the left
endpoint while the right arm returns to its home position.
The equivalent procedure is performed when the left gripper
is wedged between cable segments with the roles of the left
and right grippers reversed. When SPiDERMan detects that
the cable mass is near workspace limits, it executes a Re-
posing move (translation) to grasp the cable at the center
of its mask and returns it to the center of the workspace wc.

C. Motion Primitives

We extend two motion primitives from Grannen et al. [6]
to fully disentangle cables: Reidemeister moves and Node
Deletion moves. To improve manipulation robustness, we use
LOKI to center each grasp along the cable width with an
improved grasping orientation.

1) Reidemeister moves: Reidemeister moves grasp the
left endpoint at the corrected location p̃l with orientation θ̃l
and pull the cable to a predefined location wl at the left side
of the workspace. The right gripper similarly grasps the right
endpoint at p̃r with orientation θ̃r and pulls the cable to a
predefined location wr at the right side of the workspace. This
move eliminates trivial crossings not involving a knot and
disambiguates the configuration of the cable by spreading it
apart. The actions are described as follows:

at,l = (p̃l,x, p̃l,y, θ̃l ,wx,l− p̃l,x,wy,l− p̃l,y,1)

at,r = (p̃r,x, p̃r,y, θ̃r,wx,r− p̃r,x,wy,r− p̃r,y,1).



Fig. 3: Physical Implementation of IRON-MAN: Image A depicts the
endpoints used for Reidemeister moves: p̂r and p̂l on cables c1 and c2,
respectively. The left endpoint annotation corresponds not to the leftmost
endpoint in the scene (on cable c1), but rather to the leftmost endpoint of
cable c2 because p̂r is on cable c1. Image B depicts the hold and pull
keypoints, p̂hold and p̂pull, relative to the first non-trivial crossing from
the right endpoint. The first crossing from the rightmost endpoint is a
trivial crossing, and is skipped when traversing from the right endpoint to
annotate a Node Deletion move. Image C presents semi-disentangled and
entangled configurations. Although the image in the yellow highlighted box
still contains a crossing, it is trivial and thus acceptable by our definition
of semi-disentanglement.

2) Node Deletion moves: In a Node Deletion move, the
right gripper grasps and holds a cable segment at p̃hold while
the left gripper grasps a cable segment at p̃pull and pulls out
the cable slack underneath p̃hold. LOKI predicts each grasp
rotation θ̃hold and θ̃pull:

at,hold = (p̃hold,x, p̃hold,y, θ̃hold,0,0,1)
apull = (p̃pull,x, p̃pull,y,

θ̃pull, p̃x,pull− p̃hold,x, p̃pull,y− p̃hold,y,1).

After HULK identifies the first undercrossing traced from
the rightmost endpoint and LOKI refines the grasps, a Node
Deletion move attempts to pull out part of a cable segment
underneath the topmost segment to eliminate undercrossings.

V. METHODS

To the best of our knowledge, prior work has only con-
sidered single-cable untangling, and the resulting algorithms
cannot be directly employed for disentangling multiple ca-
bles. We present a novel algorithm, IRON-MAN, for disen-
tangling multiple cables using the graph representation of the
scene defined in Section III-B. We then discuss methods and
a novel manipulation primitive that manages the excess slack
present in multiple cable settings for instantiating IRON-
MAN to physically untangle up to 3 cables.

A. Graph-Based Disentangling Action Planning

We present IRON-MAN, an algorithm for disentangling
multiple cables knotted or twisted together. IRON-MAN
assumes access only to the knot’s implicit graph structure
and disentangles n cables by removing crossings repeatedly.
Multiple cable disentangling requires reasoning about the 2n
endpoints, increased number of crossings, and complex cable
slack management.

1) Multi-cable Reidemeister Moves: With n cables in the
scene, there are n right endpoints and n left endpoints. IRON-
MAN first locates the rightmost endpoint vr belonging to
some cable ci. After defining vr, the leftmost endpoint vl is
defined as the leftmost endpoint belonging to some cable c j,
where i 6= j and i, j ∈ {1, ...,n} for any n > 1 respectively.
When there is only a single cable ck remaining in the scene

and n = 1, we define vr and vl to be the right and left
endpoints of ck, breaking ties arbitrarily. Reidemeister moves
are performed on this newly defined set of endpoints.

2) Multi-Cable Node Deletion Moves: Due to the in-
creased cable length in the scene, each crossing removal
requires complicated slack management in physical disen-
tangling, as we must perform multiple successful Node
Deletion actions without introducing new crossings from
cable slack being pulled through. IRON-MAN categorizes
crossings as either non-trivial or trivial when determining
which crossings to remove. Non-trivial crossings are integral
to maintaining the knot structure, while trivial crossings
are not integral to the knot structure and can be undone
by performing a Reidemeister move or a variant of it. For
example, a twist is a set of trivial crossings, in which
pulling the two cables apart as in a Reidemeister move
will undo all of the crossings. Removing a trivial crossing
from a configuration does not change the number and types
of knots present in the configuration, and as a result does
not reduce the overall configuration density. IRON-MAN
manages physical cable slack effectively and efficiently by
only undoing non-trivial crossings, which cannot be undone
by Reidemeister moves, while Reidemeister moves remove
the trivial crossings. IRON-MAN traverses the graph from
the rightmost endpoint vr and performs a Node Deletion
move on the first non-trivial undercrossing.

3) Algorithm Summary: IRON-MAN disentangles n-cable
knots given a graph representation of the knotted structure
using multi-cable Reidemeister and Node Deletion moves, as
defined above. First, IRON-MAN performs a Reidemeister
move to remove trivial crossings such as intra-cable loops
and disambiguate the knot configuration. Next, IRON-MAN
successively performs Node Deletion moves on the first non-
trivial crossing with respect to the rightmost endpoint in
the scene until none remain. IRON-MAN then performs a
variation of the Reidemeister move consecutively to remove
all cables from the scene and any remaining trivial crossings
(discussed further in the following section). This returns the
cables to a fully unoccluded, disentangled state such that
|V |= 2n with a vertex for each endpoint in the scene.

B. Physical Disentangling

1) Perception: IRON-MAN operates on a graph repre-
sentation, which is not directly observable. Therefore, we
instantiate IRON-MAN to operate on image inputs using
learned perception components inspired by prior work [6].
This makes it possible to instantiate IRON-MAN for cable
disentangling from raw image input on a physical robotic
system. As in HULK [6], we learn the newly-defined
keypoints for holding and pulling actions and right and
left endpoints from RGB image inputs to perform IRON-
MAN’s multi-cable Reidemeister and Node Deletion moves
on physical knots. This section describes the networks used
to implement IRON-MAN, while Section VI details the
training dataset generation procedure.

As in HULK, our approach uses a ResNet-34 backbone to
learn two mappings, each of which transform an RGB image



input to two heatmaps: (1) g1 : R640×480×3 7→ R640×480×2

maps an image to 2 heatmaps centered respectively at
the keypoints p̂hold and p̂pull, located at the first non-
trivial intersection as identified by IRON-MAN, and (2) g2 :
R640×480×3 7→ R640×480×2 maps an image to two heatmaps
centered respectively at 2 keypoints p̂l and p̂r, located at
the endpoints of cables ci and c j, where i 6= j to implement
IRON-MAN’s multi-cable Reidemeister moves. Note that p̂r
corresponds to the rightmost endpoint in the scene, while
p̂l is the leftmost endpoint in the scene that is not part of
cable c j. By querying LOKI as described in Section IV-
B.2, we obtain refined keypoints, p̃l , p̃r, p̃hold, p̃pull, and their
corresponding gripper orientations for executing grasps. Ca-
ble ci is semi-disentangled from a cable configuration if the
only crossings involving ci are trivial and ci can be fully
disentangled when pulled apart from the other cables. We
detect when the cable ci corresponding to the rightmost
endpoint p̂r is semi-disentangled from the remaining cables
in the scene with a binary classifier, h : R640×480×3 7→ {0,1}.

2) Manipulation: To execute the actions from IRON-
MAN on a set of physical cables, we apply a novel ma-
nipulation primitive, Cable Extraction moves, along with
Reidemeister moves and Node Deletion moves (Sec. IV-
C), to the task of multi-cable disentangling. The multi-cable
Reidemeister and Node Deletion moves are executed as
described in Section IV-C with the newly-defined keypoints
described in Section V-B.1. We iteratively disentangle each
cable in the scene and drop fully disentangled cables at pterm,
a predefined point within the termination area.

Motivated by the slack management difficulties of multi-
cable disentanglement (Sec. V-A), we define Cable Ex-
traction moves, a novel manipulation primitive to fully
disentangle and remove a semi-disentangled cable from a
scene. We perform Cable Extraction moves when the cable ci
corresponding to the right endpoint p̃r is semi-disentangled.
The right arm grasps the semi-disentangled cable ci at its
right endpoint p̃r, while the left arm holds p̃l , the leftmost
endpoint from a separate cable c j (i 6= j), by pinning the
cable at p̃l against the workspace surface without closing
the gripper jaws and grasping the cable. Pinning differs from
holding in that when holding, the gripper jaws close to grasp
the cable but do not push the cable against the workspace.
Then, the right arm pulls the cable ci to a predefined
termination point pterm, removing all trivial crossings:

at,r = (p̃x,r, p̃y,r, px,term− p̃x,r, py,term− p̃y,r, θ̂r,1)

at,l = (p̃x,l , p̃y,l ,0,0, θ̂l ,0)

We start with a Reidemeister move to pull endpoints p̃r
and p̃l to opposite ends of the manipulation workspace,
removing any initial trivial crossings. Next, we perform
successive Node Deletion moves with p̃hold and p̃pull at the
first non-trivial undercrossing from the rightmost endpoint
p̂r, which belongs to cable ci. When we detect that ci is
semi-disentangled, we perform a Cable Extraction move to
undo any remaining trivial crossings involving ci and remove
ci from the scene. This procedure continues until all cables
are disentangled and deposited in the termination area.

Algorithm 1 Disentangling with IRON-MAN

1: Input: RGB image of cable
2: Predict p̃l , p̃r, p̃hold, p̃pull
3: ci,c j← cables corresponding to p̃r, p̃l , respectively.
4: Reidemeister move with p̃r (cable ci), p̃l (cable c j)
5: while workspace not empty do
6: Predict p̃l , p̃r, p̃hold, p̃pull
7: ci← cable corresponding to p̃r
8: Execute SPiDERMan recovery policy
9: if cable ci is semi-disentangled then

10: Cable Extraction move with p̃r, p̃l
11: else
12: Node Deletion move with p̃hold, p̃pull

13: return DONE VI. EXPERIMENTS

We evaluate IRON-MAN for cable disentangling on initial
cable configurations with three tiers of increasing difficulty.
We implement the full system for experiments on the bilat-
eral da Vinci surgical robot. Because this is the first work
studying the multi-cable disentangling problem and because
single-cable algorithms are not well-defined in this setting,
we are not aware of any existing algorithms that would
provide a meaningful baseline comparison in this setting.

A. Training Dataset Generation
We train the Reidemeister and Node Deletion coarse

keypoint prediction models g1 and g2 on a dataset of 270 real
workspace images with hand-labeled keypoints, augmented
to a dataset of 3,500 examples. We similarly train the
semi-disentanglement classifier h on a dataset of 170 real
workspace images. For each image, we assign labels 0 or
1 by hand to indicate “semi-disentangled” or “entangled,”
respectively, and augment to a dataset of 5,200 examples
before training with a binary cross-entropy loss. All datasets
consist only of configurations containing up to two cables,
where the cables’ colors are either both white or red and
white. These datasets are augmented via affine transforms,
lighting shifts, and blurring.

To reduce manipulation errors during experiments, we
project any keypoints predictions p̂ ∈ {p̂hold, p̂pull, p̂l , p̂r}
located off the cables onto the cable mask obtained by color
thresholding from the background.

We train LOKI on 3,000 200× 200 crops of simulated
images of crossings of red and white cables in Blender
2.80 [10]. Offset heatmap labels are generated in simulation
by producing 2D Gaussian distributions centered along the
cable width with a standard deviation of 5 px. SPiDERMan
detects when to perform Recovery actions via analytical
methods for sensing cable contours in the workspace [22].

B. Tiers of Difficulty
Across all difficulty tiers, the knots considered are dense

and depicted in Figure 4. The tiers are defined by the number
of cables in the knot and whether the class of knots was
present in the training dataset.

Tier 1: Two-cable knots where the class of knots was
present in the training dataset (two-cable twists, Carrick
Bend, Sheet Bend, and Square knots).



Tier Color Success Rate Disentangling Actions Recovery Actions Total Actions Failure Modes
1 r-w 12/12 7 0 7.5 A (0), B (0), C (0), D (0)
1 w-w 10/12 11.5 1 12.5 A (0), B (0), C (1), D (1)
2 r-w 7/12 19 0 20 A (1), B (1), C (1), D (2)
2 w-w 9/12 15.5 2 15 A (0), B (1), C (2), D (0)
3 r-w-w 11/12 16 1 17 A (0), B (0), C (0), D (1)
3 w-w-w 9/12 15 1 16 A (0), B (1), C (0), D (2)

TABLE I: Physical Results: We report the success rate and median number of actions to fully disentangle all cables in a scene using the physical
implementation of IRON-MAN. We consider sets of cables that are all similarly colored (white-white) and differently colored (red-white). This
implementation disentangles two cables in Tier 1 and 2 configurations and three cables in Tier 3 configurations with 80.5% success overall. We observe
four failure modes: (A) one or more cables springing out of the manipulation workspace, (B) gripper collision in high-density configurations, (C) exceeding
a maximum number of disentangling actions, and (D) moving entangled cables to the terminated workspace.

Fig. 4: Tiers of Configuration Difficulty: The configurations considered in
this paper are organized into 3 tiers based on the number of cables in the
knot and whether the class of knot was present in training data images. For
each configuration, we consider both settings where cables have contrasting
colors (red and white) and where cables are of the same color (all white).

Tier 2: Two-cable knots where the class of knots was
not present in the training dataset (Crown, Fisherman’s, and
two-cable Overhand knots).

Tier 3: Three-cable knots where the class of knots was
not present in the training dataset (braids, three-cable Carrick
Bend, three-cable Sheet Bend, and three-cable Square knots).

C. Experimental Setup

We use a da Vinci Research Kit (dVRK) surgical robot
with two 7-DOF arms to untie 2 or 3 cut elastic hairties of
diameter 5 mm and length 15 cm. We chose to disentangle
hairties, as they have a smooth surface and fit well in the
dVRK’s end effector. We also use a foam padded stage
on which the hairties rest during experiments. This helps
to avoid end effector damage under collisions with the
manipulation surface and creates friction with the hairties to
prevent them from sliding out of the workspace. We collect
1920×1200 overhead RGB images for perception inference
with a Zivid OnePlus RGBD camera.

D. Results

Table I presents the results from the physical trials. IRON-
MAN succeeds in disentangling all cables 91.6%, 66.6%, and
83.3% of the time on Tier 1, Tier 2, and Tier 3 configurations,
respectively. The success rates drop for the knots in Tiers 2

and 3, as they are not present in training data images. In
successful cases, both the number of disentangling actions
(Node Deletion and Cable Extraction moves) and the number
of SPiDERMan Recovery actions (Re-posing and Wedge
Recovery moves) also increase in these tiers.

E. Failure Modes

In the disentangling experiments, the physical implemen-
tation of IRON-MAN encounters four failure modes:

(A) One or more cables springing out of the reachable
manipulation workspace due to elastic cable physics.

(B) Robot gripper jaws colliding when executing Node
Deletion moves in high-density cable configurations.

(C) Exceeding a maximum threshold of 20, 30, and 30
disentangling actions for Tiers 1, 2, and 3 respectively,
due to repeatedly-poor action predictions and execu-
tions.The reason for the difference in the maximum
allowable actions is because the class of Tier 1 knots
was seen in training while Tier 2 and Tier 3 were not.

(D) Semi-disentangled cables dropped in the termination
area rather than fully disentangled cables, due to poorly-
executed Cable Extraction moves that do not effectively
pin down remaining cables in the scene.

We observe the most common failure mode to be moving
semi-disentangled (rather than fully disentangled) cables to
the termination area with poor Cable Extraction manipulation
(D). When the left arm does not effectively pin the remaining
cables in the scene, high cable friction causes multiple cables
to be moved with the grasped semi-disentangled cable into
the termination area without removing trivial crossings. We
also observe two manipulation failure modes relating to
cable grasps. Due to the hairties’ elastic properties, poor
cable grasps occasionally cause one or more cables to spring
out of the reachable manipulation workspace, which yields
an irrecoverable state (A). In high-density configurations,
disentangling actions often require gripper jaws to grasp
adjacent cable segments that are very close together. These
grasps may cause gripper jaw collision, which requires
human intervention to reset the robot and is deemed a failure
(B). We limit the number of disentangling actions to 20
actions for Tier 1 configurations and 30 actions for Tier
2 and 3 configurations to end rollouts when the robot is
repeatedly unable to execute effective disentangling actions
in pathological high-density configurations where gripper
jaws cannot grasp between cable segments (C).



VII. DISCUSSION AND FUTURE WORK

We formalize the problem of autonomously disentangling
multiple cables and present IRON-MAN, a geometric algo-
rithm for disentangling multiple-cable knots. IRON-MAN,
iteratively undoes inter-cable and intra-cable crossings by
operating on a graphical representation of the cable. We
then build on the perception driven untangling approaches
from prior work (HULK, LOKI, SPiDERMan) to instantiate
IRON-MAN for disentangling cables on a physical robotic
system using image inputs. Experiments suggest that the
physical implementation of IRON-MAN can disentangle up
to three cables with 80.5% success. In future work, we
will extend IRON-MAN and its physical implementation to
scenarios where one endpoint is fixed or where cables are
tangled with rigid objects such as electrical appliances or
tools.
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