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Learning ambidextrous robot grasping policies
Jeffrey Mahler1,2*, Matthew Matl1, Vishal Satish1, Michael Danielczuk1, Bill DeRose2,
Stephen McKinley2, Ken Goldberg1,2

Universal picking (UP), or reliable robot grasping of a diverse range of novel objects from heaps, is a grand challenge
for e-commerceorder fulfillment,manufacturing, inspection, andhome service robots. Optimizing the rate, reliability,
and range of UP is difficult due to inherent uncertainty in sensing, control, and contact physics. This paper explores
“ambidextrous” robot grasping,where two ormore heterogeneous grippers are used.We present Dexterity Network
(Dex-Net) 4.0, a substantial extension to previous versions of Dex-Net that learns policies for a given set of grippers
by training on synthetic datasets using domain randomization with analytic models of physics and geometry. We
train policies for a parallel-jaw and a vacuum-based suction cup gripper on 5 million synthetic depth images,
grasps, and rewards generated from heaps of three-dimensional objects. On a physical robot with two grippers,
the Dex-Net 4.0 policy consistently clears bins of up to 25 novel objects with reliability greater than 95% at a rate of
more than 300 mean picks per hour.
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INTRODUCTION
Universal picking (UP), or the ability of robots to rapidly and reliably
grasp a wide range of novel objects, can benefit applications in ware-
housing, manufacturing, medicine, retail, and service robots. UP is
highly challenging because of inherent limitations in robot perception
and control. Sensor noise and occlusions obscure the exact geometry
and position of objects in the environment. Parameters governing
physics such as center of mass and friction cannot be observed directly.
Imprecise actuation and calibration lead to inaccuracies in arm
positioning. Thus, a policy for UP cannot assume precise knowledge
of the state of the robot or objects in the environment.

One approach to UP is to create a database of grasps on three-
dimensional (3D) object models using grasp performance metrics
derived from geometry and physics (1, 2) with stochastic sampling
to model uncertainty (3, 4). This analytic method requires a percep-
tion system to register sensor data to known objects and does not gen-
eralize well to a large variety of novel objects in practice (5, 6). A
second approach uses machine learning to train function approxima-
tors such as deep neural networks to predict the probability of success
of candidate grasps from images using large training datasets of em-
pirical successes and failures. Training datasets are collected from
humans (7–9) or physical experiments (10–12). Collecting such data
may be tedious and prone to inaccuracies due to changes in calibration
or hardware (13).

To reduce the cost of data collection, we explored a hybrid ap-
proach that uses models from geometry and mechanics to generate
synthetic training datasets. However, policies trained on synthetic data
may have reduced performance on a physical robot due to inherent
differences between models and real-world systems. This simulation-
to-reality transfer problem is a long-standing challenge in robot
learning (14–17). To bridge the gap, the hybrid method uses domain
randomization (17–22) over objects, sensors, and physical parameters.
This encourages policies to learn grasps that are robust to imprecision
in sensing, control, and physics. Furthermore, themethod plans grasps
based on depth images, which can be simulated accurately using ray
tracing (18, 19, 23) and are invariant to object color (24).
The hybrid approach has been used to learn reliable UP policies on
a physical robot with a single gripper (25–28). However, different
grasp modalities are needed to reliably handle a wide range of objects
in practice. For example, vacuum-based suction-cup grippers can eas-
ily grasp objects with nonporous, planar surfaces such as boxes, but
they may not be able to grasp small objects, such as paper clips, or
porous objects, such as cloth.

In applications such as the Amazon Robotics Challenge, it is com-
mon to expand range by equipping robots with more than one end ef-
fector (e.g., both a parallel-jaw gripper and a suction cup). Domain
experts typically hand-code a policy to decide which gripper to use at
runtime (29–32). These hand-coded strategies are difficult to tune and
may be difficult to extend to new cameras, grippers, and robots.

Here, we introduce “ambidextrous” robot policy learning using the
hybrid approach to UP. We propose the Dexterity Network (Dex-Net)
4.0 dataset generation model, extending the gripper-specific models of
Dex-Net 2.0 (19) and Dex-Net 3.0 (19). The framework evaluates all
grasps with a commonmetric: expectedwrench resistance, or the ability
to resist task-specific forces and torques, such as gravity, under random
perturbations.

We implement the model for a parallel-jaw gripper and a vacuum-
based suction cup gripper and generate theDex-Net 4.0 training dataset
containing more than 5 million grasps associated with synthetic point
clouds and grasp metrics computed from 1664 unique 3D objects in
simulated heaps. We train separate Grasp Quality Convolutional Neu-
ral Networks (GQ-CNNs) for each gripper and combine them to plan
grasps for objects in a given point cloud.

The contributions of this paper are as follows:
1) A partially observable Markov decision process (POMDP)

framework for ambidextrous robot grasping based on robust wrench
resistance as a common reward function.

2) An ambidextrous grasping policy trained on the Dex-Net 4.0
dataset that plans a grasp to maximize quality using a separate GQ-
CNN for each gripper.

3) Experiments evaluating performance on bin picking with heaps
of up to 50 diverse, novel objects and an ABB YuMi robot with a
parallel-jaw and suction-cup gripper in comparison with hand-coded
and learned baselines.

Experiments suggest that the Dex-Net 4.0 policy achieves 95% relia-
bility on a physical robot with 300 mean picks per hour (MPPH) (suc-
cessful grasps per hour).
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RESULTS
Ambidextrous robot grasping
We consider the problem of ambidextrous grasping of a wide range of
novel objects from cluttered heaps using a robot with a depth camera and
twoormore available grippers, such as a vacuum-based suction-cup grip-
per and/or a parallel-jaw gripper. To provide context for the metrics and
approaches considered in experiments, we formalize this problem as a
POMDP (33) inwhich a robot plans grasps tomaximize expected reward
(probability of grasp success) given imperfect observations of the
environment.

A robot with an overhead depth camera views a heap of novel
objects in a bin. On grasp attempt t, a robot observes a point cloud
yt from the depth camera. The robot uses a policy ut = p(yt) to plan
a grasp action ut for a gripper g consisting of a 3D rigid position and
orientation of the gripperTg = (Rg, tg) ∈ SE (3). Upon executing ut, the
robot receives a reward Rt = 1 if it successfully lifts and transports ex-
actly one object from the bin to a receptacle and Rt = 0 otherwise. The
observations and rewards depend on a latent state xt that is unknown
to the robot and describes geometry, pose, center ofmass, andmaterial
properties of each object. After either the bin is empty or T total grasp
attempts, the process terminates.

These variables evolve according to an environment distribution
that reflects sensor noise, control imprecision, and variation in the
initial bin state:

1) Initial state distribution. Let p(x0) be a distribution over pos-
sible states of the environment that the robot is expected to handle
due to variation in objects and tolerances in camera positioning.

2) Observation distribution. Let p(yt|xt) be a distribution over
observations given a state due to sensor noise and tolerances in
the camera optical parameters.

3) Transition distribution. Let p(xt+1|xt,ut) be a distribution over
next states given the current state and grasp action due to im-
precision in control and physics.

The goal is to learn a policy p to maximize the rate of reward, or
MPPH r, up to a maximum of T grasp attempts:

rðpÞ ¼ E ∑
T�1

t¼0
Rt

 !�
∑
T�1

t¼0
Dt

 !" #

where T is the number of grasp attempts and Dt is the duration of
executing grasp action ut in hours. The expectation is taken with
respect to the environment distribution:

pðx0; y0;…; xT ; yT jpÞ ¼ pðx0Þ ∏
T�1

t¼0
pðyt jxtÞpðxtþ1jxt ; pðytÞÞ

It is common to measure performance in terms of the mean rate v
and reliabilityF (also known as the success rate) of a grasping policy for
a given range of objects:

n ¼ 1=E½Dt � FðpÞ ¼ E 1
T
∑

T�1

t¼0
Rt

� �

If the time per grasp is constant, theMPPH is the product of rate and
reliability: r = vF.

Learning from synthetic data
We propose a hybrid approach to ambidextrous grasping that learns
policies on synthetic training datasets generated using analytic models
Mahler et al., Sci. Robot. 4, eaau4984 (2019) 16 January 2019
and domain randomization over a diverse range of objects, cameras,
and parameters of physics for robust transfer from simulation to reality
(17, 20, 22). Themethod optimizes for a policy tomaximizeMPPH un-
der the assumption of a constant time per grasp: p* ¼ argmaxp FðpÞ.

To learn a policy, the method uses a training dataset generation
distribution based onmodels from physics and geometry, m, to compu-
tationally synthesize a massive training dataset of point clouds, grasps,
and reward labels for heterogeneous grippers. The distribution m con-
sists of two stochastic components: (i) a synthetic training environment
x(y0, R0,…, yT, RT|p) that can sample paired observations and rewards
given a policy and (ii) a data collection policy t(ut|xt, yt) that can sample
a diverse set of grasps using full-state knowledge. The synthetic training
environment simulates grasp outcomes by evaluating rewards
according to the ability of a grasp to resist forces and torques due to
gravity and random peturbations. The environment also stochastically
samples heaps of 3D objects in a bin and renders depth images of the
scene using domain randomization over the camera position, focal
length, and optical center pixel. The dataset collection policy evaluates
actions in the synthetic training environment using algorithmic super-
vision to guide learning toward successful grasps.

We explore large-scale supervised learning on samples from m to
train the ambidextrous policy pq across a set of two or more available
grippers G, as illustrated in Fig. 1. First, we sample a massive training
datasetD ¼ fðRiyiuiÞgNi¼1 from a software implementation of m. Then,
we learn a GC-CNN Qq,g(y, u) ∈ [0, 1] to estimate the probability of
success for a grasp with gripper g given a depth image. Specifically,
we optimize the weights qg to minimize the cross entropy loss L be-
tween the GQ-CNN prediction and the true reward over the datasetD:

q*g ¼ argmin
qg∈Q

∑
ðRi;ui;yiÞ∈Dg

LðRi;Qqðyi; uiÞÞ

whereDg denotes the subset of the training datasetDcontaining only
grasps for gripper g. We construct a robot policy pq from the GQ-
CNNs by planning the grasp that maximizes quality across all avail-
able grippers:

pqðytÞ ¼ argmax
g∈G

max
ug∈Ug

Qq;gðyt ;ugÞ
� �

where Ug is a set of candidate grasps for gripper g sampled from the
depth image.

To evaluate themethod,we learn theDex-Net 4.0 ambidextrous pol-
icy on the Dex-Net 4.0 training dataset, which contains 5 million syn-
thetic point clouds, grasps, and reward labels. Dex-Net 4.0 is generated
from 5000 unique 3D object heaps with about 2.5 million data points
each for a vacuum-based suction-cup gripper and a parallel-jaw gripper.
Figure S1 analyzes the features learned by the Dex-Net 4.0 GQ-CNNs.

Physical experiments
We executedmore than 2500 grasp attempts on a physical robot system
with a parallel-jaw and suction-cup gripper to characterize the reliability
of the Dex-Net 4.0 policy on a bin-picking task with 50 novel test
objects. The experiments aimed to evaluate (i) the reliability and range
of the Dex-Net 4.0 policy compared with a set of baselines; (ii) the effect
of training dataset diversity, neural network architecture, and learning
from real data; and (iii) the failure modes of the Dex-Net 4.0 policy.

To analyze performance, we selected a dataset of 50 objects with di-
verse shapes, sizes, andmaterial properties. The dataset, described in the
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Supplementary Materials, includes retail products, groceries, tools, of-
fice supplies, toys, and 3D-printed industrial parts.We separated objects
into two difficulty levels with 25 objects each, illustrated in Fig. 2:

1) Level 1. Prismatic and circular solids (e.g., rectangular prisms,
spheres, and cylinders).

2) Level 2. Common household objects including examples with
flat cardboard backing and clear plastic covers (“blisterpack”), varied
geometry, and masses up to 500 g (the payload of the ABB YuMi).

For each trial, we placed all objects in the bin and allowed the
robot to iteratively attempt grasps until either no objects remained
or a maximum number of attempts were reached. Each grasp was
planned on the basis of a depth image from an overhead 3D camera.
For details on the experimental setup and procedure, see Materials
and Methods. A video of each grasp attempt is available in the Sup-
plementary Materials.

Comparison with baseline policies
We evaluated the Dex-Net 4.0 ambidextrous policy against three base-
lines in five independent trials. To compare with hand-coded methods
used in practice, we implemented a best-effort suction-only policy and
an ambidextrous policy based on geometric heuristics similar to those
used in the Amazon Robotics Challenge (29, 30, 32). To study the im-
portance of the consistent rewardmodel, we also evaluated a policy that
 by guest on January 29, 2019
://robotics.sciencem
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Fig. 1. Learning ambidextrous grasping policies for UP. (Top) Synthetic training
datasets of depth images, grasps, and rewards are generated froma set of 3D computer-
aided design (CAD) models using analytic models based on physics and domain ran-
domization. Specifically, a data collection policy proposes actions given a simulated
heap of objects, and the synthetic training environment evaluates rewards. Reward is
computed consistently across grippers by considering the ability of a grasp to resist a
given wrench (force and torque) based on the grasp wrench space, or the set of
wrenches that the grasp can resist through contact. (Middle) For each gripper, a policy
is trained by optimizing a deep GQ-CNN to predict the probability of grasp success
given a point cloud over a large training dataset containing millions of synthetic
examples from the training environment. Data points are labeled as successes (blue)
or failures (red) according to the analytic reward metric. (Bottom) The ambidextrous
policy is deployed on the real robot to select a gripper by maximizing grasp quality
using a separate GQ-CNN for each gripper.
Depth
Camera

Vacuum
Generator

Parallel-Jaw
Gripper

Suction Cup
Gripper

Load Cells

Fig. 2. Physical benchmark for evaluating UP policies. (Top) The robot plans a
grasp to iteratively transport each object from the picking bin (green) to a receptacle
(blue) using either a suction-cup or a parallel-jaw gripper. Grasp planning is based on
3D point clouds from an overhead Photoneo PhoXi S industrial depth camera.
(Bottom) Performance is evaluated on two datasets of novel test objects not used
in training. (Left-Bottom) Level 1 objects consist of prismatic and circular solids (e.g.,
boxes and cylinders) spanning groceries, toys, and medicine. (Right-Bottom) Level 2
objects are more challenging, including common objects with clear plastic and varied
geometry, such as products with cardboard blisterpack packaging.
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ranks grasps using Dex-Net 2.0 and 3.0 fine-tuned on simulated heaps
with separate reward metrics for each gripper (see Materials and
Methods for details).

Figure 3 shows the performance on the two object datasets. Dex-
Net 4.0 achieves the highest success rate across all object datasets
with a reliability of 97 and 95% on the level 1 and level 2 objects, re-
spectively. The policy uses the suction cup gripper on 82% of grasps.
The best baseline method has a reliability of 93 and 80%, respective-
ly. Analysis of the number of objects picked versus the number of
attempts suggests that the baseline methods take longer to clear the
last few objects from the bin, sometimes failing to clear several of
the objects.

We detail additionalmetrics for each policy in Table 1, including the
reliability andMPPH of the learned quality functions. The Dex-Net 4.0
policy has the highest reliability on both level 1 and level 2 objects. The
policy has a slightly lower MPPH than the suction heuristic on the
level 1 objects because the heuristic can be evaluatedmore rapidly than
the GQ-CNN.

We analyze the per-object reliability of each policy in fig. S2. The
results suggest that differences in reliability between the policies on the
level 1 objects may be due to specific configurations of objects (e.g., a
thin object leaning against a wall of the bin) rather than the objects
themselves. Figure S3 details the difficulty of each object according
to the reliability across all policies. The most difficult objects were a
box of Q-tips, a bottle of mustard, and the “bialetti,” an espresso filter
in a thin blisterpack package.

To further quantify the range of the Dex-Net 4.0 ambidextrous pol-
icy, we measured the performance of grasping each of the 50 objects
from level 1 and level 2 in isolation in the bin for five attempts each.
Dex-Net 4.0 achieved 98% reliability versus 52 and 94% reliability for
the Dex-Net 2.0 and 3.0 policies, respectively.

Performance with large heaps
To investigate whether heap size affects performance, we benchmarked
the policy on a dataset of 50 test objects combining all objects from the
level 1 and level 2 datasets. Figure 3 displays the results for five
independent trials with each policy. Dex-Net 4.0 has the highest relia-
bility at 90%. In comparison, the performance of the heuristics is rela-
tively unchanged, with success rates near 80%. Some failures ofDex-Net
4.0 are due to attempts to lift objects from underneath others.

Effects of training dataset diversity
We quantified the importance of dataset diversity by training the
GQ-CNNs on three alternative synthetic training datasets:

1) Fewer unique objects: 100 unique 3D objects in 2500
unique heaps.

2) Very few unique heaps: 1664 unique 3D objects in 100
unique heaps.

3) Fewer unique heaps: 1664 unique 3Dobjects in 500 unique heaps.
Figure 3 displays the performance on level 1 and level 2 objects.

The policies have reduced reliability and appeared to be particular-
ly sensitive to the number of unique heaps used in training.

Varying the neural network architecture
We studied whether changes to the neural network architecture affect
the performance of the resulting policy by training on the Dex-Net 4.0
dataset using the “Improved GQ-CNN” architecture (34). As seen in
Fig. 3, the architecture has comparable performance with the standard
GQ-CNN architecture.
Mahler et al., Sci. Robot. 4, eaau4984 (2019) 16 January 2019
Training on physical grasp outcomes
We also explored whether performance can be improved by training on
labeled grasp attempts on a physical system.We used a dataset of more
than 13,000 labeled grasp attempts collected over 6 months of
experiments and demonstrations of the system. About 5000 data points
were labeled by human operators, and the remaining 8000 were labeled
automatically using weight differences measured by load cells.

We trained 10 variants of theDex-Net 4.0 policy on varying ratios of
synthetic and real data using fine-tuning on the fully connected (FC)
layers, including a model trained on only empirical data (see Materials
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Fig. 3. Performance of the Dex-Net 4.0 ambidextrous policy on the bin picking
benchmark. Error bars show the 95% confidence interval on reliability using the
standard error of the mean (SEM). (A) Comparison with three baseline methods on
level 1 and level 2 objects on heaps of 25 novel objects: (i) a hand-coded heuristic for
the suction cup [Heuristic (suction)], (ii) a hand-coded heuristic for selecting between
suction-cup and parallel-jaw grippers [Heuristic (comp)], and (iii) an ambidextrous
policy fine-tuned on simulated heaps from the Dex-Net 2.0 and 3.0 base GQ-CNNs and
rewardmetrics. For reference, the best possible performance (succeeding on every pick
until the bin is cleared) is illustrated with a dashed-dotted black line. (B) Performance
with large heaps of 50 novel objects. (C) Ablation studymeasuring the effect of train-
ing on less diverse datasetswith either fewer uniqueheapsor fewer unique3Dobject
models. (D) Performance of two training alternatives: the improved GQ-CNN (Imp-
GQ-CNN) architecture (34) and fine-tuning (FT) on 13,000 real data points.
4 of 11

http://robotics.sciencemag.org/


SC I ENCE ROBOT I C S | R E S EARCH ART I C L E

 by guest on Janua
http://robotics.sciencem

ag.org/
D

ow
nloaded from

 

andMethods for details). The best-performing empirically trained pol-
icy had comparable reliability with the original Dex-Net 4.0 policy on
the physical benchmark, as shown in Fig. 3, and did not lead to substan-
tial performance increases.

Adversarial objects
To probe the boundaries of the range of theDex-Net 4.0 policy, we eval-
uated its performance on a third object dataset that contained 25 novel
objects with few accessible and perceptible grasps due to adversarial ge-
ometry, transparency, specularity, and deformability. The results are
illustrated in Fig. 4. Dex-Net 4.0 was still the highest performing policy,
but the reliability was reduced to 63%.

Failures of the Dex-Net 4.0 policy often occur several times in
sequence. To characterize these sequential failures, we explored a
first-order memory-based policy to encourage exploration upon re-
peated failures, a technique that has been used to improve performance
in the Amazon Robotics Challenge (32). The policy uses an instance
recognition system to match object segments to previous failures in a
database (12) and pushes objects to create accessible grasps when none
are available (see Materials and Methods for details on the memory-
based policy). The addition of memory increased the reliability to
80% at 242 MPPH.
ry 29, 2019
DISCUSSION
Experiments suggest that ambidextrous policies trained on Dex-Net
4.0 achieve high reliability on novel objects on a physical robot, with
more than 95% reliability on heaps of 25 novel objects at more than
300MPPH. Dex-Net 4.0 outperforms hand-coded baselines similar to
those used in applications such as the Amazon Robotics Challenge
and also outperforms an ambidextrous policy based on previous ver-
sions of Dex-Net that use separate reward functions for each gripper.
This suggests that learning with consistent reward functions across
grippers can lead to increased reliability on a physical robot.

Experiments also suggest that performance is sensitive to several
factors. Heaps containing more objects lead to decreased reliability be-
cause the policy attempts to lift objects that are occluded by others in the
heap. Performance also depends on the diversity of the training dataset,
with more diverse datasets leading to higher performance on a physical
robot. Last, performance varies based on the test objects, with more
complex geometries andmaterial properties leading to reduced reliabil-
ity. Use of a memory system can help compensate for repeated failures,
increasing reliability on adversarial objects from 63 to 80%.
Mahler et al., Sci. Robot. 4, eaau4984 (2019) 16 January 2019
Benefits of ambidextrous grasping
The experimental results highlight the advantage of using a set of two or
more heterogeneous grippers. Although a policy with only a single suc-
tion cup can achieve high reliability on the level 1 prismatic and circular
objects, performance drops to 80% on the level 2 objects with more
complex geometry. In comparison, the ambidextrous grasping policy
uses the parallel jaws on 20%of grasp attempts to achieve 95% reliability
on the level 2 objects. Furthermore, a consistent reward appears to be
important for learning an ambidextrous policy to reliably decide be-
tween grippers. However, this study only considers a single combina-
tion of grippers. Future research could study applications to new
grippers, such as two-finger underactuated hands or multi–suction-
cup arrays. Future work could also consider extensions of ambidextrous
grasping, such as simultaneous graspingwithmultiple arms or planning
grasps for three or more grippers.

Physics-based reward design
The results of this paper also suggest that analytic quasi-static grasp
quality metrics (35, 36) with domain randomization can be used as a
computationally efficient reward function for learning ambidextrous
grasping policies that are robust to sensor noise and imprecision. This
stands in contrast to past research (5, 6) that has criticized quasi-static
metrics for making strong assumptions and considering only a neces-
sary, not sufficient, condition for dynamic grasp stability. Experiments
suggest that theDex-Net 4.0 policy generalizes to objects with deform-
able surfaces, moving parts, and transparencies that do not satisfy the
assumptions of the analytic metrics. This may be because grasps with
high analytic quality over a diverse range of 3D objects tend to corre-
late with grasp affordances: geometric features of objects that facilitate
grasping, such as handles or flat suctionable surfaces. Further studies
may be necessary to understand why grasps are often dynamically sta-
ble in practice. One hypothesis is that material compliance in the fin-
gertips acts as a passive stability controller. Future research could
investigate whether this result generalizes to additional grippers such
as multifingered (20) or soft hands (37).

Bias-variance tradeoff in dataset collection
Experiments suggest that a policy fine-tuned on 13,000 examples
collected from physical experiments does not substantially improve
theDex-Net 4.0 ambidextrous grasping policy trained on only synthetic
data. This may appear counterintuitive, because the model used to gen-
erate synthetic training data cannot possibly model the exact behavior
of the real-world system and therefore may induce bias (38). This may
Table 1. Detailed performance analysis of the Dex-Net 4.0 and baseline policies on the bin-picking benchmark for five trials on level 1 and level 2
datasets of 25 novel objects each. We report the reliability, MPPH, average precision (AP), total number of grasps attempts (minimum of 125), and total
number of failures.
Level 1
 Level 2
Policy R
eliability (%) M
PPH A
P (%) N
o. of attempts N
o. of failures R
eliability (%) M
PPH A
P (%) N
o. of attempts N
o. of failures
Heuristic (suction)
 93
 331
 95
 135
 10
 80
 304
 87
 156
 31
Heuristic (composite)
 91
 281
 93
 139
 14
 76
 238
 83
 168
 43
Dex-Net 2 and 3 composite
 91
 306
 93
 135
 10
 76
 255
 64
 168
 43
Dex-Net 4.0
 97
 309
 100
 129
 4
 95
 312
 99
 131
 6
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relate to the bias-variance tradeoff in machine learning (39). Although
the tradeoff is typically analyzed in terms of the function class, the
results of this paper suggest that the training data distribution is also
relevant. Using a biased model for rapid data collection may improve
the scale and consistency of training datasets, leading to better
performance on a physical system in comparison with methods based
on smaller training datasets with high rates of mislabeled examples. Fu-
Mahler et al., Sci. Robot. 4, eaau4984 (2019) 16 January 2019
ture research could consider novel methods for learning with a combi-
nation of synthetic and real data, such as using analytic models to guide
empirical data collection.

Sequential learning for UP
Finding a policy to maximize MPPH is inherently a sequential learning
problem, in which grasp actions affect future states of the heap. Theory
on imitation learning (40) and reinforcement learning (41) suggests that
policies should take actions that lead to states with high expected future
reward to guarantee high reliability. However, experiments in this paper
suggest that the Dex-Net 4.0 policy performs well on the sequential task
of bin picking, although it was trained with supervised learning to
greedily maximize the probability of success for a single timestep. This
suggests that performance is not particularly sensitive to the sequence of
states of the object heap. This may be due to the random configuration
of objects, which often have one or more exposed graspable surfaces in
every state of the heap. Furthermore, performance may be increased on
difficult objects by augmenting the policy with a memory system that
avoids repeated mistakes.

Application to different sensors and grippers
The Dex-Net 4.0 method for training UP policies could be applied to
other objects, cameras, and grippers by implementing a new dataset
generation distribution and training a new GQ-CNN on samples from
this distribution. For example, objects could be placed in structured con-
figurations, such as packed in boxes or placed on shelves, and camera
intrinsic parameters could be set to model a different sensor. However,
the experiments in this paper are limited in scope. This study only eval-
uates performance on heaps of 50 unique, randomly arranged objects,
which do not represent all possible object geometries. Furthermore, the
hardware benchmark uses only one industrial high-resolution depth
camera positioned directly overhead. The experiments only test a single
parallel-jaw and vacuum-based suction cup gripper. Last, the con-
stant time assumption that relates MPPHmaximization to supervised
learningmay not be applicable to all robot picking systems. For exam-
ple, there may be a time cost for switching grippers due to time spent
physically mounting each tool. Future studies could evaluate per-
formance in new applications with variations in objects, cameras, grip-
pers, and robots.

Opportunities for future research
The most common failure modes of the policy are (i) attempting
to grasp objects that are occluded due to overlap in the heap and
(ii) repeated failures on objects with adversarial geometry and mate-
rial properties. A subset of objects that cannot yet be reliably grasped
with Dex-Net 4.0 is pictured in Fig. 4. One category includes objects
imperceptible to a depth camera, such as those with transparent or
specular surfaces. Another category is characterized by structured
surface variations, such as parallel lines or buttons on a remote, which
can trigger false positives in the suction network. Other classes include
porous objects and objects with loose packaging.

Some failuremodes could be addressed by increasing the diversity of
objects in the training dataset or improving the dataset generation
model. Rendering synthetic color images using domain randomization
(17) could enable the system to grasp transparent, specular, or highly
textured objects. Models of deformation and porosity could be used
to reduce suction failures due to incorrect assumptions of the Dex-
Net 4.0 model. The reward model could also be extended to compute
the wrench set from all contacts between objects instead of only
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Fig. 4. Failure modes of the Dex-Net 4.0 policy. Error bars show the 95% con-
fidence interval on reliability using the SEM. (A) Performance on level 3: a dataset
of 25 novel objects with adversarial geometry and material properties. (B) Evalu-
ation of a first-order memory-based policy for UP that masks regions of the point
cloud with an instance recognition system to avoid repeated failures. (C) Patho-
logical objects that cannot be grasped with Dex-Net 4.0 due to reflectance prop-
erties such as transparency, which affect depth sensing, and material properties
such as porosity and deformability (e.g., loose packaging), which affect the ability
to form a vacuum seal on the object surface.
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considering the grippers and gravity, which could reduce failures due
to object overlap.

Other extensions could substantially increase the reliability and
range. The observed performance increase on the level 3 objects using
a first-order memory system suggests that reinforcement learning
could be used to reduce repeated failures. Furthermore, training on
larger datasets of empirically collected data could reduce the
simulation-to-reality gap. Another way to increase rate is to use
feedback policies that actively regrasp dropped objects based on visual
servoing (10, 28, 42), force sensing (43–45), or tactile sensing (46–49).
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MATERIALS AND METHODS
Synthetic training environment
The Dex-Net 4.0 synthetic training environment is based on the
following assumptions: (i) quasi-static physics (e.g., inertial terms
are negligible) with Coulomb friction, (ii) objects are rigid and made
of nonporous material, (iii) the robot has a single overhead depth sen-
sorwith known intrinsics, and (iv) the robot has two end effectors with
known geometry—a vacuum-based gripper consisting of a single disc-
shaped linear-elastic suction-cup and a parallel-jaw gripper (see the
Supplementary Materials for detailed values of parameters). Dex-Net
4.0 uses the POMDP definition described in the following sections.
States
Let x ¼ ðO1;…Om; C;w1;…wmÞ denote the state of the environment
at time t, consisting of a single overhead depth camera, a set of objects,
and a perturbation wrench on each object (e.g., gravity and distur-
bances). Each object stateOi specifies the geometryMi, pose To,i, fric-
tion coefficient gi, and center of mass zi. The camera stateC specifies the
intrinsic parameters I and pose Tc. Each wrench wi is specified as a
vector wi ∈ ℝ6.
Grasp actions
Let us∈ Us denote a suction grasp in 3D space defined by a suction
gripper Gs and a rigid pose of the gripper Ts = (Rs, ts) ∈ SE(3),
where the rotation Rs ∈ SO(3) defines the orientation of the suction
tip and the translation ts ∈ ℝ3 specifies the target location for the
center of the suction disc. Let up∈ Up denote a parallel-jaw grasp in
3D space defined by a parallel-jaw gripper Gp and a rigid pose of the
gripper Tp = (Rp, tp) ∈ SE(3), where the rotation Rp ∈ SO(3) defines
the grasp axis and approach direction and the translation tp ∈ ℝ3

specifies the target center point of the jaws. The set of all possible
grasps is U ¼ Us∪ Up.
Point clouds
Let y ¼ ℝH�W

þ be a 2.5D point cloud represented as a depth image
with height H and width W taken by a camera with known intrin-
sics (50).
State distribution
The initial state distribution x(x0) is the product of distributions
on (26):

1) Object count (m): Poisson distribution with mean l truncat-
ed to [1, 10].

2) Object heap (O): Uniform distribution over 3D object models
and the pose from which each model is dropped into the heap.
Objects are sampled without replacement.

3) Depth camera (C): Uniform distribution over the camera pose
and intrinsic parameters.

4) Coulomb friction (g): Truncated Gaussian constrained to [0, 1].
The initial state is sampled by drawing an object countm, drawing

a subset of m objects, dropping the objects one by one from a fixed
Mahler et al., Sci. Robot. 4, eaau4984 (2019) 16 January 2019
height above the bin, and running dynamic simulation with pybullet
(51) until all objects have about zero velocity. The 3D object models
are sampled from a dataset of 1664 3D objects models selected to re-
flect a broad range of products that are commonly encountered in ap-
plications such as warehousing, manufacturing, or home decluttering.
The dataset was augmented with synthetic blisterpack meshes to re-
flect cardboard-backed products encountered in retail applications.
Augmentation was performed by placing each source mesh in a quasi-
static stable resting pose (52) on an infinite planar work surface and
attaching a thin, flat segment to the mesh at the triangle(s) touching the
work surface.
Observation distribution
Depth image observations are rendered using the open source Python
librarymeshrender using randomization in the camera focal length and
optical center pixel. Nonoisewas added to the rendered images, because
experiments used a high-resolution Photoneo PhoXi S industrial depth
camera.
Reward distribution
Binary rewards occur when a quasi-static equilibrium is feasible be-
tween the grasp and an external wrench perturbation (e.g., due to
gravity or inertia). Let Oi∈xt be an object contacted by the gripper
when executing action ut. Then, we measure grasp success with a
binary-valued metric S(xt, ut) ∈ {0, 1} that evaluates the following
conditions.

1) The gripper geometry in the pose specified by ut is collision free.
2) The gripper contacts exactly one objectOiwhen executing the

grasp parameterized by ut.
3) The grasp can resist a random disturbing force and torque

(wrench)wt =wg + ew on the grasped object withmore than 50% prob-
ability, where wg is the fixed wrench due to gravity and ew is a random
wrench sampled from a zero-mean Gaussian Nð0; s2wIÞ.

Given an object consisting of a geometryM in poseTo, the gripper g
(geometry and physical parameters such as friction) and grasp pose Tg

are used to determine the contacts c, or set of points and normals be-
tween the fingers and object. This set of contacts is used to compute the
set of wrenches L that the grasp can apply to the object under quasi-
static physics and a point contact model. Specifically, the wrench space
for grasp u using a contact model with m basis wrenches is L(u) =
{w ∈ℝ6|w =G(u)a for some a ∈F(u)}, as defined in (27). The grasp
matrix G(u) ∈ ℝ6 × m is a set of basis wrenches in the object coordinate
frame specifying the set of wrenches that the grasp can apply through
contact via active (e.g., joint torques) and passive (e.g., inertia) means.
The wrench constraint set F(u) ⊆ ℝm limits contact wrench magni-
tudes based on the capabilities of the gripper (1). Last, the grasp wrench
space is used to measure grasp reward based on wrench resistance, or
the ability of the grasp to resist a perturbation wrench w (e.g., due to
gravity) as defined in (27). The grasp reward R is 1 if the probability
of wrench resistance is greater than a threshold over M samples from
the stochastic model.

Data collection policy
The dataset collection policy t(ut|xt, yt) samples a mixture of actions
from the point cloud and from an algorithmic supervisor W(x) that
guides data toward successful grasps. Grasp actions are sampled from
the point cloud using the sampling techniques of (19) and (27) tomodel
the set of actions that the policy will evaluate when tested on real point
clouds. Because this distributionmay contain a very small percentage of
successful actions, we sample actions with high expected reward from
an algorithmic supervisor that evaluates grasps using full-state
7 of 11
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information (26). The supervisor precomputes grasps on a set of known
3D objects in a database [such as in Dex-Net 1.0 (53)] that are robust to
different possible orientations of each object. Because the state of each
object in the heap is not known ahead of time, the supervisor estimates
the probability of success, or quality, for each grasp over a large range of
possible object orientations using the Monte Carlo grasp computation
methods of Dex-Net 2.0 (19) and Dex-Net 3.0 (27). Given a full state of
the heap, the supervisor computes the set of collision-free grasps with
quality above a threshold for each object and then samples a grasp
uniformly at random from the candidate set. Formally, the supervisor-
guided data collection policy is

tðut jxt ; ytÞ ¼
WðxtÞ with prob: e

UnifðUgðytÞÞ otherwise

�

where UgðyÞ is the set of candidate actions sampled from the point
cloud with equal numbers of suction and parallel-jaw grasps. We use
e = 1% to favor actions sampled from the policy’s own action space.

Training details
The Dex-Net 4.0 training dataset contains a large set of labeled actions
for each point cloud to improve the computational efficiency of gener-
ating a single data point. Specifically, data points were generated using a
one–time stepMonte Carlo evaluation of reward for a large set of grasp
actions on eachunique object state. This leads to faster dataset collection
and can eliminate the need for fine-tuning, which is prone to a phenom-
enon known as “catastrophic forgetting” that can lead to unpredictable
failures of the grasping policy (54). Every sampled state from x(x) has
five associated depth images in Dex-Net 4.0, representing 3D point
clouds captured from randomized camera poses and intrinsic optical
parameters. Each image sampled from x(y|x) has a set of labeled actions
for each gripper with associated quality metrics. The intrinsic param-
eters for the virtual cameras were sampled around the nominal values
of a Photoneo PhoXi S industrial depth sensor. Images were converted
to 96 pixel–by–96 pixel training thumbnails translated to move the
grasp center to the thumbnail center pixel and rotated to align the grasp
approach direction or axis with the middle row of pixels for the suction
and parallel-jaw grippers, respectively.

The GQ-CNN architectures are similar to those used inDex-Net 2.0
(19) andDex-Net 3.0 (27) with two primary changes. First, we removed
local response normalization because experiments suggest that it does
not affect training performance. Second, we modified the sizes and
pooling of the following layers : conv1_1 (16 9 by 9 filters, 1× pooling),
conv1_2 (16 5 by 5 filters, 2× pooling), conv2_1 (16 5 by 5 filters, 1×
pooling), conv2_2 (16 5 by 5 filters, 2× pooling), fc3 (128 output neu-
rons), pc1 (16 output neurons), and fc4 (128 output neurons).

We trained each GQ-CNN using stochastic gradient descent with
momentum for 50 epochs using an 80-20 training-to-validation
image-wise split of the Dex-Net 4.0 dataset. We used a learning rate
of 0.01with an exponential decay of 0.95 every 0.5 epochs, amomentum
term of 0.9, and an ℓ2weight regularization of 0.0005.We initialized the
weights of themodel by sampling from a zero-meanGaussian with var-
iance 2

ni
, where ni is the number of inputs to the ith network layer (55).

To augment the dataset during training, we reflected each image about
its vertical and horizontal axes and rotated each image by 180° because
these lead to equivalent grasps. Training took about 24 hours on a single
NVIDIA TITANXp graphics processing unit (GPU). The learned GQ-
CNNs achieved 96 and 98% classification accuracy for the suction cup
and parallel-jaw grippers, respectively, on the held-out validation set.
Mahler et al., Sci. Robot. 4, eaau4984 (2019) 16 January 2019
Implementation of policies
Weused the trainedGQ-CNNs to plan grasps frompoint clouds on a
physical robot with derivative-free optimization to search for the highest-
quality grasp across both grippers. The policy optimizes for the highest-
quality grasp for each gripper separately, using the cross-entropymethod
(CEM) (10, 19, 27, 56), and then selects the grasps with the highest
estimated quality across the grippers. To avoid grasping the bin, we
constrained grasps to the foreground by subtracting out the background
pixels of the bin using a reference depth image of an empty bin. Grasps
were also constrained to be collision free with the bin to avoid damage
to the robot. Given the constraints, CEM sampled a set of initial can-
didate grasps uniformly at random from a point cloud and then itera-
tively resampled grasps from aGaussianmixturemodel fit to the grasps
with the highest estimated quality. For the suction-cup gripper, initial
candidate grasps were sampled by selecting a 3D point and choosing an
approach direction along the inward-facing surface normal. For the
parallel-jaw gripper, initial candidate grasps were sampled by finding
antipodal point pairs using friction cone analysis.

Study design
The objective of the UP benchmark is to measure the rate, reliability,
and range of the Dex-Net 4.0 policy in reference to baseline methods.
The number of trials and objects used in the benchmark was chosen to
maximize the number of unique grasp attempts and baseline policies
that could be evaluated in a fixed time budget. The objects were divided
into categories of 25 objects each based on difficulty to quantify the
range of each policy. Rather than experiment on hundreds of unique
objects, we used a reduced subset of 75 to evaluate a larger number of
grasps for each object given a 3-week time budget for experiments. A
grasp was considered successful if it lifted and transported exactly one
object from the bin to the receptacle. Successes and failures were labeled
by a human operator to avoid labeling errors due to hardware failures or
sensor calibration.

Experimental hardware setup
The experimental workspace is illustrated in Fig. 2. The benchmark
hardware system consists of an ABB YuMi bimanual industrial collab-
orative robot with an overhead Photoneo PhoXi S industrial 3D
scanner, a custom suction gripper, and custom 3D-printed parallel-
jaw fingers with silicone fingertips (57). The suction gripper consists
of a 20-mm-diameter silicone single-bellow suction cup seated in a
3D-printed housing mounted to the end of the right arm. The vacuum
was created by supplying compressed air from a JUN-AIR 18-40 quiet
air compressor to a VacMotion MSV-35 vacuum generator. The
payload of the suction system was about 0.9 kg with a vacuum flow
of about 8 standard cubic feet/min. Objects were grasped from a bin
mounted on top of a set of Loadstar load cells that measured the weight
with a resolution of about 5 g. Each gripper has a separate receptacle to
drop the objects into on the side of the bin.

Experimental procedure
Each experiment consisted of five independent trials in which the bin
was filled with a random configuration of one or more objects and the
robot attempted to pick each object from the bin and transport it to a
receptacle. Before each experiment, the camera position and orientation
relative to the robot weremeasured using a chessboard. In each trial, the
operator set a full dataset of objects in the bin by shaking the objects in a
box, placing the box upside down in the bin, and mixing the bin man-
ually to ensure that objects rested below the rim of the bin. Then, the
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robot iteratively attempted to pick objects from the bin. On each at-
tempt, the grasping policy received as input a point cloud of the objects
in the bin and returned a grasp action for exactly one of the grippers,
consisting of a pose for the gripper relative to the base of the robot.
Then, the ABB RAPID linear motion planner and controller were used
to move to the target pose, establish contact with the object, and drop
the object in the receptacle. The operator labeled the grasp as successful
if the robot lifted and transported the object to the receptacle on the side
of the workspace. The operator also labeled the identity of each grasped
object. A trial was considered complete after all objects were removed,
75 total attempts, or 10 consecutive failures. All experiments ran on a
desktop running Ubuntu 16.04 with a 3.4-GHz Intel Core i7-6700
quad-core central processing unit and an NVIDIA TITAN Xp GPU
[see the Supplementary Materials for a characterization of variables in
the benchmark (58)].

Description of baselines
We compared performance with three baselines:

1) Heuristic (suction). Ranked planar grasps based on the inverse
distance to the centroid of an object (30), where the object centroid
was estimated as the mean pixel of an object instance segmask from a
Euclidean clustering segmentation algorithm from the Point Cloud
Library (PCL) (59). Planarity was determined by evaluating the mean
squared error (MSE) of all 3D points within a sphere with a radius of
10 mm (based on the suction cup size) to the best-fit plane for the
points. Grasps were considered planar if either (i) the MSE was less
than an absolute threshold or (ii) the MSE was within the top 5% of
all candidate grasps. The hyperparameters were hand-coded to op-
timize performance on the physical robot.

2) Heuristic (composite). Ranked grasps planned with the suction
heuristic above and a parallel-jaw heuristic based on antipodality. The
parallel-jaw heuristic ranked antipodal grasps based on the inverse dis-
tance to the estimated centroid of an object, determining antipodality
based on estimated point cloud surface normals. The height of the grip-
per above the bin surface was a constant offset from the highest point
within the region of the grasp. The grasp closest to the estimated object
centroid across both grippers was selected for execution.

3) Dex-Net 2.0 and 3.0 composite. Ranked grasps based on the
estimated quality from separate GQ-CNNs trained to estimate the
quality of parallel-jaw and suction-cup grasps in clutter. The GQ-CNNs
were trained by fine-tuning the Dex-Net 2.0 and 3.0 base networks
on simulated heaps with imitation learning from an algorithmic su-
pervisor (26).

Details of empirical training
We train 10 variants of the Dex-Net 4.0 ambidextrous grasping policy
on a dataset of 13,000 real grasp attempts: training from scratch and
fine-tuning either all FC layers or only the last FC layer (fc5) on vary-
ing ratios of real to simulated data: 1:0, 1:1, 1:10, and 1:100. Each var-
iant was evaluated on the adversarial level 3 objects on the physical
robot, and the highest performing policy was the Dex-Net 4.0 policy
with the last FC layer fine-tuned on the 1:10 combined real and syn-
thetic dataset.

Details of memory system
To avoid repeated grasp failures, we implemented a first-ordermemory
system that associates regions of the point cloud with past failures. A
grasp was considered a failure if the weight reading from the load cells
changed less than 5 g after a grasp attempt. When a failure occurred,
Mahler et al., Sci. Robot. 4, eaau4984 (2019) 16 January 2019
the point cloud was segmented using PCL (59), and the segment
corresponding to the grasped object was associated with a region in
a grayscale image. The segmented image patch was featurized using
the VGG-16 network and stored in a failure database corresponding
to the gripper. On the next grasp attempt, the point cloud segments
were matched to the failure database using the VGG-16 featurization.
If a match was found, the region in the current image was marked as
forbidden to the grasp sampler for the Dex-Net 4.0 policy. Further-
more, if more than three consecutive failures occurred, then the
memory system rejected the planned grasp and used a pushing policy
(60) to perturb the objects in the bin.
SUPPLEMENTARY MATERIALS
robotics.sciencemag.org/cgi/content/full/4/26/eaau4984/DC1
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Fig. S1. Analysis of features learned by the GQ-CNNs from the ambidextrous grasping policy.
Fig. S2. Per-object reliability of each policy on each test object.
Fig. S3. Difficulty of each object from the test object datasets characterized by the overall
reliability averaged across methods.
Movie S1. Summary.
Raw data, code for data analysis, videos, and listing of objects used in experiments (.zip file)
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