
Artificial Intelligence 214 (2014) 1–25
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Potential-based bounded-cost search and Anytime
Non-Parametric A∗

Roni Stern a,∗, Ariel Felner a, Jur van den Berg b, Rami Puzis a, Rajat Shah c,
Ken Goldberg c

a Information Systems Engineering, Ben Gurion University, Be’er Sheva, Israel
b School of Computing, University of Utah, Salt Lake City, UT, USA
c University of California, Berkeley, CA, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 May 2012
Received in revised form 1 May 2014
Accepted 3 May 2014
Available online 10 May 2014

Keywords:
Heuristic search
Anytime algorithms
Robotics

This paper presents two new search algorithms: Potential Search (PTS) and Anytime
Potential Search/Anytime Non-Parametric A∗ (APTS/ANA∗). Both algorithms are based on
a new evaluation function that is easy to implement and does not require user-tuned
parameters. PTS is designed to solve bounded-cost search problems, which are problems
where the task is to find as fast as possible a solution under a given cost bound. APTS/ANA∗
is a non-parametric anytime search algorithm discovered independently by two research
groups via two very different derivations. In this paper, co-authored by researchers from
both groups, we present these derivations: as a sequence of calls to PTS and as a non-
parametric greedy variant of Anytime Repairing A∗.
We describe experiments that evaluate the new algorithms in the 15-puzzle, KPP-COM,
robot motion planning, gridworld navigation, and multiple sequence alignment search
domains. Our results suggest that when compared with previous anytime algorithms,
APTS/ANA∗: (1) does not require user-set parameters, (2) finds an initial solution faster,
(3) spends less time between solution improvements, (4) decreases the suboptimality
bound of the current-best solution more gradually, and (5) converges faster to an optimal
solution when reachable.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Heuristic search algorithms are widely used to compute minimum-cost paths in graphs. Applications of heuristic search
range from map navigation software and robot path planning to automated planning and puzzle solving. Different search
algorithms return solutions of varying quality, which is commonly measured by a cost, where high quality solutions are
those with a low cost. Ideally, one would like to find optimal solutions, i.e., those with minimum cost. Given an admissible
heuristic, some search algorithms, such as A∗ [1] or IDA∗ [2], return optimal solutions. However, many problems are very
hard to solve optimally [3] even with such algorithms.

In this paper we propose two algorithms: Potential Search (PTS) and Anytime Potential Search/Anytime Non-
Parametric A∗ (APTS/ANA∗). These algorithms are especially suited for cases where an optimal solution is hard to find.
PTS is designed to solve problems where any solution with cost less than C , an input to the problem, is acceptable, while
solutions with cost ≥ C are useless. We call such problems bounded-cost search problems. Bounded-cost search problems

* Corresponding author.
http://dx.doi.org/10.1016/j.artint.2014.05.002
0004-3702/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.artint.2014.05.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
http://dx.doi.org/10.1016/j.artint.2014.05.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2014.05.002&domain=pdf

2 R. Stern et al. / Artificial Intelligence 214 (2014) 1–25
arise, for example, when the expense budget for a business trip is limited and the trip (e.g., flights and hotels) should
be planned as quickly as possible but within the budget limit. If an online travel agency such as Expedia or Priceline is
planning the trip, computational resources could be diverted to other clients once a plan is found within the budget limits
(see Priceline’s “Name Your Own Price” option).

The second algorithm we present, APTS/ANA∗ , is an anytime search algorithm, i.e., an algorithm “whose quality of results
improves gradually as computation time increases” [4]. APTS/ANA∗ can be viewed as a translation of an anytime search
algorithm into a sequence of bounded-cost search problems solved by PTS, or as an intelligent approach to avoid the
parameter setting problem of Weighted A∗-based anytime search algorithms. Setting parameters to bounded-suboptimal
search algorithms is a known problem in the heuristic search literature [5]. A key benefit of APTS/ANA∗ is that it does
not require users to set parameters, such as the w0 and �w parameters of ARA∗ [6]. Furthermore, experiments suggest
that APTS/ANA∗ improves upon previous anytime search algorithms in most cases by (1) finding an initial solution faster,
(2) spending less time between solution improvements, (3) decreasing the suboptimality bound of the current-best solution
more gradually, and (4) converging faster to an optimal solution when reachable.

Both PTS and APTS/ANA∗ are based on a new evaluation function u(n) = C−g(n)
h(n)

that was discovered independently by
two research groups via two very different derivations. In this paper, co-authored by researchers from both groups, we
present both derivations. The first derivation of u(·) is based on a novel concept called the potential of a node. The potential
of a node n is defined with respect to a given value C , and is the probability that a node n is part of a solution of cost lower
than C . We prove that the node with the highest u(·) is the node with the highest potential, under certain probabilistic
relation between the heuristic function and the cost it estimates.

The second derivation of u(·) is based on the desire for a non-parametric version of the Anytime Repairing A∗ algo-
rithm [6]. We show that expanding the node with the highest u(·) has the same effect as setting the parameters of ARA∗
dynamically to improve the best solution found so far as fast as possible. In addition, we show that u(·) bounds the subop-
timality of the current solution.

We compare PTS and APTS/ANA∗ with previous anytime algorithms on five representative search domains: the 15-puzzle,
robot motion planning, gridworld navigation, Key player problem in communication (KPP-COM), and multiple sequence
alignment. As mentioned above, the experimental results suggest that APTS/ANA∗ improves upon previous anytime search
algorithms in terms of key metrics that determine the quality of an anytime algorithm. As a bounded-cost algorithm, our
results suggest that PTS, which is specifically designed for bounded-cost problems, outperforms competing algorithms for
most cost bounds and exhibits an overall robust behavior.

This paper extends our preliminary work [7–9] by (1) providing a substantially more rigorous theoretical analysis of
the presented algorithms, (2) extending the experimental results, (3) adding a comprehensive discussion on the relation
between bounded-cost search and anytime search, and (4) discussing the limitations of PTS and APTS/ANA∗ .

The structure of this paper is as follows. First, we provide background and related work. In Section 3, we introduce
the bounded-cost search problem and present Potential Search (PTS). In Section 4, we present Anytime Potential Search
(APTS) [7,8] and Anytime Non-Parametric A∗ (ANA∗) [9], showing that they are equivalent and discussing their theoretical
properties. Section 5 presents experimental results comparing PTS and APTS/ANA∗ with previous algorithms. Finally, we
discuss a generalization of PTS (Section 6) and conclude with suggestions for future work (Section 7).

2. Background and related work

Search algorithms find a solution by starting at the initial state and traversing the problem space graph until a goal state
is found. Various search algorithms differ by the order in which they decide to traverse the problem space graph. Traversing
the problem space graph involves generating and expanding its nodes. The term generating a node refers to creating a data
structure that represents it, while expanding a node means generating all its children.

One of the most widely used search frameworks is best–first search (BFS) [10]. BFS keeps two lists of nodes: an open
list (denoted hereafter as OPEN), which contains all the generated nodes that have not been expanded yet, and a closed list
(denoted hereafter as CLOSED), which contains all the nodes that have been previously expanded. Every generated node in
OPEN is assigned a value by an evaluation function. The value assigned to a node is called the cost of the node. In every
iteration of BFS, the node in OPEN with the lowest cost is chosen to be expanded. This lowest-cost node is moved from
OPEN to CLOSED, and the children of this node are inserted to OPEN. The purpose of CLOSED is to avoid inserting nodes that
have already been expanded into OPEN. CLOSED is also used to help reconstruct the solution after a goal is found. Once a
goal node is chosen for expansion, i.e., it is the lowest-cost node in OPEN, BFS halts and that goal is returned.1 Alternatively,
BFS can be defined such that every node is assigned a value, and in every iteration the node with the highest value is
expanded.

BFS is a general framework, and many well-known algorithms are special cases of it. For example, Dijkstra’s single-source
shortest-path algorithm [12] and the A∗ algorithm [1] are both special cases of BFS, differing only in their evaluation
function.2 Dijkstra’s algorithm is BFS with an evaluation function that is g(n), which is the shortest path found so far from

1 This is the textbook version of BFS [10]. However, there are variants of BFS where the search is halted earlier (e.g., BFS with lookaheads [11]).
2 In this paper we consider Dijkstra’s algorithm in its best–first search variant, which is also known as Uniform Cost Search. It has been shown [13] that

this variant of Dijkstra is more efficient than the implementation of Dijsktra detailed in the common algorithm textbook [14].

R. Stern et al. / Artificial Intelligence 214 (2014) 1–25 3
the start of the search to node n. A∗ is BFS with an evaluation function that is f (n) = g(n) + h(n), where h(n) is a heuristic
function estimating the cost from state n to a goal node. We use the notation h∗(n) to denote the lowest-cost path from
node n to a goal. h(n) is said to be admissible if it never overestimates the cost of the lowest-cost path from n to a goal,
i.e., if h(n) ≤ h∗(n) for every node n. Using an admissible h(n), A∗ is guaranteed to have found a lowest-cost path to a goal
when a goal node is chosen for expansion. In general, we use the term optimal search algorithms to denote search algorithms
that guarantee returning an optimal solution. Other known optimal search algorithms include IDA∗ [2] and RBFS [15].

Finding an optimal solution to search problems is often infeasible. Additionally, it is often the case that non-optimal
solutions are good enough. Hence, there are search algorithms that provide a weaker guarantee on the solution they return,
with respect to optimal search algorithms. We list below several types of search algorithms that provide such weaker
guarantees.

2.1. Bounded-suboptimal search algorithms

Bounded-suboptimal algorithms guarantee that the solution returned is no more than w times the cost of an optimal
solution, where w > 1 is a predefined parameter. These algorithms are also called w-admissible, and the value of w is
referred to as the “desired suboptimality”. We use the term suboptimality of a solution of cost C to denote the ratio between
the cost of an optimal solution and C . Thus, the suboptimality of the solution returned by a w-admissible algorithm is
bounded (from above) by the desired suboptimality w .

The most well-known bounded-suboptimal search algorithm is probably Weighted A∗ (WA∗) [16].3 WA∗ extends A∗ by
trading off running time and solution quality. It is similar to A∗ , except that it inflates the heuristic by a value w ≥ 1. Thus,
WA∗ expands the node n in OPEN with minimal f w(n) = g(n) + w · h(n). The higher w , the greedier the search, and the
sooner a solution is typically found. If h(·) is an admissible heuristic, then WA∗ is a bounded-suboptimal search algorithm,
i.e., the suboptimality of the solutions found by WA∗ is bounded by w . Other examples of a bounded-suboptimal search
algorithm include A∗

ε [18], Optimistic Search [19] and Explicit Estimation Search [20].

2.2. Any solution algorithms

In some cases, the solution quality is of no importance. This may be the case in problems that are so hard that obtaining
any meaningful bound on the quality of the solution is not possible. We call algorithms for such settings any solution
algorithms. Such algorithms usually find a solution faster than algorithms of the first two classes, but possibly with lower
quality. Examples of any solution algorithms include pure heuristic search (a BFS using h(·) as its evaluation function),4 beam
search variants [21], as well as many variants of local search algorithms such as Hill climbing and Simulated annealing [10].

2.3. Anytime search algorithms

Another class of search algorithms that lies in the range between any solution algorithms and optimal algorithms is
anytime algorithms. An anytime search algorithm starts, conceptually, as an any solution algorithm.5 After the first solution
is found, it continues to run, finding solutions of better quality (with or without guarantee on their suboptimality). Anytime
algorithms are commonly used in many domains, since they provide a natural continuum between any solution algorithms
and optimal solution algorithms. Some anytime algorithms, such as AWA∗ [22] and ARA∗ [6] that are introduced below, are
guaranteed to converge to finding an optimal solution if enough time is given.

Many existing anytime search algorithms are loosely based on WA∗ . Since this paper addresses anytime search algorithms
in depth, we next provide a brief survey of existing WA∗-based anytime search algorithms. A commonly used anytime al-
gorithm that is not related to WA∗ is Depth-first branch and bound (DFBnB) [23]. DFBnB runs a depth-first search, pruning
nodes that have a cost higher than the incumbent solution (= best solution found so far). DFBnB does not require any pa-
rameters. However, DFBnB is highly ineffective in domains with many cycles and large search depth.6

2.4. WA∗-based anytime search algorithms

Anytime Weighted A∗ (AWA∗) [22] is an anytime version of WA∗ . It runs WA∗ with a given value of w until it finds the
first solution. Then, it continues the search with the same w . Throughout, AWA∗ expands a node in OPEN with minimal
f w(n) = g(n) + w · h(n), where w is a parameter of the algorithm. Each time a goal node is extracted from OPEN, an
improved solution may have been found. Let G denote the cost of the incumbent solution. If h(·) is admissible, then the
suboptimality of the incumbent solution can be bounded by G/minn∈OPEN{g(n) + h(n)}, as G is an upper bound of the
cost of an optimal solution, and minn∈OPEN{g(n) + h(n)} is a lower bound of the cost of an optimal solution. Given enough

3 The proof for the w-admissibility of WA∗ is given in the Appendix of a later paper [17]. That paper proposed a variation on WA∗ (dynamic weighting)
but the same proof holds for plain WA∗ .

4 Pure heuristic search is sometimes called Greedy best–first search in the literature.
5 One can use virtually any search algorithm to find an initial solution in an anytime algorithm.
6 Large solution depth can be partially remedied by applying an iterative deepening framework on top of DFBnB.

4 R. Stern et al. / Artificial Intelligence 214 (2014) 1–25
runtime, AWA∗ will eventually expand all the nodes with g(n) + h(n) larger than the incumbent solution, and return an
optimal solution.

Anytime Repairing A∗ (ARA∗) [6] is also based on WA∗ . First, it finds a solution for a given initial value of w . It then
continues the search with progressively smaller values of w to improve the solution and reduce its suboptimality bound.
The value of w is decreased by a fixed amount each time an improved solution is found or the current-best solution
is proven to be w-suboptimal. Every time a new value is determined for w , the f w(n)-value of each node n ∈ OPEN is
updated to account for the new value of w and OPEN is re-sorted accordingly. The initial value of w and the amount by
which it is decreased in each iteration (denoted as �w) are parameters of the algorithm.

Restarting Weighted A∗ (RWA∗) [24] is similar to ARA∗ , but each time w is decreased it restarts the search from the root
node. That is, every new search is started with only the initial node in OPEN. It takes advantage of the effort of previous
searches by putting the nodes explored in previous iterations on a SEEN list. Each time the search generates a seen node,
it puts that node in OPEN with the best g-value known for it. Restarting has proven to be effective (in comparison to
continuing the search without restarting) in situations where the quality of the heuristic varies substantially across the
search space. As with ARA∗ , the initial values of w and �w are parameters of the algorithm.

Anytime Window A∗ (AWinA∗) [25], Beam-Stack Search (BSS) [26], and BULB [21] are not based on WA∗ , but rather limit the
“breadth” of a regular A∗ search. Iteratively increasing this breadth provides the anytime characteristic of these algorithms.
For a comprehensive survey and empirical comparison of anytime search algorithms, see [27].

Most existing WA∗-based anytime search algorithms require users to set parameters, for example the w factor used to
inflate the heuristic. ARA∗ [6], for instance, has two parameters: the initial value of w and the amount by which w is
decreased in each iteration. Setting these parameters requires trial-and-error and domain expertise [25]. One of the contri-
butions of this paper is a non-parametric anytime search algorithm that is based on solving a sequence of bounded-cost
search problems (Section 4).

3. Bounded-cost search and potential search

In this section we define the bounded-cost search problem, where the task is to find, as quickly as possible, a solution
with a cost that is lower than a given cost bound. We then explain why existing search algorithms, such as optimal search
algorithms and bounded-suboptimal search algorithms, are not suited to solve bounded-cost search problems. Finally, we
introduce a new algorithm called Potential Search (PTS), specifically designed for solving bounded-cost search problems. We
define a bounded-cost search problem as follows.

Definition 1 (Bounded-cost search problem). Given an initial state s, a goal test function, and a constant C , a bounded-cost
search problem is the problem of finding a path from s to a goal state with cost less than C .

3.1. Applications of bounded-cost search

In Section 4 we show that solving bounded-cost search problems can be a part of an efficient and non-parametric
anytime search. While constructing efficient anytime algorithms is a noteworthy achievement, solving bounded-cost search
problems is important in its own right and has many practical applications.

Generally, when a search algorithm is part of a larger system, it is reasonable to define for the search algorithm what
an acceptable solution is in terms of cost. Once such a solution is found, system resources can be diverted to other tasks
instead of optimizing other search-related criteria.

For example, consider an application server for an online travel agency such as Expedia, where a customer requests a
flight to a specific destination within a given budget. In fact, Priceline allows precisely this option when booking a hotel
(the “Name Your Own Price” option). This can be naturally modeled as a bounded-cost problem, where the cost is the price
of the flight/hotel.

Furthermore, recent work has proposed to solve conformant probabilistic planning (CPP) problems by compiling them
into a bounded-cost problem [28]. In CPP, the identity of the start state is uncertain. A set of possible start states is given,
and the goal is to find a plan such that the goal will be reached with probability higher than 1 − ε , where ε is a parameter
of the search. We refer the reader to Taig and Brafman’s paper [28] for details about how they compiled a CPP problem to
a bounded-cost search problem.

A more elaborate application of bounded-cost search exists in the task of recognizing textual entailment (RTE). RTE is
the problem of checking whether one text, referred to as the “text”, logically entails another, referred to as the “hypothesis”.
For example, the text “Apple acquired Anobit” entails the hypothesis that “Anobit was bought”. Recent work modeled RTE
as a search problem, where a sequence of text transformation operators, referred to as a “proof”, is used to transform the
text into the hypothesis [29,30]. Each proof is associated with a cost representing the confidence that the proof preserves
the semantic meaning of the text. Stern et al. [29] used Machine Learning to learn a cost threshold for RTE proofs such that
only proofs with cost lower than this threshold are valid. Thus, solving an RTE problem (i.e., determining whether a given
text entails a given hypothesis) becomes a bounded-cost problem of finding a proof under the learned cost threshold.

A bounded-cost search problem can be viewed as a constraint satisfaction problem (CSP), where the desired cost bound
is simply a constraint on the solution cost. However, modeling a search problem as a CSP is non-trivial if one does not know

R. Stern et al. / Artificial Intelligence 214 (2014) 1–25 5
the depth of the goal in the search tree.7 Furthermore, many search problems have powerful domain-specific heuristics, and
it is not clear if general CSP solvers can use such heuristics. The bounded-cost search algorithm presented in Section 3.3 can
use any given heuristic.

Finally, most state-of-the-art CSP solvers use variants of depth-first search. Such algorithms are known to be highly inef-
ficient in problems like pathfinding, where there are usually many cycles in the state space. Nonetheless, the potential-based
approach described in Section 3.3 is somewhat reminiscent of CSP solvers that are based on solution counting and solution
density, where assignments estimated to allow the maximal number of solutions are preferred [31].

Another topic related to the bounded-cost setting is resource-constrained planning [32,33], where resources are limited
and may be consumed by actions. The task is to find a lowest cost feasible plan, where a feasible plan is one where resources
are available for all the actions in it. One may view bounded-cost search as a resource-constrained problem with a single
resource – the plan cost. However, in bounded-cost search we do not want to minimize the cost of the plan. Any plan
under the cost bound is acceptable. Once such a plan is found, it is wasteful to invest CPU time in improving the cost, and
computation resources can be diverted elsewhere.

3.2. Naïve approaches to bounded-cost search

It is possible to solve a bounded-cost search problem by running an optimal search algorithm. If the optimal solution cost
is less than C , return it; otherwise return failure, as no solution of cost less than C exists. One could even use C for pruning
purposes, and prune any node n with f (n) ≥ C . However, this technique for solving the bounded-cost search problem might
be very inefficient as finding a solution with cost less than C can be much easier than finding an optimal solution.

One might be tempted to run any of the bounded-suboptimal search algorithms. However, it is not clear how to tune any
of the suboptimal algorithms (for example, which weight to use in WA∗ and its variants), as the cost of an optimal solution
is not known and therefore the ratio between the cost of the desired solution C and the optimal cost is also unknown.

A possible direction for solving a bounded-cost search problem is to run any suboptimal best–first search algorithm,
e.g., pure heuristic search, and prune node with g + h ≥ C . Once a solution is found, it is guaranteed to have a cost lower
than C . In fact, using this approach with pure heuristic search was shown to be effective in domain independent planning
problems with non-unit edge costs [34]. The main problem with all these ad-hoc bounded-cost algorithms is, however, that
the desired goal cost bound is not used to guide the search, i.e., C is not considered when choosing which node to expand
next.

Having defined the notion of bounded-cost search and its relation to existing search settings and algorithms, we next
introduce the PTS algorithm, which is specifically designed to solve such problems.

3.3. The Potential Search algorithm (PTS)

The Potential Search algorithm (PTS) is specifically designed to focus on solutions with cost less than C , and the first
solution it finds meets this requirement. PTS is basically a best–first search algorithm that expands the node from OPEN
with the largest u(·), where u(·) is defined as follows8:

u(n) = C − g(n)

h(n)

Choosing the node with the highest u(·) can be intuitively understood as selecting the node that is most likely to lead to
a solution of cost less than C , as u(n) is a ratio of the “budget” that is left to find a solution under C (this is C − g(n)) and
the estimate of the cost between n and the goal (this is h(n)). In Sections 3.4 and 4.3 we discuss two analytical derivations
of the u(·) evaluation function.

The complete pseudo-code of PTS is provided in Algorithm 1. The input to PTS, and in general to any bounded-cost
search algorithm, is the initial state s from which the search begins, and the cost bound C . In every iteration, the node
with the highest u(·), denoted as n, is expanded from OPEN (line 3). For every generated node n′ , duplicate detection is
performed, ignoring n′ if it exists in OPEN or CLOSED with smaller or equal g value (line 7). Otherwise, the value of g(n′)
is updated (line 9). If the heuristic function h(·) is admissible, then PTS prunes any node n′ for which g(n′) + h(n′) ≥ C
(line 12). This is because these nodes can never contribute to a solution of cost smaller than C . If h(·) is not admissible,
then n′ is pruned only if g(n′) ≥ C . Any bounded-cost search should perform this pruning, and indeed in our experiments
we implemented this for all of the competing algorithms. If n′ is not pruned and it is a goal, the search halts. Otherwise,
n′ is inserted into OPEN and the search continues.

3.4. The potential

PTS is based on the novel u(·) evaluation function. Next, we provide the first analytical derivation of u(n), relating it to
the probability that n leads to a goal of cost smaller than C . We call this probability the potential of a node.

7 Note that even if the cost bound is C , the search tree might be much deeper if there are edges of cost smaller than one (e.g., zero cost edges).
8 For cases where h(n) = 0, we define u(n) to be ∞, causing such nodes to be expanded first.

6 R. Stern et al. / Artificial Intelligence 214 (2014) 1–25
Algorithm 1: Potential search.
Input: C , the cost bound
Input: s, the initial state

1 OPEN ← s
2 while OPEN is not empty do
3 n ← argmaxn∈OPENu(n) // pop the node with the highest u(n)

4 foreach successor n′ of n do
5 // Duplicate detection and updating g(n′)
6 if n′ is in OPEN or CLOSED and g(n′) ≤ g(n) + c(n,n′) then
7 Continue to the next successor of n (i.e., go to line 4)
8 end
9 g(n′) ← g(n) + c(n,n′)

10 // Prune nodes over the bound
11 if g(n′) + h(n′) ≥ C (if h is inadmissible, check instead if g(n′) ≥ C) then
12 Continue to the next successor of n (i.e., go to line 4)
13 end
14 // If found a solution below the bound - return it
15 if n′ is a goal node then
16 return the best path to the goal
17 end
18 // Add n′ to OPEN or update its location
19 if n′ is in OPEN then
20 Update the key of n′ in OPEN using the new g(n′)
21 else
22 Insert n′ to OPEN
23 end
24 end
25 end
26 return None // no solution exists that is under the cost bound C

Fig. 1. An example of an expansion dilemma.

To motivate the concept of the potential of a node, consider the graph presented in Fig. 1. Assume that we are searching
for a path from s to g . After expanding s, the search algorithm needs to decide which node to expand next: node a
or node b. If the task is to find an optimal path from s to g , then clearly b should be expanded first, since there may
be a path from s to g that passes through b whose cost is lower than the cost of the path that passes through a (as
f (b) = g(b) + h(b) = 100 < f (a) = g(a) + h(a) = 103).

If, however, the task is to find a path of cost less than 120 (C = 120), then expanding b is not necessarily the best
option. For example, it might be better to expand a, which is probably very close to a goal of cost less than 120 (as
h(a) = 3). Informally, we may say that a has more potential to lead to a solution of cost lower than C than b. Next, we
define the notion of potential, and show its relation to u(·).

The potential of a node n is defined as the probability that a node with h value equal to h(n) has a path to a goal with a
cost smaller than C − g(n). For clarity, we omit here the mathematical prerequisites for defining probabilities in this context
and provide them later (see Definition 4).

Definition 2 (Potential). Given a heuristic function h and a cost bound C , we define the potential of node n, denoted P Th,C (n),
as

PTh,C (n) = Pr
(

g(n) + h∗(n) < C
∣∣ h(n)

)

Clearly, the potential of a node depends on the relation between the heuristic function that is used (h(·)) and the value
it estimates (h∗(·)). In some domains, the relation between h and h∗ is a known property of h (e.g., a precision parameter
of a sensor). In other domains, it is possible to evaluate how close h is to h∗ using attributes of the domain. In general, one
would expect h(n) to be closer to h∗(n) if h(n) is small. For example, consider a shortest path problem in a map, using the
air distance as a heuristic. If the air distance between two nodes is very large, it is more likely that obstacles exist between
them. More obstacles imply a greater difference between the air distance and the real shortest path.

R. Stern et al. / Artificial Intelligence 214 (2014) 1–25 7
Fig. 2. MD heuristic vs. true distance for the 15-puzzle domain.

Consider the case where for a node n there is a linear stochastic relation between h(n) and h∗(n), i.e., h∗(n) = h(n) · Xn ,
where Xn ∼ X is a random variable drawn from a probability distribution X . We assume that the distribution X may be
unknown, but that all Xn (for every node n) are independent and identically distributed (i.i.d.) according to X . We denote
these assumptions about the relation between h and h∗ as the linear-relative assumption.9 Assuming the linear-relative
assumption, the potential of a node n is given by:

Pr
(

g(n) + h∗(n) < C
∣∣ h(n)

) = Pr
(

g(n) + h(n) · Xn < C
)

= Pr
(

Xn · h(n) < C − g(n)
) = Pr

(
Xn <

C − g(n)

h(n)

)
= Pr

(
Xn < u(n)

)

If we do not know the distribution X that Xn is drawn from, the potential of a node cannot be explicitly calculated.
However, given any two nodes n1 and n2, we can determine which node has a higher potential by comparing their u(·)
values. This is true because Xn1 and Xn2 are i.i.d. (Xn1 , Xn2 ∼ X), and therefore:

u(n1) ≥ u(n2) ⇔ Pr
(

Xn1 < u(n1)
) ≥ Pr

(
Xn2 < u(n2)

)
This idea is summarized in Lemma 1 below.

Lemma 1. Under the linear-relative assumption, for any pair of nodes n1 and n2 , we have that u(n1) ≥ u(n2) iff n1 ’s potential is greater
than or equal to n2 ’s potential.

Consequently, for any problem where the linear-relative assumption holds, a BFS that expands the node with the highest
u(·) in OPEN (≡ PTS) will expand nodes exactly according to their potential. This result is summarized in Theorem 1:

Theorem 1. Under the linear-relative assumption, PTS always expands the node with the highest potential.

It might be hard to find a domain where the linear-relative assumption holds exactly. However, this assumption holds ap-
proximately for many domains. For example, consider the 15-puzzle, a well-known search benchmark. We solved optimally
each of the 1000 standard random instances [36]. For each of these instances we considered all the states on the optimal
path, to a total of 52 523 states. Each of these states was assigned a 2-dimensional point, where the x value denotes the
Manhattan Distance (MD) heuristic of the state and the y value denotes its optimal cost to the goal. The plot of these points
is presented in Fig. 2. The dashed line indicates the best linear fit for the plot, which is the line y = 1.31 · x − 2.19. It is easy
to observe that a linear fit is very close, suggesting that the linear-relative assumption approximately holds in this domain.
Appendix A shows two other domains where this also occurs. In Section 6 we generalize PTS to handle cases where the
linear-relative assumption does not hold.

9 This model is reminiscent of the constant relative error [35], where h∗(n) ≤ T · h(n) for some constant T .

8 R. Stern et al. / Artificial Intelligence 214 (2014) 1–25
3.5. Limitations of PTS

Later in this paper (Section 5) we provide experimental results on five domains showing that PTS is effective and robust
in practice. However, we would also like to point out two limitations of PTS.

3.5.1. Memory requirements
PTS is a best–first search, storing all the nodes visited during the search in OPEN and CLOSED. Thus, the memory required

for PTS to solve a problem is, in the worst case, exponential in the depth of the search. This prevents running PTS to solve
problems in large domains such as the 24-puzzle for close to optimal cost bounds. One might consider running an iterative
deepening scheme (like IDA∗ [2]) with the potential utility function u(·). This would be problematic as u(·) is a non-integer
number and thus setting the thresholds of the iterative deepening procedure would be non-trivial (although there are
methods to cope with that [37,38]).

3.5.2. Distance vs. cost heuristics
In some domains, the cost of reaching the goal and the distance (number of steps) to reach the goal are not corre-

lated [39]. Effective search algorithms for such domains employ two types of heuristics – one that estimates the cost of
reaching a goal, denoted by h(·), and one that estimates the number of steps required to reach a goal, denoted by d(·) [20].
The PTS evaluation function u(·) considers only h(·). Thus PTS may be less effective in domains where d(·) and h(·) are very
different. Work on combining h(·) and d(·) for bounded-cost search showed promising results [40].

Resolving these two problems is beyond the scope of this paper and remains as a challenge for future work. Next, we
describe APTS/ANA∗ , which is a non-parametric anytime search algorithm using the PTS evaluation function u(·).

4. Anytime Non-Parametric A∗ and Anytime Potential Search

In this section we present a framework for constructing a non-parametric anytime search algorithm by solving a sequence
of bounded-cost search problems. As an instance of this framework, we present Anytime Potential Search (APTS), which uses
PTS to solve these bounded-cost search problems. Then, in Section 4.3 we present a different analytical derivation of APTS
as a non-parametric modification of the ARA∗ anytime search algorithm. The result of this derivation is known as Anytime
Non-Parametric A∗ (ANA∗) [9]. ANA∗ and APTS are the same algorithm, which we call APTS/ANA∗ to reflect its dual origin.

4.1. Rationale for a non-parametric anytime search algorithm

In general, the need for non-parametric algorithms is prevalent in many fields of computer science and AI [41–43, inter
alia]. The main reason is that algorithms with parameters require some method of selecting the values for this parameter,
i.e., a method for parameter tuning. Parameter tuning are often:

• Time consuming. Parameter tuning are commonly done by running the parametric algorithm several times on a range
of instances and parameter values.

• Crucial for a successful implementation. Different parameter values can have great impact on the performance of
parametric algorithms. This is known to occur in parametric search algorithms [5] and we observe this as well in our
experimental results (given later in the paper).

As a result, non-parametric algorithms are more accessible to practitioners. Thus, the need for a non-parametric anytime
search algorithm is great.

4.2. A greedy non-parametric anytime search

Algorithm 2 presents a high-level view of an anytime search algorithm. It consists of iteratively calling the Improve-

Solution procedure (line 4), which searches for a solution that is better than the incumbent solution (named “Incumbent”
in Algorithm 2), whose cost is denoted by cost(Incumbent) and maintained in the variable G . Initially, there is no incumbent
solution, so G is set to ∞ (line 1). When there is no solution better than G , then G is proven to be the optimal solution
cost and the search can halt (line 9).10 Alternatively, the search may be halted earlier, in which case Incumbent is returned
(line 12).

Different anytime algorithms vary by the implementation of the ImproveSolution procedure (line 4). For example, one
can apply a depth first search for ImproveSolution. If every call to ImproveSolution resumes the same depth-first search,
then this is identical to DFBnB. Many efficient anytime search algorithms, such as AWA∗ [22], ARA∗ [6] and RWA∗ [24],
implement ImproveSolution as different variants of WA∗ . These WA∗-based anytime search algorithms require one or more
parameters to set the w for WA∗ ’s f w evaluation function. Tuning these parameters is often non-trivial.

10 Some anytime search algorithms cannot guarantee that no better solution is found. We do not discuss such algorithms in this paper.

R. Stern et al. / Artificial Intelligence 214 (2014) 1–25 9
Algorithm 2: General anytime search algorithm.

1 G ← ∞
2 Incumbent← ∅
3 while search not halted do
4 NewSolution←ImproveSolution // Seek a solution of cost < G
5 if NewSolution was found then
6 G ← cost(NewSolution)

7 Incumbent← NewSolution
8 else
9 Return Incumbent (which is optimal)

10 end
11 end
12 return Incumbent

It is sometimes possible to intelligently customize the parameters of an anytime search algorithm. For example, if one
does know beforehand exactly when the search will be halted, it is possible to employ Deadline-Aware Search [44], which
estimates during the search which paths to the goal will be achievable before the search is halted. Another example is
when there exists a known utility tradeoff between computation time and solution quality. In this case, it is possible to use
Best–First Utility-Guided Search [45], which tries to optimize this tradeoff.

In this paper we do not assume any prior knowledge on the termination time of the search, nor do we assume a given
utility function that trades off computation for solution quality. In the absence of these, we propose the following greedy
approach to anytime search. In every call to ImproveSolution, try to find a solution with cost lower than G as fast as
possible. It is easy to see that every such call to ImproveSolution is exactly a bounded-cost search problem, where the
cost-bound C is set to be the cost of the incumbent solution (G). Thus, we can use PTS in every call to ImproveSolution

(line 4) with cost bound G . The resulting anytime search algorithm does not require parameter tuning (e.g., of w) and
is shown empirically to be superior to other anytime search algorithms on a wide range of domains (see Section 5). This
anytime search algorithm, which uses PTS for its Improve Solution part, is called Anytime Potential Search (APTS). As stated
above, we refer to it as APTS/ANA∗ to emphasize its second derivation, described later in Section 4.3.

Because initially there is no incumbent solution, the purpose of the first iteration of APTS/ANA∗ is to find a solution as
fast as possible, without any bound on its cost. Thus, C = ∞ and as a result the PTS evaluation function u(n) = C−g(n)

h(n)
is

also equal to ∞ for all the nodes in OPEN, making them indistinguishable.
However, as C approaches infinity, the node in OPEN with the highest u(n) = C−g(n)

h(n)
is actually the node with the lowest

h(n). Thus, as C approaches infinity, PTS converges to pure heuristic search. Therefore, we define the first ImproveSolution

call of APTS/ANA∗ to run pure heuristic search until the first solution is found.11

4.2.1. Reusing information between PTS calls
There are several known approaches for using knowledge from previous calls to ImproveSolution. In some cases it is

best to ignore it completely [24] and restart the search from the initial state. In other cases, a more sophisticated mechanism
called repairing is preferred [6] (this is what gave the Anytime Repairing A∗ algorithm its name). For a comprehensive survey
and empirical evaluation of the different ways to consider knowledge from previous calls to ImproveSolution, see [27].
No approach has dominated the others in all domains. For simplicity, we chose to implement all anytime algorithms in this
paper such that OPEN is passed between calls to ImproveSolution. However, modifying APTS/ANA∗ to use any of the other
approaches is trivial.

Consequently, when PTS is called with a new cost bound (which is the cost of the solution found by the previous call to
PTS), it does not start from the initial node. Instead, PTS will expand nodes from OPEN of the previous PTS call. However,
this incurs an overhead, as all the nodes in OPEN need to be reordered according to u(·), as the cost of the incumbent
solution has changed.

Next, we give a different derivation of APTS/ANA∗ , as a non-parametric improvement of the ARA∗ anytime search algo-
rithm.

4.3. APTS/ANA∗ as an improved Anytime Repairing A∗

ARA∗ [6] is a well-known anytime search algorithm shown to be effective in many domains [27]. For completeness,
a simplified version of the ARA∗ algorithm is listed in Algorithms 3 and 4. ARA∗ is a special case of the high-level anytime
algorithm described in Algorithm 2. It repeatedly calls its version of ImproveSolution, called here ARA∗

-ImproveSolution,
which aims to find a solution that is w-suboptimal. Initially, w = w0, and it is decreased by a fixed amount �w after every
call to ARA∗

-ImproveSolution (line 11 in Algorithm 3).

11 An alternative approach is to use the function u′(n) = 1 − h(n)
C−g(n)

instead of u(n). It is easy to see it achieves the same node ordering, but there
increasing C to infinity results in an elegant convergence to pure heuristic search.

10 R. Stern et al. / Artificial Intelligence 214 (2014) 1–25
Algorithm 3: Simplified anytime repairing A∗(ARA∗).
Input: s, the initial state
Input: w0, the initial w
Input: �w , the amount by which w is decreased in every iteration

1 G ← ∞; w ← w0; OPEN ← ∅; Incumbent← ∅
2 Insert s into OPEN
3 while OPEN is not empty do
4 NewSolution ← ARA∗

-ImproveSolution(OPEN, w, G)

5 if NewSolution is not None then
6 G ← cost(NewSolution)

7 Incumbent← NewSolution

8 else
9 return Incumbent

10 end
11 w ← w − �w
12 Update keys in OPEN and prune nodes with g(·) + h(·) ≥ G
13 end
14 return Incumbent

Algorithm 4: ARA∗
-ImproveSolution.

Input: OPEN, the open list
Input: w , the weight of h
Input: G , the cost of the incumbent solution

1 while OPEN is not empty do
2 n ← argminn∈OPEN f w (n) // pop the node with the lowest g + wh
3 if G ≤ f w (n) then
4 return None // G is proven to be w-admissible
5 end
6 foreach successor n′ of n do
7 if n′ /∈ OPEN or g(n) + c(n,n′) < g(n′) then
8 g(n′) ← g(n) + c(n,n′)
9 if g(n′) + h(n′) < G then

10 if n′ is a goal then return the best path to the goal;
11 Insert n′ to OPEN (or update its position if n′ ∈ OPEN)
12 end
13 end
14 end
15 end
16 return None // no solution better than G exists

ARA∗
-ImproveSolution, listed in Algorithm 4, is a variant of WA∗ , expanding the node n ∈ OPEN with minimal

f w(n) = g(n) + w · h(n). It terminates either when an improved solution is found (line 10 in Algorithm 4), or when
G ≤ minn∈OPEN{ f w(n)} (line 4 in Algorithm 4), in which case the incumbent solution is proven to be w-suboptimal [6].
An open challenge that we address next is how to set the value of ARA∗ ’s parameters (w0 and �w) intelligently.

A property of a good anytime algorithm is that it finds an initial solution as soon as possible, so that a solution can be
returned even if little time is available. In general, the higher w is, the greedier the search is and the sooner a solution
will be found. Therefore, ideally, w0 would be set to ∞. However, setting w0 = ∞ is not possible in ARA∗ , as w is later
decreased with finite steps (line 11 in Algorithm 3). For that reason, in ARA∗ w is initialized with a finite value w0.

A second desirable property of an anytime algorithm is to reduce the time spent between improvements of the solu-
tion, such that when the incumbent solution is requested, the least amount of time has been spent in vain. The amount
�w by which w is decreased should therefore be as small as possible (this is also argued in [6]). However, if w is de-
creased by too little, the subsequent iteration of ARA∗

-ImproveSolution might not expand a single node. This is because
ARA∗

-ImproveSolution returns when minn∈OPEN{ f w(n)} > G (line 4 in Algorithm 4). If w is hardly decreased in the next
iteration, it might still be the case that minn∈OPEN{ f w(n)} > G .

So, what is the maximal value of w for which at least one node can be expanded? That is when

w = max
n∈OPEN

{
G − g(n)

h(n)

}
= max

n∈OPEN

{
u(n)

}
(1)

which follows from the fact that

f w(n) ≤ G ⇐⇒ g(n) + w · h(n) ≤ G ⇐⇒ w ≤ G − g(n)

h(n)
= u(n)

The one node that can then be expanded is indeed the node n ∈ OPEN with a maximal value of u(n). This is precisely the
node that APTS/ANA∗ expands.

R. Stern et al. / Artificial Intelligence 214 (2014) 1–25 11
One could imagine an adapted version of ARA∗ that uses Eq. (1) to set w after each iteration of ARA∗
-ImproveSolution.

This would also allow initializing w to ∞ for the first iteration, as is done in APTS/ANA∗ . However, even such a variation
of ARA∗ is not maximally greedy to find an improved solution, as explained next. Assume that ARA∗

-ImproveSolution is
called with w = maxn∈OPEN{u(n)}, and let ŵ denote this specific value of w . In ARA∗ , the value of w is fixed throughout
a call to ARA∗

-ImproveSolution. However, during an ARA∗
-ImproveSolution call a node n might be generated for which

f ŵ(n) < G . If f ŵ(n) < G , then node n could have been expanded if w was increased even further (up to u(n)). A higher w
corresponds to a greedier search, so instead one could always maximize w such that there is at least one node n ∈ OPEN for
which f w(n) ≤ G . This is equivalent to what APTS/ANA∗ does, by continually expanding the node n ∈ OPEN with a maximal
value of u(n). Thus, APTS/ANA∗ can be derived as non-parametric tuning of w , such that the search is as greedy as possible,
but still has nodes that can be expanded with f w smaller than G .

Additionally, every time w is changed in ARA∗ , all the nodes in OPEN must be reordered to account for the new w value
(line 12 in Algorithm 3). w is updated not only when a new solution is found, but also when the incumbent solution is
proven to be w-suboptimal (line 4 in Algorithm 4). Reordering all the nodes in OPEN takes O (|OPEN|) time, which can be
very large.12 Thus, an additional benefit of APTS/ANA∗ over ARA∗ is that OPEN needs to be reordered only when a new
solution is found.

4.4. Suboptimality bounds of APTS/ANA∗

Consider the case where h is an admissible heuristic. In this case there is a strong relation between the u-value of the
node expanded by APTS/ANA∗ and the suboptimality bound of the incumbent solution: each time a node n is selected for
expansion by APTS/ANA∗ , u(n) bounds the suboptimality of the incumbent solution. We prove this theorem below. We use
G∗ to denote the cost of an optimal solution, so G

G∗ is the true suboptimality of the incumbent solution. g∗(n) denotes the
cost of an optimal path between the start state and n.

Theorem 2. If h(n) is admissible then maxn∈OPEN{u(n)} ≥ G
G∗ . In other words, if a node n is selected by APTS/ANA∗ for expansion, then

u(n) is an upper bound on the suboptimality of the current solution.

Proof. APTS/ANA∗ prunes any node n with g(n) + h(n) ≥ G . Thus, for every node n in OPEN it holds that:

g(n) + h(n) < G ⇒ 1 <
G − g(n)

h(n)
= u(n)

Hence, all the nodes in OPEN have u(n) ≥ 1. Thus, Theorem 2 holds trivially if the current solution is optimal. If an optimal
solution has not yet been found, there must be a node n′ ∈ OPEN that is on an optimal path to a goal and whose g value
is optimal, i.e., g(n′) = g∗(n′) (see Lemma 1 in [1]). The minimal cost to move from n′ to the goal is G∗ − g∗(n′), since n′ is
on an optimal path to a goal. As the heuristic is admissible, h(n′) ≤ G∗ − g∗(n′). Therefore:

u
(
n′) = G − g(n′)

h(n′)
= G − g∗(n′)

h(n′)
≥ G − g∗(n′)

G∗ − g∗(n′)
≥ G

G∗

where the last inequality follows as G > G∗ ≥ g∗(n′) ≥ 0. As a result,

max
n∈OPEN

{
u(n)

} ≥ u
(
n′) ≥ G

G∗ �
Theorem 2 provides an interesting view on how APTS/ANA∗ behaves. The suboptimality bound is given by the maximum

value of u(·), and APTS/ANA∗ always expands that node. Thus, APTS/ANA∗ can be viewed as an informed effort to gradually
decrease the suboptimality bound of the incumbent solution. Of course, the children of the expanded node n may have a
larger u(·) value than n, in which case maxn∈OPEN{u(n)} may even increase, resulting in a worse bound than before the node
expansion. This can be overcome by maintaining the best (i.e., the lowest) suboptimality bound seen so far.

Note that this suboptimality bound is available when running APTS/ANA∗ with almost no additional overhead. Previous
approaches to provide a suboptimality bound to an anytime search algorithm used fmin = minn∈OPEN g(n) + h(n). Given fmin

the suboptimality of the incumbent solution is at most G
fmin

. While this bound can be shown to be tighter than the bound
provided by u(·), calculating it required maintaining fmin , which requires an additional priority queue that is ordered by
g(n) + h(n), while APTS/ANA∗ uses only a single priority queue.13

12 In fact, reordering OPEN requires O (|OPEN|log|OPEN|) in general. However, it might be possible to use bucket sort to achieve an O (|OPEN|) runtime.
13 Note that maintaining fmin requires more than simply storing the lowest f value seen in the search, since fmin increases during the search when the

node with f value of fmin is expanded. This requires going over OPEN to find the node with the minimal f value, or maintaining an additional priority
queue as mentioned above.

12 R. Stern et al. / Artificial Intelligence 214 (2014) 1–25
1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

1 5 2 3

4 6 7

8 9 10 11

12 13 14 15

Fig. 3. The 15-puzzle goal state (left) and a state two moves from the goal (right).

In summary, APTS/ANA∗ improves on ARA∗ in five ways: (1) APTS/ANA∗ does not require parameters to be set;
(2) APTS/ANA∗ is maximally greedy to find an initial solution; (3) APTS/ANA∗ is maximally greedy to improve the in-
cumbent solution; (4) APTS/ANA∗ only needs to update the keys of the nodes in OPEN when an improved solution is found;
and (5) APTS/ANA∗ makes an informed effort to gradually decrease the suboptimality bound.

4.5. Limitations of APTS/ANA∗

While APTS/ANA∗ has all the attractive properties listed above, it also has some limitations. Since APTS/ANA∗ runs a
sequence of PTS calls, all the limitations described for PTS in Section 3.5 apply also to APTS/ANA∗ . In addition, APTS/ANA∗
has two further limitations:

4.5.1. Finding the initial solution
If the heuristic is inaccurate and there are not many goals, finding even a single, unbounded solution can be hard.

As defined above, until the first solution is found, APTS/ANA∗ runs a pure heuristic search. Thus, APTS/ANA∗ would be
inefficient in domains where pure heuristic search is inefficient. For example, in domains where there is a distance-to-go
heuristic (d(n)), a much more effective way to find a solution fast is to search according to d(n) rather than h(n) [46,39].

4.5.2. Finding too many solutions
Every time a better solution is found, APTS/ANA∗ is required to re-sort all the nodes in OPEN (Algorithm 2) to account

for the new incumbent solution (the u(·) values change). Thus, if there are many solutions, each slightly better than the
previous, then APTS/ANA∗ would suffer from the overhead of re-sorting OPEN every time a new, better, solution is found.

There are ad hoc solutions to these limitations. Instead of using APTS/ANA∗ to find the first solution, it is possible to use
another algorithm (e.g., Speedy search [46]) to find the first solution and provide it to APTS/ANA∗ as an initial incumbent
solution. Additionally, the bound of the next PTS can be set to be lower than the incumbent solution by some �, to avoid
finding too many solutions. Such a �, however, would be a parameter of the algorithm and setting it raises the parameter
tuning problem we aim to avoid.

5. Experimental results

In this section we empirically evaluate the performance of PTS as a bounded-cost search algorithm, and APTS/ANA∗ as
an anytime search algorithm. This is done over a range of domains: 15-puzzle, KPP-COM, robot arm, grid world planning
and multiple sequence alignment (MSA). Next, we describe the domains used in our experiments.

5.1. Domains

For every domain, we provide the domain details (what is a state etc.), the heuristic function used, and how the problem
instances were generated.

5.1.1. The 15-puzzle
The 15-puzzle is a very well-known puzzle that consists of 15 numbered tiles that can be moved in a 4 × 4 grid. There is

one blank location in the grid. The blank can be swapped with an adjacent tile. The left part of Fig. 3 shows the goal state
that we used for the 15-puzzle while the right part shows a state created from the goal state by applying two operators,
namely swapping the blank with tile 1 and then swapping it with tile 5. The number of states reachable from any given
state is (42)!/2 [47]. The task is to find a short path from a given starting state to the goal state. The 15-puzzle is a common
search benchmark [2,15,36,48,49].

There are many advanced heuristics for the 15-puzzle. In the experiments below we chose the simple Manhattan Dis-
tance heuristic (MD) because our goal is to compare search algorithms and not different heuristics. The experiments were
performed on Korf’s standard 100 random 15-puzzle instances [2].

5.1.2. Key Player Problem in Communication (KPP-COM)
The Key Player Problem in Communication (KPP-COM) is the problem of finding a set of k nodes in a graph with the

highest Group Betweenness Centrality (GBC). GBC is a metric for centrality of a group of nodes [50]. It is a generalization
of the betweenness metric, which measures the centrality of a node with respect to the number of shortest paths that pass
through it [51]. Formally, the betweenness of a node n is Cb(n) = ∑

s,t∈V s,t �=n
σst (n) , where σst is the number of shortest
σst

R. Stern et al. / Artificial Intelligence 214 (2014) 1–25 13
Fig. 4. Example of the motion of a 6 DoF (left) and 20 DoF (right) robot arm [6].

paths between s and t and σst(n) is the number of shortest paths between s and t that pass through n. The betweenness
of a group of nodes A, termed group betweenness, is defined as Cb(A) = ∑

s,t∈V \A
σst (A)
σst

, where σst(A) is the number of
shortest paths between s and t that pass through at least one of the nodes in A.

KPP-COM is known to be NP-Hard [52]. It has important network security applications, such as optimizing the deploy-
ment of intrusion detection devices [53]. KPP-COM can be solved as a search problem. Let G = (V , E) be the input graph
in which we are searching for a group of k vertices with the highest GBC. A state in the search space consists of a set of
vertices N ⊆ V , |N| ≤ k. N is considered as a candidate to be the group of vertices with the highest GBC. The initial state
of the search is an empty set, and each child of a state corresponds to adding a single vertex to the set of vertices of the
parent state. Every state has a value, which is the GBC of the set of vertices it contains. While the goal in the previous
domain (the 15-puzzle) is to find a solution of minimal cost, the goal in KPP-COM is to find a solution with maximum value.
We call problems of the former type MAX problems and problems of the latter type MIN problems. An admissible heuristic
for MAX problems is required to be an upper bound on the optimal value. Similarly, a suboptimal solution is one with a
smaller value than the optimal solution.

A number of efficient admissible (overestimating) heuristics for this problem exist [52] and in our experiments we used
the best one, calculated as follows. Consider a state consisting of a set of m vertices Vm . First, the contribution of every
individual vertex v ∈ V \ Vm is calculated. This is the Cb(Vm ∪ {v}) − Cb(Vm). Then, the contribution of the topmost k − m
vertices is summed and used as an admissible heuristic, where k is the total number of vertices that needs to be selected
(see [52] for a more detailed discussion about this heuristic).

Since the main motivation for the KPP-COM problem is in communication network domains, all our experiments were
performed on graphs generated by the Barabási–Albert model [54]. This random graph model is a well-used model of
Internet topology and the web graph, which accepts two parameters: the number of vertices in the graph and a density
factor. We have experimented with a variety of graph sizes and density factor values, and present the average results over
25 graphs with 600 vertices with a density factor of 2. Additionally, we have limited the size of the searched group of
vertices to be 20 (i.e., k = 20).

5.1.3. Robot arm
The robot arm domain is taken from Maxim Likhachev’s publicly available SBPL library (http://www.sbpl.net). This prob-

lem illustrates the performance of the proposed algorithms in a domain with a high branching factor and few duplicate
states.

We consider both a 6 degrees of freedom (DoF) arm and a 20 DoF arm with a fixed base in a 2D environment with
obstacles, shown in Fig. 4. The objective is to move the end-effector from its initial location to a goal location while avoiding
obstacles. An action is defined as a change of the global angle of any particular joint (i.e., the angle with respect to a fixed
initial point) having the next joint further along the arm rotate in the opposite direction to maintain the global angle of the
remaining joints. All actions have the same cost.

The environment is discretized into a 50 × 50 2D grid. The heuristic is calculated as the shortest distance from the
current location of the end-effector to the goal location that avoids obstacles. To avoid having the heuristic overestimate
true costs, joint angles are discretized so as to never move the end-effector by more than one cell on the 50 × 50 grid in
a single action. Note that the size of the state space for this domain is 109 states for the 6 DoF robot arm and more than
1026 states for the 20 DoF robot arm.

5.1.4. Gridworld planning
The next domain we considered is that of two planar gridworld path-planning problems with different sizes and numbers

of obstacles, also taken from Likhachev’s SBPL library. This problem illustrates the performance of the algorithms in a domain

http://www.sbpl.net

14 R. Stern et al. / Artificial Intelligence 214 (2014) 1–25
Fig. 5. An example of aligning 8 DNA sequences.

Table 1
Competing algorithms for each domain.

Algorithms KPP-COM 15-Puzzle Robot arm Gridworld MSA

AWA∗ √ √
– – –

ARA∗ – –
√ √ √

DFBnB
√

– – – –

with many transpositions and a relatively small branching factor. We set the start state as the cell at the top left corner,
and the goal state at the bottom right cell. The first gridworld problem is a 100 × 1200 8-connected grid with obstacles,
with unit cost to move between adjacent obstacle-free cells. The second gridworld problem is a 5000 × 5000 4-connected
grid in which each transition between adjacent cells is assigned a random cost between 1 and 1000. For the 5000 × 5000
4-connected grid problem with non-unit edge cost, we considered two cases, one with obstacles and one without.

5.1.5. Multiple sequence alignment (MSA)
Our final domain is the MSA problem. The uniqueness of this domain (in comparison to the domains above) is its high

branching factor and non-uniform edge costs (i.e., costs of different edges may vary).
MSA is a central problem for computational molecular biology when attempting to measure similarity between a set of

sequences [55]. The input to MSA is a set of sequences of items (e.g., gene or protein sequences). Every sequence is mapped
to an array, while possibly leaving empty spaces. This mapping is referred to as an alignment. Fig. 5 shows an example of
an alignment of 8 sequences. Alignments have a cost, according to a biologically motivated interpretation of the alignment.
We used the sum-of-pairs cost function, used by many previous works [56,57,55, inter alia]. According to this cost function
the alignment cost of k sequences is the sum of the alignment costs of all

(k
2

)
pairs of sequences. The alignment cost of

a pair of sequences x and y considers the number of matches, gaps and substitutions in the alignment. A match occurs when
two identical items (e.g., the same protein) are mapped to the same array index. A gap occurs when only a single sequence
is using an index. A substitution occurs when different items are mapped to the same index. The alignment cost we used
assigned to every match, gap and substitution a cost of zero, one and two, respectively.

MSA can be formalized as a shortest-path problem in an n-dimensional lattice, where n is the number of sequences to
be aligned [58]. A state is a (possibly partial) alignment represented by the items aligned so far from each sequence. A goal
is reached when all the characters in all the sequences are aligned. A move in the search space assigns a specific index to
an item in one or more sequences. The cost of a move is computed as the cost of the partial alignment. The MSA problem
instances we experimented with consist of five dissimilar protein sequences obtained from [59] and [60]. The heuristic is
based on summing the optimal pairwise alignments, which were precomputed by dynamic programming [60].

5.2. Bounded-cost experiments

In this section we empirically evaluate the performance of PTS. In every experiment, the cost bound C was set, and PTS
and the competing algorithms were run until a solution with cost lower than C was found. This was repeated for a range
of cost bounds (i.e., a range of C values). In domains where instances could be solved optimally in reasonable time, we
chose the range of C values to cover bounds close to the average optimal solution as well as substantially higher bounds. In
domains where solving instances optimally was not feasible, we chose the cost bounds that were solvable by the compared
algorithms in reasonable time. The performance of the various algorithms was measured in runtime.

We compared PTS against a range of existing anytime search algorithms: AWA∗ [22], ARA∗ [6] and DFBnB [23]. To make
the comparison to PTS fair, we also modified these anytime algorithms to prune every node n with g(n) + h(n) larger than
the cost bound, as is done for PTS (line 12 in Algorithm 1). Thus, DFBnB can also be viewed as a depth-first search with
node pruning, where nodes with g(n) + h(n) larger than the cost bound are pruned.

Different anytime search algorithms performed differently, and in the rest of this section we only show results of the
best performing anytime search algorithms for every domain. Table 1 lists the best performing algorithms for every do-
main. For KPP-COM, these were AWA∗ and DFBnB. The effectiveness of DFBnB in KPP-COM was not surprising, as DFBnB is

R. Stern et al. / Artificial Intelligence 214 (2014) 1–25 15
Table 2
15-puzzle bounded-cost results. The % values are the average % of nodes expanded by A∗ . The values in brackets are runtimes in milliseconds.

C PTS AWA∗-1.5 AWA∗-2.0 AWA∗-2.5 AWA∗-3.0

55 %36 (955) %21 (482) %48 (751) %86 (1068) %124 (1651)

60 %11 (389) %12 (389) %11 (418) %33 (643) %66 (1144)

65 %7 (370) %12 (389) %7 (362) %13 (430) %67 (735)

70 %5 (353) %12 (388) %6 (354) %6 (360) %17 (464)

75 %5 (351) %12 (387) %6 (357) %5 (347) %8 (385)

80 %4 (346) %12 (389) %6 (355) %5 (348) %4 (350)

85 %4 (342) %12 (387) %6 (357) %5 (347) %4 (343)

90 %4 (345) %12 (392) %6 (360) %5 (347) %4 (340)

Table 3
KPP-COM bounded-cost results. Values are the average runtime in seconds.

C 320 000 310 000 300 000 290 000 280 000

PTS 1194 727 556 408 329
DFBnB 1117 735 562 422 347
AWA∗-0.7 1138 751 569 424 336
AWA∗-0.8 1391 972 758 580 438
AWA∗-0.9 2713 1850 1528 1155 796
A∗ 7229 4389 4118 2729 1750

known to be effective when the depth of the solution is known in advance (in KPP-COM this is k, the size of the searched
group) [61,62]. This was also confirmed in our KPP-COM experiments and in previous work [52]. DFBnB is less effective in
other domains, where the depth of the search tree varies and there are many cycles. The relative performance of AWA∗ and
ARA∗ varies between domains. Our experiments showed that AWA∗ outperformed ARA∗ in the 15-puzzle (previous work
showed this in the 8-puzzle domain [22]), while ARA∗ performed better in all other domains.14 Both ARA∗ and AWA∗ are
parametric algorithms. We experimented with a range of parameters and show the results of the best performing parameter
settings we found.

Table 2 displays the results for the 15-puzzle domain. Results in this domain are traditionally shown in terms of nodes
expanded, to avoid comparing implementation details. Therefore, in addition to comparing the runtime of each algorithm
we also measured the number of nodes expanded. The number of nodes expanded is given in Table 2 as the percentage of
nodes expanded with respect to the number of nodes expanded by A∗ until an optimal solution is found. Runtime is shown
in the same table in brackets, and measured in milliseconds. The best performing algorithm for every cost bound is marked
in bold.

Results clearly show a drastic reduction in the size of the searched state space (yielding a substantial speedup) over
trying to find an optimal solution. For example, PTS can find a solution under a cost bound of 70 by expanding on average
only 5% of the nodes that will be expanded by A∗ to find an optimal solution.

In addition, we see that PTS performs best for the vast majority of cost bounds. PTS also performs relatively well even
for the few cost bounds where it is not the best performing algorithm. We can also see the large impact of the w parameter
on the performance of AWA∗ . For example, for cost bound 65, AWA∗ with w = 3 performed more than 9 times worse than
AWA∗ with w = 2. This emphasizes the robustness of PTS, which does not require any parameter.

Due to implementation details, there was not a perfect correlation between the number of nodes expanded by an al-
gorithm and its runtime, as part of the runtime is used to allocate memory for the required data structures and other
algorithm initialization processes. Nonetheless, similar trends as those noted above can also be seen for runtime (these are
the values in brackets in Table 2).

Deeper inspection of the results shows that for the lowest cost bound (55), PTS is outperformed by AWA∗ with w = 1.5.
The average cost of an optimal solution for the 15-puzzle instances we experimented with is 52. This suggests that PTS
might be less effective for cost bounds that are close to the optimal solution cost. In such cases, a more conservative A∗-like
behavior, exhibited by AWA∗ with w close to one, might be beneficial, as A∗ is tuned to find an optimal solution. We
observed a similar trend in some of the other domains we experimented with.

Next, consider the results for KPP-COM, shown in Table 3. Values are runtime in seconds until a solution below the
cost bound C was found. Similar trends are observed in this domain: PTS performs best for most cost bounds and the w
parameter greatly influences the performance of AWA∗ .

The differences in performance of PTS, AWA∗-0.7 and DFBnB are relatively small in this domain. This is because DFBnB
is known to be very efficient in this domain [52]. Hence, PTS could not substantially improve over DFBnB. As for AWA∗-0.7,
consider the case where w reaches zero. In such a case, AWA∗ behaves like uniform cost search, a best–first search using
only g to evaluate nodes. In MAX problems with non-negative edge costs, as is the case for KPP-COM, a uniform cost search

14 For some of the results of the other algorithms, see http://goldberg.berkeley.edu/ana/ANA-techReport-v7.pdf.

http://goldberg.berkeley.edu/ana/ANA-techReport-v7.pdf

16 R. Stern et al. / Artificial Intelligence 214 (2014) 1–25
Table 4
Robot arm bounded-cost results. Values are the average runtime in seconds.

(a) 6 DoF Robot Arm (b) 20 DoF Robot Arm

Cost bounds Cost bounds

C 61 63 65 67 69 C 80 82 85 88
PTS 2764 36 31 18 14 PTS 101 84 16 8
ARA∗ 647 95 61 61 31 ARA∗ 40 21 21 21

Table 5
Gridworld planning results. Values are the average runtime in seconds.

(a) 100 × 1200, unit edge costs

C 1050 1055 1060

PTS 4.8 4.5 3.7
ARA∗ 478.0 478.0 8.1

(b) 5000 × 5000, with obstacles

C 4400 4410 4430 4450 4470

PTS 1.50 1.40 1.39 0.68 0.59
ARA∗ 36.20 20.10 1.82 1.38 1.38

(c) 5000 × 5000, without obstacles

C 2550 2600 2700 2800 2900 3000

PTS 15.630 4.878 0.496 0.265 0.093 0.072
ARA∗ 129.500 8.955 5.476 4.649 3.384 3.167

Table 6
Multiple sequence alignment results. Values are the average runtime in seconds.

C 1585 1590 1595 1600 1605 1610

PTS 108.7 69.0 26.4 7.4 0.7 0.1
ARA∗ 789.4 736.1 635.3 427.4 186.9 0.0

behaves like DFBnB. Thus, decreasing w towards zero results in AWA∗ behaving more and more like DFBnB, until eventually
converging to DFBnB when w = 0. This explains the similar performance of AWA∗-0.7 and DFBnB.

Results for the robot arm, gridworld planning, and multiple sequence alignment domains are shown in Tables 4, 5 and 6,
respectively. PTS’s favorable behavior can be viewed across all domains. For example, in the 100 × 1200 gridworld planning
domain, PTS is two orders of magnitude faster than ARA∗ for a cost bound of 1050. Following all the bounded-cost results
shown above, we conclude that PTS outperforms the best performing anytime search algorithm for almost all cost bounds
and across the entire range of domains we used. Furthermore, PTS exhibits the most robust performance, without any
parameter tuning required.

5.2.1. The effect of w in MAX problems
The KPP-COM results highlight an interesting question – how does the w parameter affect the performance of AWA∗

for MAX problems? The best performing instance of AWA∗ in our KPP-COM experiments used w = 0.7, the lowest w we
experimented with. Thus, one might think that decreasing w has an equivalent effect to increasing w in MIN problems.
Indeed, decreasing w for w > 1 in MAX problems is similar to increasing w for w < 1 in MIN problems – making an
admissible heuristic more informed and the search more efficient. In the limit, however, decreasing w in MAX problems
and increasing w in MIN problems have completely different effects. As mentioned above, for MAX problems setting w = 0
results in AWA∗ behaving like uniform cost search. For MIN problems, w = ∞ results in AWA∗ behaving like pure heuristic
search. Pure heuristic search is expected to find solutions fast but of low quality,15 while uniform cost search ignores the
heuristic completely and is therefore expected to be slower than a search that uses a heuristic. Exploring the effect of w in
MAX problems is left for future work.

5.3. Anytime experiments

Next, we present experimental results to evaluate the performance of APTS/ANA∗ on the same range of domains de-
scribed in Section 5.1. In every experiment, we ran APTS/ANA∗ and the best-performing anytime search algorithms (different
for each domain), and recorded the suboptimality of the incumbent solution as a function of the runtime. In the following
figures, ARA∗(X) will denote ARA∗ using w0 = X (w0 is the initial value of w used by ARA∗; see Section 2.3).

15 This is a general guideline [6], but deeper study of the effect of w in MIN problems is needed [39].

R. Stern et al. / Artificial Intelligence 214 (2014) 1–25 17
Fig. 6. Anytime experiments for the robot arm domain. Time (x-axis) is in seconds.

Fig. 7. # instances where each algorithm found the best (lowest cost) solution.

First, consider the results for the 6 DoF robot arm experiments, shown in Fig. 6(a). The y-axis shows the reported
suboptimality, where 1 corresponds to a solution that is optimal. The x-axis shows the runtime in seconds. The benefits of
APTS/ANA∗ in this domain are very clear. APTS/ANA∗ dominates all other algorithms throughout the search. Although not
visible in the figure, we also report that APTS/ANA∗ found an initial solution faster than ARA∗ .

Next, consider the performance of APTS/ANA∗ in the 20 DoF robot arm experiments, shown in Fig. 6(b). In this domain
APTS/ANA∗ is not always the best performing algorithm. For some weights and time ranges, ARA∗ is able to find solutions
of better quality. However, the rapid convergence of APTS/ANA∗ towards an optimal solution and consistent decrease in
suboptimality are very clear in this domain, demonstrating the anytime behavior of APTS/ANA∗ . As in the 6 DoF experiments,
in this domain too APTS/ANA∗ found an initial solution faster than all other algorithms.

The above robot arm results are for a single but representative instance. We also experimented on a set of randomly
generated 6 DoF and 20 DoF robot arm instances (20 instances each) showing, in general, very similar trends. As an aggre-
gated view showing the relative anytime performance of APTS/ANA∗ with respect to the other algorithms, we also analyzed
which was the most effective algorithm throughout the search. This was measured by counting for every algorithm A and
every millisecond t , the number of problem instance where the incumbent solution found by A after running t milliseconds
is smaller than or equal to the incumbent solution found by all other algorithms after running t milliseconds. This measures
the number of instances where algorithm A was the best algorithm if halted after t milliseconds. Fig. 7 shows the results
of this analysis, where the x-axis is the runtime (in milliseconds) and the y-axis is the number of instances where each
algorithm was best. For both 20 DoF (left) and 6 DoF (right), the results clearly show that APTS/ANA∗ is the best performing
algorithm throughout the search for the majority of problem instances.

The results for the MSA domain, shown in Fig. 8, show that APTS/ANA∗ (as in the 6 DoF robot arm) dominates all other
algorithms throughout the search. For both robot arm and MSA experiments, APTS/ANA∗ has the largest number of steps in
its decrease to a lower suboptimality. Correspondingly, the time between solution improvements is smaller. For example, in
the MSA experiments, APTS/ANA∗ spent an average of 18 s between solution improvements, while in the best run of ARA∗ ,

18 R. Stern et al. / Artificial Intelligence 214 (2014) 1–25
Fig. 8. MSA, 5 sequences. Time (x-axis) is in seconds.

Fig. 9. 100 × 1200, unit edge cost with obstacles. Time (x-axis) is in seconds.

it took 200 s on average to find a better solution. As discussed in Section 4, this is intuitively a desirable property of an
anytime algorithm.

Next, consider the results for the gridworld domain, given in Figs. 9 and 10. For the 100 × 1200 grid with unit edge cost
experiments (Fig. 9) and the 5000 × 5000 grid with random edge cost experiments (Fig. 10(a)), APTS/ANA∗ dominates all
other algorithms throughout the search. However, the results for the 5000 × 5000 domain with obstacles (Fig. 10(b)) show
a different behavior: after 30 seconds of runtime, ARA∗ with w0 = 500 returned solutions of lower cost than the solutions
returned by APTS. While not shown in the figure, we report that APTS/ANA∗ required an additional 193 s to find a solution
of the same cost as this ARA∗ instance.

Note that the performance of ARA∗ varied greatly with the value of w0 in all the domains we experimented with. For
the 5000 × 5000 gridworld with no obstacles, w0 = 30 is the best w0 value of those tested, while for the 5000 × 5000
gridworld with obstacles w0 = 500 is the best w0 value. The challenge of tuning w0 in ARA∗ is especially evident in the
100 × 1200 gridworld experiment (seen in Fig. 9). The disparity in the ARA∗ results for different values of w0 illustrates
a non-linear relationship between w0 and ARA∗ ’s performance. This emphasizes that setting this value is non-trivial, as
a higher or lower w0 value does not necessarily guarantee better or worse performance. Thus, even if for some problem
instances ARA∗ with some parameter settings outperforms APTS/ANA∗ , APTS/ANA∗ still has the benefit of not depending on
any parameter.

Next, consider the results for the KPP-COM domain, seen in Fig. 11(a). The y-axis denotes the suboptimality of the
incumbent solution as a function of the computation time, shown on the x-axis. Since KPP-COM is a MAX problem, the
suboptimality starts very close to zero and converges to one from below when an optimal solution is found.

R. Stern et al. / Artificial Intelligence 214 (2014) 1–25 19
Fig. 10. Anytime experiments for 5000 × 5000 gridworld. Time (x-axis) is in seconds.

Fig. 11. Anytime experiments for KPP-COM and 15-puzzle domains.

The results in Fig. 11(a) clearly show that in this domain as well, APTS/ANA∗ performs consistently no worse and often
better than the other algorithms. As discussed in Section 5.2, DFBnB is known to be highly effective in this domain [52].
Indeed, the results of APTS/ANA∗ and DFBnB are almost identical, with a slight advantage for APTS/ANA∗ when the runtime
was more than 5 seconds.

Negative results for APTS/ANA∗ were obtained for the 15-puzzle domain, shown in Fig. 11(b). Running APTS/ANA∗ yielded
worse results than AWA∗ with a tuned w value (w = 2). This is because, as explained in Section 4, APTS/ANA∗ runs pure
heuristic search until it finds the initial solution. In many domains, including all those described above, this results in
finding an initial solution very fast. With proper tie-breaking, this is also the case for the 15-puzzle domain. The quality of
this initial solution, however, is very poor. Thus, APTS/ANA∗ wastes a significant amount of time improving solutions that
have very high suboptimality, until it converges to an optimal solution. By contrast, the initial solution found by AWA∗ with
w = 2 (AWA∗-2.0 in Fig. 11(b)) has a suboptimality of at most 2, and can be found relatively easily in this domain.

As a partial remedy for this problem, we tried first running WA∗ with different weights and then giving APTS/ANA∗ the
initial solution, after which it continues to run as usual. Results show that this APTS/ANA∗ variant performed the same as
the best performing anytime search algorithm for this domain.

To summarize, on all the domains except the 15-puzzle, APTS/ANA∗ was competitive, and in most cases significantly bet-
ter than existing anytime search algorithms in that: (1) APTS/ANA∗ finds an initial solution faster, (2) APTS/ANA∗ improves
the incumbent solution faster and more often, and (3) APTS/ANA∗ converges faster to solutions of higher quality. Moreover,
in all of the domains we experimented with, we found that the performance of existing parametric anytime search algo-

20 R. Stern et al. / Artificial Intelligence 214 (2014) 1–25
rithms is greatly affected by the parameter values. By contrast, APTS/ANA∗ does not require any parameters to be set, and
still manages to outperform existing anytime algorithms.

6. Generalized Potential Search (GPTS)

In Section 3 we presented the PTS algorithm, and showed that under the linear-relative assumption PTS always expands
the node with the highest potential (Theorem 1). In this section we generalize PTS to cases where this assumption does not
hold. We call the resulting algorithm General Potential Search (GPTS) – a search algorithm that always expands the node
with the highest potential.

GPTS can be implemented as a BFS with an evaluation function that orders nodes according to their potential (denoted
earlier in this paper as P Th,C). We call such an evaluation function a Potential Ordering Function (POF).

Definition 3 (Potential Ordering Function (POF)). A function F is called a Potential Ordering Function (POF) if for any pair of
nodes n1 and n2, we have that

F (n1) ≥ F (n2) iff P Th,C (n1) ≥ P Th,C (n2)

Of course, P Th,C itself is a trivial POF. Calculating PTh,C , however, may be non-trivial. Next, we propose practical POFs
for a wide range of domains that do not require calculating PTh,C for any node. This suggests the applicability of GPTS.

As a preliminary, we provide a more rigorous definition of the potential than given in Definition 2. Let S be the searched
state space, and let D be a probability distribution over the nodes in S . S denotes a random variable corresponding to a
state from S randomly drawn according to distribution D. We denote by Pr(h∗(S) = X | h(S) = Y) the probability that X is
the cost of the lowest cost path to a goal from a random state S with heuristic value Y . The potential of a node n is defined
as the probability that a random state S with the same h value as node n will have a path to a goal of cost lower than
C − g(n). We next define this formally.

Definition 4 (Potential). Given a heuristic function h and a cost bound C , we define the potential of node n, denoted PTh,C (n),
as

PTh,C (n) = Pr
(

g(n) + h∗(S) < C
∣∣ h(S) = h(n)

)

The potential of a node, as defined above, depends on the relation between h(·) and h∗(·). We formalize this h-to-h∗
relation by introducing the notion of a heuristic model, or h-model in short. An h-model of a heuristic function is a function
that captures the probabilistic relation between a heuristic and the lowest cost path to the goal that it estimates.

Definition 5 (h-Model). A function e(·) is said to be an h-model of a heuristic function h, if for every h-value v of the
heuristic function, and every h∗-value K of a state in the state space,

Pr
(
h∗(S) < K

∣∣ h(S) = v
) = Pr

(
e(v) < K

)

Domains with the linear-relative assumption (described in Section 3) are simply domains with an h-model e(v) = X · v ,
where X is a random independent identically distributed (i.i.d.) variable. Correspondingly, we call this type of h-model the
linear-relative h-model. Using this notation, Lemma 1 (given in Section 3) states that the PTS evaluation function u(n) =
C−g(n)

h(n)
is a POF for the linear-relative h-model. Next, we describe POFs for other h-models.

6.1. Additive h-model

Consider the following h-model: e(v) = v + X , where X is an i.i.d. random variable. This does not imply that the distri-
bution of X is uniform, but just that the additive error of every node is taken from the same distribution (independently).
We call such an h-model an additive h-model.16

If the distribution of X is known, no non-trivial POF is required, as the potential can be easily calculated:

PTh,C (n) = Pr
(

g(n) + h∗(S) < C
∣∣ h(S) = h(n)

)
= Pr

(
h∗(S) < C − g(n)

∣∣ h(S) = h(n)
)

= Pr
(
h(n) + X < C − g(n)

)
= Pr

(
X < C − g(n) − h(n)

)

16 This is reminiscent of the bounded constant absolute error model described by Pearl [35] where the difference between h and h∗ is bounded by a constant
(i.e., h∗(n) ≤ h(n) + K). Here, K is the largest value for X .

R. Stern et al. / Artificial Intelligence 214 (2014) 1–25 21
For example, in the special case where X is a constant K , the potential of a node is a simple binary function:

PTh,C (n) =
{

1 g(n) + h(n) + K ≤ C
0 otherwise

If the distribution of X is not known, then directly computing PTh,C is impossible. Next, we show that even if the distribution
of X is unknown, it is still possible to have a POF. Corollary 1 presents a theoretical POF that applies to any given h-model.

Corollary 1. FC (n) = Pr(e(h(n)) < C − g(n)) is a POF.

Proof. For any pair of nodes n1,n2, if PTh,C (n1) ≥ P Th,C (n2) then:

Pr
(

g(n1) + h∗(S) < C
∣∣ h(S) = h(n1)

) ≥ Pr
(

g(n2) + h∗(S) < C
∣∣ h(S) = h(n2)

)
Pr

(
h∗(S) < C − g(n1)

∣∣ h(S) = h(n1)
) ≥ Pr

(
h∗(S) < C − g(n2)

∣∣ h(S) = h(n2)
)

Pr
(
e
(
h(n1)

)
< C − g(n1)

) ≥ Pr
(
e
(
h(n2)

)
< C − g(n2)

) [Definition 5]
FC (n1) ≥ FC (n2)

Proving the reverse direction is straightforward, and thus FC is a POF. �
Using the POF given in Corollary 1 requires calculating FC (n) = Pr(e(h(n)) < C − g(n)). For an additive h-model, FC (n)

still depends on X , since e(h(n)) = h(n) + X . Theorem 3 provides an applicable POF that does not depend on X .

Theorem 3. If the h-model is additive then − f (n) = −(g(n) + h(n)) is a POF.

Proof. For any pair of nodes n1,n2, if P Th,C (n1) ≥ P Th,C (n2) then:

Pr
(
e
(
h(n1)

)
< C − g(n1)

) ≥ Pr
(
e
(
h(n2)

)
< C − g(n2)

) [Corollary 1]
Pr

(
h(n1) + X < C − g(n1)

) ≥ Pr
(
h(n2) + X < C − g(n2)

) [additive h-model]
Pr

(
X < C − g(n1) − h(n1)

) ≥ Pr
(

X < C − g(n2) − h(n2)
)

C − g(n1) − h(n1) ≥ C − g(n2) − h(n2) [X is i.i.d.]
− f (n1) = −g(n1) − h(n1) ≥ −g(n2) − h(n2) = − f (n2)

The reverse direction is straightforward. �
A direct result of Theorem 3 is that for an additive h-model, GPTS and A∗ expand nodes in the same order.

6.2. General h-model

Consider the more general case, where the h-model e(v) is an algebraic combination of v and a random i.i.d. variable X .
We overload the function e to describe this algebraic combination, and write e(v) = e(v, X). Note that this model generalizes
the previously discussed h-models. Let er be the inverse function of e such that er(e(v), v) = X . We denote an h-model as
invertible if such an inverse function er exists. Theorem 4 shows that if the h-model is invertible and er is monotonic, then
Pgen(n) = er(C − g(n),h(n)) is a POF.

Theorem 4. For any i.i.d. random variable X and invertible h-model e(v) = e(v, X), if er is monotonic then P gen is a POF.

Proof. For any pair of nodes n1,n2, if P Th,C (n1) ≥ P Th,C (n2) then according to Corollary 1:

Pr
(
e
(
h(n1)

)
< C − g(n1)

) ≥ Pr
(
e
(
h(n2)

)
< C − g(n2)

)
Pr

(
e
(
h(n1), X

)
< C − g(n1)

) ≥ Pr
(
e
(
h(n2), X

)
< C − g(n2)

) [
e
(
h(n)

) = e
(
h(n), X

)]
Pr

(
X < er(C − g(n1),h(n1)

)) ≥ Pr
(

X < er(C − g(n2),h(n2)
)) [h-model is invertible]

er(C − g(n1),h(n1)
) ≥ er(C − g(n2),h(n1)

) [
X i.i.d., er monotone

]
Pgen(n1) ≥ Pgen(n2)

The reverse direction is straightforward. �

22 R. Stern et al. / Artificial Intelligence 214 (2014) 1–25
Table 7
h models and their corresponding functions.

h-model (e(v)) er(e(v), v) Pgen(n) = er(C − g(n),h(n))

v + X (additive) e(v) − v C − g(n) − h(n)

v · X (linear relative) e(v)
v

C−g(n)
h(n)

v X logv (e(v)) logh(n)(C − g(n))

Notice that Lemma 1 and Theorem 3 are special cases of Theorem 4. Table 7 presents a few examples of how Theorem 4
can be used to obtain corresponding POFs for various h-models.

The exact h-model is domain and heuristic dependent. Analyzing a heuristic in a given domain and identifying its
h-model may be done analytically in some domains with explicit knowledge about the domain. Another option for identify-
ing an h-model is to add a preprocessing stage in which a set of problem instances are solved optimally, and the h-model is
discovered using curve fitting methods. In our experiments, we found the linear-relative h-model to be sufficiently accurate
and saw no justification for using more complex h-models. This option is given since such cases may theoretically exist.

7. Conclusions and future work

This paper discussed two search problems: bounded-cost search, and anytime search. In a bounded-cost search, once a
solution of cost lower than a given cost is found, the search can halt. In an anytime search, the search continues, returning
better and better solutions until the search is either halted by the user, or until an optimal solution has been found. Both
types of problems have important applications and this paper presents PTS and APTS/ANA∗ to solve them.

We showed that an efficient bounded-cost search algorithm can be easily converted to an efficient anytime search algo-
rithm. This is done by running the bounded-cost search algorithm iteratively, giving the bounded-cost search algorithm a
lower cost bound in every iteration. An attractive property of the resulting algorithm is that there is no need for parameter
tuning, in contrast to most common anytime search algorithms.

The relation between bounded-cost and anytime search problems emphasizes the need for an efficient bounded-cost
search algorithm. In this paper we propose such an algorithm, called PTS. PTS is a best–first search that expands nodes
in order of their potential, which is the probability that a node will lead to a solution under the cost bound. The relation
between a given heuristic and the optimal cost is used to develop a cost function that can order the nodes in OPEN
approximately according to their potential, without actually calculating it. Both PTS and its corresponding anytime algorithm
APTS/ANA∗ outperform competitive algorithms on a wide range of domains.

7.1. BEES, BEEPS, AEES, and incorporating distance estimates

The heuristic h(·) estimates the minimum cost of reaching a goal. Recent work has shown that in domains with non-unit
edge cost, h(·) may not be correlated with the number of actions needed to reach a goal [39]. In such cases, prior work has
shown that it is very beneficial to incorporate into the search algorithm an additional heuristic that estimates the minimum
actions needed to reaching a goal [46]. Such a “distance” heuristic, commonly denoted as d(·), together with an online
learned inadmissible heuristic ĥ(·), has been used in a new suboptimal search algorithm called EES [20], a new anytime
search algorithm called AEES [63] and a new bounded-cost search algorithm called BEES [40].

BEES was shown to outperform PTS in domains with non-unit edge costs, including “Zenotravel” and “Elevators”, two
domains from the International Planning Competition (IPC) that were solved with a domain independent planner. Follow
up work showed that in several other IPC benchmarks with non-unit edge cost, PTS can even be outperformed by a pure
heuristic search [34]. Similar results appear when comparing AEES to APTS/ANA∗ [63].

However, PTS is competitive with BEES in domains with unit edge costs. See the results for the Tiles domain (which
is the 15-puzzle) [40] and Tinybot domain [34], which were the only unit edge-cost domains they experimented with.17

When PTS is as good as BEES, one would probably prefer using PTS since implementing it is much simpler: BEES requires
maintaining at least two open lists as well as online learning an improved heuristic, while PTS is a simple best–first search
algorithm with an easy to compute evaluation function. Similar reasoning applies for comparing APTS/ANA∗ and AEES.

This emphasizes the need for PTS to consider d(·) in domains with non-unit edge cost. A first attempt to do so was
in the BEEPS algorithm [63], which is equivalent to BEES except for using the PTS evaluation function when all nodes in
OPEN are estimated to be above the bound. Empirically, this combination of BEES and PTS performed almost exactly like
BEES. Thus, incorporating d(·) into PTS in an effective manner is still an open challenge. A possible direction for doing this
is by considering explicitly the probabilistic relation between h(n), d(n) and h∗(n). For example, one could apply machine
learning techniques to learn this relation from past experience.

17 Further experimental results for other domain-independent planning domains with unit edge-cost are needed to provide a conclusive statement about
the performance of PTS in domain-independent planning.

R. Stern et al. / Artificial Intelligence 214 (2014) 1–25 23
Fig. 12. Optimal solution vs. heuristic for the KPP-COM and blocksworld domains.

7.2. Expected search effort instead of potential

PTS aims at expanding the node with the highest probability to lead to a solution under the bound. The task in a
bounded-cost search is, however, to find such a solution as fast as possible. Thus, we might also consider the expected
effort of finding such a solution, and not just the probability that such a solution exists. Estimating search effort may be
done with search effort prediction formulas and algorithms [64–66]. Future work will investigate how to incorporate such
estimates, in addition to the potential of a node. For example, a node that is very close to a goal might be preferred to a
node that has a slightly higher potential but is farther from a goal.

This paper combines results from two research groups who independently discovered APTS/ANA∗ . One group derived
the anytime search algorithm APTS by studying bounded-cost search problems [7,8]. The other research group derived ANA∗
motivated by a desire to avoid parameter tuning [9]. Both groups had papers under review simultaneously and subsequently
published in 2011. We thank Wheeler Ruml for pointing out this relationship.

Acknowledgements

This research was supported by the Israel Science Foundation (ISF) under grant number 417/13 to Ariel Felner. This work
was supported in part (for Goldberg and van den Berg) by the US National Science Foundation under Award IIS-1227536.
We thank Maxim Likhachev for making his implementation of ARA∗ available to us, as well as publishing the code for ANA∗ .
Our implementation of ANA∗ is freely available in his Search-based Planning Library (SBPL) at: http://www.sbpl.net.

Appendix A. Domains and their h-models

In this appendix we show the h-models of two domains and heuristics. These models were obtained by optimally solving
a set of problem instances. Then we backtracked from the goal to the start, and for every node on that path plotted its h∗
value versus its heuristic value (according to the selected heuristic).

A.1. Key Player Problem in Communication (KPP-COM)

Fig. 12(a) shows the h-to-h∗ relation for 100 KPP-COM problem instances. See Section 5.1.2 for details on this domain
and the heuristic we used for it. Each problem instance is a graph, randomly generated according to the Barabási–Albert
model [54] (the choice of this type of graphs is motivated in Section 5.1), having 700 nodes and a density factor of 3.

The dashed black line in Fig. 12(a) is a linear fit of the data. As can be seen, a slight curve (e.g., a logarithmic model)
would fit nicely. However, the linear fit is simpler and is also quite accurate.

A.2. Blocks world

Next, we analyzed the h-to-h∗ relation for the blocks world domain, which is one of the well-known planning domains.
We used the Fast Downward planner [67] with the admissible LM-cut heuristic [68]. Fig. 12(b) shows the h-to-h∗ relation
for all the blocks world problem instances from the International Planning Competition ’06, which are publicly available in
the Fast Downward software suite. Again, the dashed black line is a linear fit of the data. As can be seen, this heuristic in
this domain also exhibits a clear linear relative h-model.

http://www.sbpl.net

24 R. Stern et al. / Artificial Intelligence 214 (2014) 1–25
References

[1] P.E. Hart, N.J. Nilsson, B. Raphael, A formal basis for the heuristic determination of minimum cost paths, IEEE Trans. Syst. Sci. Cybern. SSC-4 (2) (1968)
100–107.

[2] R.E. Korf, Depth-first iterative-deepening: an optimal admissible tree search, Artif. Intell. 27 (1) (1985) 97–109.
[3] M. Helmert, G. Röger, How good is almost perfect? in: AAAI, 2008, pp. 944–949.
[4] S. Zilberstein, Using anytime algorithms in intelligent systems, AI Mag. 17 (3) (1996) 73–83.
[5] R.A. Valenzano, N.R. Sturtevant, J. Schaeffer, K. Buro, A. Kishimoto, Simultaneously searching with multiple settings: an alternative to parameter tuning

for suboptimal single-agent search algorithms, in: ICAPS, 2010, pp. 177–184.
[6] M. Likhachev, G.J. Gordon, S. Thrun, ARA∗: anytime A∗ with provable bounds on sub-optimality, in: NIPS, 2003.
[7] R. Stern, R. Puzis, A. Felner, Potential search: a new greedy anytime heuristic search, in: SoCS, 2010, pp. 119–120.
[8] R. Stern, R. Puzis, A. Felner, Potential search: a bounded-cost search algorithm, in: ICAPS, 2011, pp. 234–241.
[9] J. van den Berg, R. Shah, A. Huang, K.Y. Goldberg, Anytime nonparametric A∗ , in: AAAI, 2011, pp. 105–111.

[10] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 3rd edition, Prentice-Hall, Englewood Cliffs, NJ, 2010.
[11] R. Stern, T. Kulberis, A. Felner, R. Holte, Using lookaheads with optimal best–first search, in: AAAI, 2010, pp. 185–190.
[12] E.W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math. 1 (1959) 269–271.
[13] A. Felner, Position paper: Dijkstra’s algorithm versus uniform cost search or a case against Dijkstra’s algorithm, in: SOCS, 2011, pp. 47–51.
[14] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, 2nd edition, The MIT Press, 2001.
[15] R.E. Korf, Linear-space best–first search, Artif. Intell. 62 (1) (1993) 41–78.
[16] I. Pohl, Heuristic search viewed as path finding in a graph, Artif. Intell. 1 (3–4) (1970) 193–204.
[17] I. Pohl, The avoidance of (relative) catastrophe, heuristic competence, genuine dynamic weighting and computational issues in heuristic problem

solving, in: IJCAI, 1973, pp. 12–17.
[18] J. Pearl, J. Kim, Studies in semi-admissible heuristics, IEEE Trans. Pattern Anal. Mach. Intell. 4 (4) (1982) 392–400.
[19] J.T. Thayer, W. Ruml, Faster than weighted A∗: an optimistic approach to bounded suboptimal search, in: ICAPS, 2008, pp. 355–362.
[20] J.T. Thayer, W. Ruml, Bounded suboptimal search: a direct approach using inadmissible estimates, in: IJCAI, 2011, pp. 674–679.
[21] D. Furcy, S. Koenig, Limited discrepancy beam search, in: IJCAI, 2005, pp. 125–131.
[22] E.A. Hansen, R. Zhou, Anytime heuristic search, J. Artif. Intell. Res. 28 (2007) 267–297.
[23] E. Balas, P. Toth, Branch and bound methods, in: E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shwoys (Eds.), Traveling Salesman Problem: A Guided

Tour of Combinatorial Optimization, Wiley, Chichester, 1985.
[24] S. Richter, J.T. Thayer, W. Ruml, The joy of forgetting: faster anytime search via restarting, in: ICAPS, 2010, pp. 137–144.
[25] S. Aine, P.P. Chakrabarti, R. Kumar, AWA∗ – a window constrained anytime heuristic search algorithm, in: IJCAI, 2007, pp. 2250–2255.
[26] R. Zhou, E.A. Hansen, Beam-stack search: integrating backtracking with beam search, in: ICAPS, 2005, pp. 90–98.
[27] J.T. Thayer, W. Ruml, Anytime heuristic search: frameworks and algorithms, in: SOCS, 2010, pp. 121–128.
[28] R. Taig, R.I. Brafman, Compiling conformant probabilistic planning problems into classical planning, in: ICAPS, 2013, pp. 197–205.
[29] A. Stern, I. Dagan, A confidence model for syntactically-motivated entailment proofs, in: RANLP, 2011, pp. 455–462.
[30] A. Stern, R. Stern, I. Dagan, A. Felner, Efficient search for transformation-based inference, in: ACL, 2012, pp. 283–291.
[31] A. Zanarini, G. Pesant, Solution counting algorithms for constraint-centered search heuristics, Constraints 14 (2009) 392–413.
[32] P. Haslum, H. Geffner, Heuristic planning with time and resources, in: European Conference on Planning (ECP), vol. 1, 2001, pp. 121–132.
[33] H. Nakhost, J. Hoffmann, M. Müller, Improving local search for resource-constrained planning, in: SOCS, 2010, pp. 81–82.
[34] P. Haslum, Heuristics for bounded-cost search, in: ICAPS, 2013, pp. 312–316.
[35] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving, Addison-Wesley Pub. Co., Inc., Reading, MA, 1984.
[36] A. Felner, R.E. Korf, S. Hanan, Additive pattern database heuristics, J. Artif. Intell. Res. 22 (2004) 279–318.
[37] U. Sarkar, P. Chakrabarti, S. Ghose, S. De Sarkar, Reducing reexpansions in iterative-deepening search by controlling cutoff bounds, Artif. Intell. 50 (2)

(1991) 207–221.
[38] E. Burns, W. Ruml, Iterative-deepening search with on-line tree size prediction, in: LION, 2012, pp. 1–15.
[39] C.M. Wilt, W. Ruml, When does weighted A∗ fail? in: SOCS, 2012, pp. 137–144.
[40] J.T. Thayer, R. Stern, W. Ruml, A. Felner, Faster bounded-cost search using inadmissible estimates, in: ICAPS, 2012, pp. 270–278.
[41] M. Boullé, A parameter-free classification method for large scale learning, J. Mach. Learn. Res. 10 (2009) 1367–1385.
[42] G.R. Harik, F.G. Lobo, A parameter-less genetic algorithm, in: GECCO, vol. 99, 1999, pp. 258–267.
[43] A. Foss, O.R. Zaïane, A parameterless method for efficiently discovering clusters of arbitrary shape in large datasets, in: International Conference on

Data Mining (ICDM), IEEE, 2002, pp. 179–186.
[44] A.J. Dionne, J.T. Thayer, W. Ruml, Deadline-aware search using on-line measures of behavior, in: SOCS, 2011, pp. 39–46.
[45] W. Ruml, M.B. Do, Best-first utility-guided search, in: IJCAI, 2007, pp. 2378–2384.
[46] J.T. Thayer, W. Ruml, Using distance estimates in heuristic search, in: ICAPS, 2009, pp. 382–385.
[47] W.E. Story, Notes on the “15” puzzle, Am. J. Math. 2 (4) (1879) 397–404.
[48] R.C. Holte, A. Felner, J. Newton, R. Meshulam, D. Furcy, Maximizing over multiple pattern databases speeds up heuristic search, Artif. Intell. 170 (16–17)

(2006) 1123–1136.
[49] U. Zahavi, A. Felner, R.C. Holte, J. Schaeffer, Duality in permutation state spaces and the dual search algorithm, Artif. Intell. 172 (4–5) (2008) 514–540.
[50] M.G. Everett, S.P. Borgatti, The centrality of groups and classes, J. Math. Sociol. 23 (3) (1999) 181–201.
[51] L.C. Freeman, A set of measures of centrality based on betweenness, Sociometry 40 (1) (1977) 35–41.
[52] R. Puzis, Y. Elovici, S. Dolev, Finding the most prominent group in complex networks, AI Commun. 20 (4) (2007) 287–296.
[53] S. Dolev, Y. Elovici, R. Puzis, P. Zilberman, Incremental deployment of network monitors based on group betweenness centrality, Inf. Process. Lett.

109 (20) (2009) 1172–1176.
[54] A.L. Barabási, R. Albert, Emergence of scaling in random networks, Science 286 (5439) (1999) 509–512.
[55] D.J. Lipman, S.F. Altschul, J.D. Kececioglu, A tool for multiple sequence alignment, Proc. Natl. Acad. Sci. USA 86 (12) (1989) 4412–4415.
[56] T. Ikeda, H. Imai, Enhanced A∗ algorithms for multiple alignments: optimal alignments for several sequences and k-opt approximate alignments for

large cases, Theor. Comput. Sci. 210 (2) (1999) 341–374.
[57] A.S. Konagurthu, P.J. Stuckey, Optimal sum-of-pairs multiple sequence alignment using incremental Carrillo and Lipman bounds, J. Comput. Biol. 13 (3)

(2006) 668–685.
[58] T. Yoshizumi, T. Miura, T. Ishida, A∗ with partial expansion for large branching factor problems, in: AAAI, 2000, pp. 923–929.
[59] T. Ikeda, H. Imai, Fast A∗ algorithms for multiple sequence alignment, in: Workshop on Genome Informatics, 1994, pp. 90–99.
[60] H. Kobayashi, H. Imai, Improvement of the A∗ algorithm for multiple sequence alignment, in: Genome Informatics Series, 1998, pp. 120–130.
[61] W. Zhang, R.E. Korf, Performance of linear-space search algorithms, Artif. Intell. 79 (2) (1995) 241–292.
[62] W. Zhang, Depth-first branch-and-bound versus local search: a case study, in: AAAI/IAAI, 2000, pp. 930–935.

http://refhub.elsevier.com/S0004-3702(14)00055-1/bib686172743139363861466F726D616C4261736973s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib686172743139363861466F726D616C4261736973s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib6B6F72663139383564657074684669727374497465726174697665s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib68656C6D65727432303038686F77476F6F64s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib7A696C626572737465696E39367573696E67416E7974696D65s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib76616C656E7A616E6F3230313073696D756C74616E656F75736C79s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib76616C656E7A616E6F3230313073696D756C74616E656F75736C79s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib6C696B68616368657632303033617261s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib737465726E32303130706F74656E7469616C536F4353s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib737465726E32303131706F74656E7469616C4943415053s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib76616E64656E6265726732303131616E7974696D65s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib52757373656C6C323030336169s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib737465726E323031306C6F6F6B6168656164s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib64696A6B737472613539614E6F74654F6Es1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib66656C6E657232303131706F736974696F6E5061706572s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib436F726D656E32303031696E74726F64756374696F6Es1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib6B6F7266313939336C696E656172537061636542657374s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib706F686C31393730686575726973746963536561726368s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib706F686C3139373374686541766F6964616E6365s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib706F686C3139373374686541766F6964616E6365s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib506561724B3832s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib74686179657232303038666173746572s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib74686179657232303131626F756E6465645375626F7074696D616Cs1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib6675726379323030356C696D69746564s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib68616E73656E32303037616E7974696D65486575726973746963s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib62616C6173313938356272616E6368416E64426F756E64s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib62616C6173313938356272616E6368416E64426F756E64s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib72696368746572323031307468654A6F79s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib73616E64697032303037617761s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib7A686F75323030356265616D537461636Bs1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib74686179657232303130616E7974696D65486575726973746963s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib7461696732303133636F6D70696C696E67s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib737465726E3230313161436F6E666964656E6365s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib737465726E32303132656666696369656E74536561726368s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib7A616E6172696E6932303039736F6C7574696F6E436F756E74696E67s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib6861736C756D32303031686575726973746963506C616E6E696E6757697468s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib6E616B686F737432303130696D70726F76696E674C6F63616C536561726368s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib6861736C756D3230313368657572697374696373s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib6865757269737469637331393834706561726Cs1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib66656C6E6572323030346164646974697665s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib7361726B6172313939317265647563696E67s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib7361726B6172313939317265647563696E67s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib6275726E733230313269746572617469766544656570656E696E67s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib77696C74323031327768656E446F6573s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib74686179657232303132666173746572426F756E646564436F7374s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib626F756C6C6532303039706172616D65746572s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib686172696B31393939706172616D65746572s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib666F737332303032706172616D657465726C657373s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib666F737332303032706172616D657465726C657373s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib64696F6E6E6532303131646561646C696E654177617265s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib72756D6C323030376265737446697273745574696C697479s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib746861796572323030397573696E6744697374616E6365s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib73746F7279313837396E6F746573s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib686F6C7465323030366D6178696D697A696E67s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib686F6C7465323030366D6178696D697A696E67s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib7A6168617669303861s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib657665726574743139393974686543656E7472616C697479s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib667265656D616E31393737615365744F664D65617375726573s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib70757A69733230303766696E64696E67s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib646F6C657632303039696E6372656D656E74616C4465706C6F796D656E74s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib646F6C657632303039696E6372656D656E74616C4465706C6F796D656E74s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib426172616261736931393939656D657267656E6365s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib6C69706D616E31393839746F6F6Cs1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib696B65646131393939456E61686E63656441s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib696B65646131393939456E61686E63656441s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib6B6F6E61677572746875323030366F7074696D616Cs1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib6B6F6E61677572746875323030366F7074696D616Cs1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib796F7368697A756D69323030307061727469616Cs1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib696B6564613139393466617374s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib6B6F6261796173686931393938696D70726F76656D656E74s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib7A68616E6731393935706572666F726D616E6365s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib7A68616E67323030306465707468s1

R. Stern et al. / Artificial Intelligence 214 (2014) 1–25 25
[63] J.T. Thayer, J. Benton, M. Helmert, Better parameter-free anytime search by minimizing time between solutions, in: SOCS, 2012, pp. 120–128.
[64] L.H.S. Lelis, S. Zilles, R.C. Holte, Predicting the size of IDA∗ ’s search tree, Artif. Intell. 196 (2013) 53–76.
[65] L. Lelis, R. Stern, A. Felner, S. Zilles, R.C. Holte, Predicting optimal solution cost with bidirectional stratified sampling, in: ICAPS, 2012, pp. 155–163.
[66] R.E. Korf, M. Reid, S. Edelkamp, Time complexity of iterative-deepening-A∗ , Artif. Intell. 129 (1–2) (2001) 199–218.
[67] M. Helmert, The fast downward planning system, J. Artif. Intell. Res. 26 (2006) 191–246.
[68] M. Helmert, C. Domshlak, Landmarks, critical paths and abstractions: what’s the difference anyway? in: ICAPS, 2009, pp. 162–169.

http://refhub.elsevier.com/S0004-3702(14)00055-1/bib74686179657232303132626574746572506172616D6574657246726565s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib6C656C69733230313370726564696374696E67s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib6C656C69733230313270726564696374696E67s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib6B6F72663230303174696D65436F6D706C6578697479s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib68656C6D6572743230303666617374446F776E77617264s1
http://refhub.elsevier.com/S0004-3702(14)00055-1/bib68656C6D657274323030396C616E646D61726B73s1

	Potential-based bounded-cost search and Anytime Non-Parametric A*
	1 Introduction
	2 Background and related work
	2.1 Bounded-suboptimal search algorithms
	2.2 Any solution algorithms
	2.3 Anytime search algorithms
	2.4 WA*-based anytime search algorithms

	3 Bounded-cost search and potential search
	3.1 Applications of bounded-cost search
	3.2 Naïve approaches to bounded-cost search
	3.3 The Potential Search algorithm (PTS)
	3.4 The potential
	3.5 Limitations of PTS
	3.5.1 Memory requirements
	3.5.2 Distance vs. cost heuristics

	4 Anytime Non-Parametric A* and Anytime Potential Search
	4.1 Rationale for a non-parametric anytime search algorithm
	4.2 A greedy non-parametric anytime search
	4.2.1 Reusing information between PTS calls

	4.3 APTS/ANA* as an improved Anytime Repairing A*
	4.4 Suboptimality bounds of APTS/ANA*
	4.5 Limitations of APTS/ANA*
	4.5.1 Finding the initial solution
	4.5.2 Finding too many solutions

	5 Experimental results
	5.1 Domains
	5.1.1 The 15-puzzle
	5.1.2 Key Player Problem in Communication (KPP-COM)
	5.1.3 Robot arm
	5.1.4 Gridworld planning
	5.1.5 Multiple sequence alignment (MSA)

	5.2 Bounded-cost experiments
	5.2.1 The effect of w in MAX problems

	5.3 Anytime experiments

	6 Generalized Potential Search (GPTS)
	6.1 Additive h-model
	6.2 General h-model

	7 Conclusions and future work
	7.1 BEES, BEEPS, AEES, and incorporating distance estimates
	7.2 Expected search effort instead of potential

	Acknowledgements
	Appendix A Domains and their h-models
	A.1 Key Player Problem in Communication (KPP-COM)
	A.2 Blocks world

	References

