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Abstract— To facilitate automation of urban driving, we
present an efficient, lightweight, open-source, first-order sim-
ulator with associated graphical display and algorithmic super-
visors. FLUIDS can efficiently simulate traffic intersections with
varying state configurations for the training and evaluation of
learning algorithms. FLUIDS supports an image-based birds-
eye state space and a lower dimensional quasi-LIDAR represen-
tation. FLUIDS additionally provides algorithmic supervisors
for simulating realistic behavior of pedestrians and cars in
the environment. FLUIDS generates data in parallel at 4000
state-action pairs per minute and evaluates in parallel an
imitation learned policy at 20K evaluations per minute. A
velocity controller for avoiding collisions and obeying traffic
laws using imitation learning was learned from demonstra-
tion. We additionally demonstrate the flexibility of FLUIDS
by reporting an extensive sensitivity analysis of the learned
model to simulation parameters. FLUIDS 1.0 is available
at https://berkeleyautomation.github.io/Urban_
Driving_Simulator/.

I. INTRODUCTION

Several end-to-end driving simulators have been designed
to prototype algorithms for autonomous cars. Most simulators
focus on providing photo-realistic “drivers-eye” perspective
renderings of the physical world and modeling accurate car
dynamics through physics simulation [29][6][34]. While these
simulators are ideal for testing the perception and control
software stack of an autonomous car, they are not efficient
for early prototyping of learning algorithms.

To provide large-scale data generation and rapid evalua-
tion, we present FLUIDS (First-Order Lightweight Urban
Intersection Driving Simulator). FLUIDS is a flexible and
efficient simulator for multi-agent driving and pedestrian
behaviors at intersections. FLUIDS provide the ability to test
both traditional planning algorithms and model-free learning
agents in a large number of traffic conditions. As shown in
Fig. 1, it simulates intersections where cars must coordinate
to achieve safe, collision-free behavior. FLUIDS is designed
to be configurable to new types of traffic intersections using
an API that allows for user-designed N-way intersections.

FLUIDS provides access to three different types of state
representations. The first is a explicit representation, which
gives the agents access to the full state of the world. The
second is a bird’s-eye perspective, which is a RGB image. The
third is a quasi-LIDAR state featurization, which represents
data from LIDAR and camera sensors. For both the quasi-
LIDAR representation and the birds-eye view, FLUIDS
provides a parameterized model of sensor noise.
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Fig. 1: An example of a driving intersection in FLUIDS showing four cars
and traffic lights. FLUIDS focuses on efficiently modeling the interaction
between different drivers and pedestrians. The colored lines represent paths
generated by FLUIDS with collision-free velocities.

FLUIDS offers control spaces at different hierarchical
levels. The top level dictates the behavioral logic of the
scene, which specifies the starting location and destination
for each agent. Another control space is the Cartesian path of
(x, y) points for each agent to follow to its target goal state.
The third control space is the target velocities to set for the
agent to avoid collisions and obey traffic laws. A fourth level
in the controls hierarchy is steering angle and acceleration.

This paper contributes:
1) An open-source Python-based simulator for multi-

driver and pedestrian behavioral modeling at traffic
intersections.

2) Experiments exploring how FLUIDS can be used to
collect training data and evaluate driving algorithms.

II. RELATED WORK

A. Realistic End-to-End Simulators

DeepGTAV [29] is a plugin for the open-world urban
driving game Grand Theft Auto V that is used to collect data
for autonomous driving [26]. This module provides a TCP
interface to the driving portion of the game. DeepGTAV offers
a detailed and realistic “drivers-eye viewpoint”. However, the
game engine backend prevents the user from running faster
than real time, or extensively customized simulations. Further-
more, the behavior of non-player agents is not configurable.

CARLA [6] is a recent open-source 3D driving simulator.
CARLA provides a high fidelity environment with varied
weather, lighting, and pedestrian effects. A cost function
drives pedestrian behavior, while a reactive finite state
machine drives vehicle planning. Training agents in CARLA
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is challenging and data intensive, since the simulator is built
on the computationally intensive Unreal Engine.

TORCS (The Open Car Racing Simulator) [34] is an open-
source, highly configurable driving simulator, and has an
extensive library of supporting software. However, TORCS
models vehicle racing conditions only.

CarMaker accurately models car dynamics to test new
vehicle models [19]. Unfortunately, CarMaker is not open-
source, which leads to difficulty in collecting data and
verifying experiments.

B. Lightweight Simulators
Less realistic, lightweight simulators can be used to develop

and evaluate reinforcement and imitation learning algorithms.
One example is OpenAI Gym’s [4] set of simulation environ-
ments. These environments and their flexible API encourage
rapid prototyping and parallel simulations. OpenAI Gym
provides continuous control benchmarks like Mujoco, [32], a
physics engine with a wide variety of simulated environments
used to benchmark reinforcement learning algorithms [7].

In the driving domain, researchers have used first-order,
application-specific simulators. For example, the Flow sim-
ulator was developed to benchmark reinforcement learning
algorithms for efficient traffic control in a mixed-autonomy
environment [33]. Other researchers have developed similar
lightweight simulators to study inter-vehicle reactions in
driving [30] and driving behaviors in highway environments
[17][9]. OpenAI Gym also provides a driving environment
implemented using Box2D that simulates a car driving around
a racetrack [5].

FLUIDS fills a gap by providing a lightweight, efficient,
first-order, configurable driving simulator to model multi-
agent behaviors at intersections.

C. Autonomous Vehicle Planning
The controls stack of an autonomous vehicle can be

decomposed into four components [18]. The route planning
and behavioral layers select a high-level goal position for
the motion planning and positional control layers to follow.
In a dynamic urban environment, the behavioral layer must
consider not only the static features of the environment but
also the dynamic actions of other vehicles and pedestrians. For
this task, a predictive planner which estimates the behavior
of other agents is appropriate [35][10].

While predictive planners can generate safe behaviors in
dynamic environments, they do not scale well to scenarios
with large numbers of agents Although it is possible to solve
multi-agent planning as a global optimization problem in
polynomial time, such an approach struggles when run in
simulation with an unpredictable trial agent [22][12].

III. SYSTEM DESIGN

A. Assumptions
We assume all motion in a driving environment occurs in

a 2D plane. For evaluating agent behavior, FLUIDS assumes
that users of the simulator have access to an agent, which can
accept a state of the world and return a control for the current
time step. The agent can operate on either a bird’s eye image
representation of the world or a lower dimensional state,
which specifies car and pedestrian positions and velocities.

Agents provide a control in one of three representations: a
Cartesian target trajectory of (x, y) points, a target velocity,
or an acceleration and steering angle.

B. Terminology

Intersection: A layout of sidewalks, lanes, terrain, and traffic
signals which govern when and where cars and pedestrians
may travel.
Agent: A car or pedestrian which receives a state representa-
tion, and responds with an action.
State: The collection of all simulated objects in the environ-
ment, including their position, orientation, and velocity.

Fig. 2: FLUIDS’ system architecture. The evaluated driver interfaces to
the world via the OpenAI Gym interface. In the back-end, the simulator
coordinates the behavior of additional background drivers and pedestrians.
A unified agent-environment API simplifies evaluation of multi-agent
interactions.

C. Architecture

FLUIDS uses OpenAI’s Gym API and Python to allow for
easy interfacing with popular learning frameworks such as
Tensorflow [1], PyTorch [20], and SciKit Learn [21].

FLUIDS can be run using parallel frameworks such
as Python’s native multiprocessing package for fast data
collection and evaluation.

FLUIDS also provides algorithmic supervisors for control-
ling the background cars and pedestrians in a scene. These
background agents are designed to test the ability of a user
agent in different multi-agent interactions.

D. Agent Dynamics

Agents fall in three classes: pedestrians, cars, and signal
lights.

1) Pedestrian Dynamics: A pedestrian is parameterized by
the state space xp(t) = [x, y, θ, v], which corresponds to its
positional coordinates, orientation and velocity. The control
signal for a pedestrian at time t is specified as uc(t) = [ψ, a],
which refers to walking direction and acceleration.

For pedestrian dynamics FLUIDS uses a point model to
reflect the omni-directional nature of pedestrian movement.

ẋ = v cos(ψ) (1)
ẏ = v sin(ψ) (2)
v̇ = a (3)

θ̇ = ψ (4)



Fig. 3: A sample of the different types of traffic intersections that can be designed in FLUIDS. Intersection types include common intersection like a 4-way
crossing and more intricate ones such as a roundabout. Intersections can also contain sidewalks, traffic lights, and crosswalk lights.

2) Car Dynamics: The cars in FLUIDS are configurable
in size, mass, and maximum velocity. The dynamic state
of each car in FLUIDS is described by the state space
xc(t) = [x, y, θ, v], which corresponds to positional coor-
dinates, orientation and velocity. The control signal for each
car at time t is specified as uc(t) = [ψ,F ], which refers to
steering angle and acceleration force.

For cars, FLUIDS uses the kinematic bicycle model [23].
The differential equations that describe the model are as
follows.

ẋ = v cos(θ + β) (5)
ẏ = v sin(θ + β) (6)
v̇ = F/m (7)

θ̇ =
v

lr
sin(β) (8)

β = tan−1
(

lr
lf + lr

tan(ψ)

)
(9)

This model defines β as the angle between the current
velocity of the center of mass with respect to the longitudinal
axis of the car. lr and lf are the distance from the center
of the mass of the vehicle to the front and rear axles. The
control force F is scaled by the mass of the car m to provide
control over the car’s acceleration.

3) Traffic Lights and Crosswalk Lights: Traffic and cross-
walk lights can be set up at the end of each lane or sidewalk.
Traffic lights switch among the standard three colors: red,
yellow, and green. Crosswalk lights are either white or red.
Cars are aware of traffic light states and pedestrians are
aware of crosswalk light states. FLUIDS allows for both types
of lights to loop, stopping for any specified time on each
color. This allows for a wide variety of light synchronization
schemes.

E. Collision Interactions
FLUIDS performs collision checking using the Shapely

geometry library [24]. Shapely provides a fast, configurable
interface for manipulating and designing two-dimensional
polygons. Every object in FLUIDS is associated with a
Shapely object that acts as its bounding volume. At every
timestep, collision checking is performed and all collisions
logged.

F. Designing Intersections
FLUIDS provides the ability to design a variety of

intersections. Specifically, FLUIDS supports various static
objects including lane, street, and sidewalk objects. Lane
objects have an associated direction to prevent cars from

driving the wrong way. FLUIDS also uses street objects, on
which cars can travel in any direction, where lanes meet
up at an intersection. Sidewalks represent areas where only
pedestrians can travel.

In addition to static objects, FLUIDS also supports dynamic
objects such as cars, pedestrians, and traffic lights. Obstacles
represented by impassable terrain can be arranged arbitrarily
through the scene, simulating realistic conditions such as
parked cars, potholes, and road construction. Cars and pedes-
trians are generated automatically by lanes and sidewalks
respectively, but traffic lights need to be manually placed and
synchronized. Fig. 3 shows the variety of intersection types
representable in FLUIDS.

An intersection is specified by K lanes where each lane,
l, is represented by its width, height, position, and direction.
Each intersection may also contain sidewalks with similar
representations to lanes. The simulator also consists of N
dynamic agents, where N = Np+Nc+Nl. Np and Nc refer
to the number of pedestrian and cars respectively. Nl refers to
the number of traffic lights and crosswalk lights in the scene.
Lights are considered dynamic objects, as the colors which
describe their state space and dictate traffic flow change over
time.

IV. STATE SPACES IN FLUIDS
FLUIDS offers three options for accessing the state space

of the world; explicit, bird’s-eye view, and quasi-LIDAR
perspective.

A. Explicit View
In the explicit view the agent has access to the true state

space (i.e., xc and xp of all N agents in the scene) and the
state of all traffic lights and pedestrian crosswalk lights.

B. Bird’s-Eye View
In bird’s-eye view, a top-down image of the intersection

is available to the agent. These images use an RGB color
representation of configurable resolution.

Viewpoints from above, such as those from unmanned
aerial vehicles [31] or traffic cameras [13] motivate this state
space. In this state representation, agents must infer from pixel
data the location of other agents in the scene and the current
state of traffic lights. This state representation is relevant for
potentially evaluating the efficiency of recent advances in
Convolutional Neural Networks for planning [15].

FLUIDS provides a sensor noise model for this state rep-
resentation. Specifically, FLUIDS supports adding a bounded
zero-mean Gaussian noise to each pixel value, with variance
defined by λp.



Fig. 4: The planner for the algorithmic supervisor. First, a high-level destination, specified as a destination lane, is randomly selected for the agent. Then
a positional trajectory is generated via OMPL to take the agent to the goal position. A velocity planner is then called to ensure the agent reaches the
destination without collisions or violation of traffic laws with respect to the traffic light. Finally, a PID controller is used to execute the planned path.

C. Quasi-LIDAR Representation

Fig. 5: Illustration of the quasi-
LIDAR perspective state space.
Rays are projected into the scene
from the car’s perspective. The red
rays correspond to detected objects
in the environment. The density of
projected rays and noise model are
both configurable.

With recent advances in LI-
DAR and visual object detec-
tion, it is possible for a car to
extract relative poses and class
labels of other agents adjacent
to it [2][8].

To create the quasi-LIDAR
state space m rays are pro-
jected from the agent’s car
at angular intervals along a
360◦ arc. If a ray collides
with an object in the scene, it
returns the following informa-
tion {d, label, ψr, vr}, which
corresponds to the distance to,
the class label of, the relative
angle to, and the relative ve-
locity to the object. Fig. 5
shows an illustration of this
state space.

FLUIDS models the sensor noise of this state space,
via additive element-wise zero-mean Gaussian noise to the
relative distance, velocity, and angle. The parameter λl
specifies the Gaussian noise. In addition to Gaussian noise,
FLUIDS also models dropped observations. With probability
ε a reading from a given ray is returned as empty space, to
model the effect of dropout.

V. HIERARCHICAL CONTROL SPACES

FLUIDS supports the ability to test algorithms at four levels
of the planning hierarchy: a high-level behavior component,
a nominal trajectory generator, a velocity planner, and a
PID controller. These four components encompass what is
commonly referred to as the high-level behavioral layer,
motion planner, and local feedback control components of
the autonomous car control stack [18]. Fig. 4 displays how
the components of the hierarchy contribute to the total
autonomous control of a vehicle.

For each level of the hierarchy, FLUIDS provides an
algorithmic supervisor that generates plausible behavior.
Additionally, users can operate on one level of the hierarchy
and use the supervisor for the others. Users are also able to
implement their own controllers at each level of the hierarchy.

A. Behavioral Logic
Control Space Each agent in the driving simulator is assigned
a target lane. Given K lanes, the control space for the agent

is the selection of a target lane (i.e. U = {l0, ..., lK}).
Algorithmic Supervisor The implemented planner operates
by sampling a start lane uniformly and target lane with the
following probability distribution.

p(lt|lg) =

{
1

K−1 if lt 6= lg
0 if lt = lg

,

B. Nominal Trajectory Generator
Control Space Once any car has an intended goal state, the
next level in the hierarchy is to generate a path in Cartesian
(x, y) space towards some designated goal state given an
initial state representation of the world. Formally, the agent’s
control space is a set of 2D-positional points (i.e. U ∈ {R×
R}T ).
Algorithmic Supervisor The implemented planner uses
deCastlejau spline interpolation to generate the nominal
trajectory. We interpolate a path through a set of waypoints
in the scene. Waypoints are located at each end of each lane.
The waypoints to hit are selected by the high-level behavioral
planner. The same is used for pedestrians.

C. Velocity Planner
Control Space Similar to [3], we have an agent that plans
the velocity of the trajectory after generation of the nominal
trajectory. The agent on this level is given a current state
representation of the world and must select the velocity from
the bounded range U ∈ [0, vmax], where vmax corresponds
to the maximum value.
Algorithmic Supervisor The implemented velocity planner
performs a forward projection for each agent for T time-steps
in the environment for every possible velocity the car may
choose to maintain. Given these projections, the problem of
multi-agent pathing is formulated as a constraint satisfaction
problem (CSP). Interactions with traffic lights and pedestrians
form unitary constraints in this CSP. This CSP is solved with
Python-Constraint to assign a collision-free target velocity
for every vehicle in the scene [16].

D. Control Input
Control Space Given a trajectory of positional (x, y) points
and target velocities, we now need to generate controls
that can accurately track the trajectory. In this low-level
of the hierarchy, the input is steering angle and acceleration,
which an agent needs to determine given some current state
representation of the world.
Algorithmic Supervisor FLUIDS uses two PID controllers.
One controls the steering angle, ψ, to track the direction to the



next positional point and the other controls the acceleration
a to the next target velocity. We empirically observe the
PID controllers can track over 99% of 200 test trajectories
generated. Failure modes occur when the car’s initial position
and goal position impose a sharp, unrealistic generated
trajectory.

VI. BENCH-MARKING FLUIDS WITH IMITATION
LEARNING

To evaluate FLUIDS as a platform for developing au-
tonomous vehicle agents at multiple levels, we explore
learning a velocity planner. We collect training data from
roll-outs of the supervisor on cars interacting in a four-
way intersection. We study how quickly the data can be
collected, how fast the learned policy can be evaluated, and
how sensitive the learned policy is to noise.

In imitation learning (IL), a supervisor provides demon-
strations to an agent, and a policy mapping observed states
to controls is learned. For our task, the states are the LIDAR
view and the learner will operate at the velocity control level
of the controls hierarchy. The supervisor will be provided by
FLUIDS’ algorithmic velocity supervisor.

We formalize this learning as follows: denote a policy as a
measurable function π : X → V from the driver’s view state
space X to target velocities inputs V . We consider policies
πθ : X → V parameterized by some θ ∈ Θ, in this case
the weights of a three layer feed-forward neural network
implemented in SciKit-Learn [21].

Under the assumptions, any such policy πθ induces a
probability density over the set of trajectories of length T :

p(τ |πθ) = p(x0)

T−1∏
t=0

p(xt+1|πθ(xt),xt) ,

where a trajectory τ of length T is a sequence of state and
velocity tuples: τ = {(xt, vt)}T−1t=0

We collect demonstrations using FLUIDS’ velocity planner
πθ∗ , where θ∗ may not be contained in Θ. We measure the
difference between the two learners and supervisor using a
surrogate loss l : V×V → R [28], [27]. The surrogate loss we
consider is the indicator function, since the target velocities
are discretized, l(v1, v2) = 1(v1 6= v2). The objective of
LfD is to minimize the expected surrogate loss under the
distribution induced by the robot’s policy:

min
θ
Ep(τ |πθ)

T−1∑
t=0

l(πθ(xt), πθ∗(xt)) . (10)

However, in practice, this objective is difficult to optimize
because of the coupling between the loss and the robot’s
distribution on states. Thus, we instead minimize an upper-
bound on this objective [14] via sampling N trajectories from
the supervisor’s policy.

min
θ

N−1∑
n=0

T−1∑
t=0

l(πθ(xt,n), πθ∗(xt,n)) ; τ ∼ p(τ |πθ∗) .

VII. EXPERIMENTS

We perform all timing experiments on a 6-core 12-
thread 3.2GHz i7-970 CPU, with no GPU acceleration.
Parallel timing experiments were collected using Python’s
multiprocessing module.

A. Benchmarking Simulation Speed

First Order Simulators

}

Complex Simulators

}

Fig. 6: Comparison of FLUIDS to other common driving simulators with
rendering on. FLUIDS is simulating a four-way intersection with an
idling car. FLUIDS demonstrates comparable steps per second to other
lightweight simulators such as Open-AI gym and significant improvement
over graphically heavy simulators such as TORCS and Udacity.

We compare the steps per second of three simulators
Udacity, TORCS and OpenAI against FLUIDS. The recorded
speeds [11], measured in thousands of steps per minute, with
rendering enabled, are reported in Fig. 6. In each of these
experiments, the scenario with fewest agents is loaded to
get the absolute fastest speeds each simulator can run. In
FLUIDS, we load a four-way intersection with traffic lights
and one car.

FLUIDS is on par with OpenAI’s lightweight racetrack
simulation. Table I shows FLUIDS performing at nearly 4
times faster when rendering disabled.

FLUIDS Speed mean stdev
with rendering 1.79 0.021
without rendering 7.31 0.114

TABLE I: Steps (x1000) per minute for FLUIDS with and without rendering.

For the rest of the experiments we turn off rendering.
We now examine how fast FLUIDS can collect data points

for learning. In this experiment, we use the algorithmic super-
visor as the demonstrator and generate 800 trajectories. We
sample new demonstrations from an initial state distribution
that ranges from 2− 7 cars.

For the learner’s policy representation, we use SciKit-
Learn’s feed-forward neural-network implementation [21]
and the quasi-LIDAR representation.

We collect 800 trajectories of data from the algorithmic
supervisor. From each trajectory, we extract data points as
state-action pairs for every vehicle in the trajectory. In Fig. 7,
we evaluate how many data points we can obtain per minute
with the algorithmic supervisor. Using Python multiprocessing
to parallelize data generation over 10 cores, we generate



over 8000 data points per minute. These results also suggest
the importance of the parallelized data collection, which
consistently shows speedups of over four times that of single-
threaded data collection.

Fig. 7: The data collection rate for the FLUIDS built-in agent is compared
to the number of agents simulated. The peak parallel data collection rate is
over 8000 state-action pairs per minute for the supervisor, and nearly 24000
state-action pairs per minute for the imitation learned agent.

Additionally, we roll out the learned policy and collect
data from it to study how FLUIDS performs with a fast agent
using learned behavior. The results, shown in Fig. 8, indicate
that data collection speeds are improved by a factor of four
again over data collection speeds on the supervisor. Run in
parallel across 10 cores, and with 2 agents, FLUIDS manages
over 24000 data points per minute. The performance dropoff
due to overhead in the parallel experiments as the number
of agents increases is not nearly as severe, with FLUIDS
maintaining over 15000 data points per minute for up to 7
cars in a scene.

Fig. 8: The evaluation rate of the imitation learned agent is also compared
to the number of agents simulated. We note the expected dropoff with
the increased number of supervisor agents as well as the 5x speedup with
parallelization

We also study the success rate of the supervisor versus the
number of cars in the current scene. Fig. 9 shows that the
supervisor agent can handle scenes with up to and including
seven cars with almost 90% success rate. A run of the
simulator is designated successful if all the cars make it
through the intersection without gridlock, colliding with other
cars, and breaking traffic laws. However, with more cars,
there is a steep dropoff showing the supervisor struggles

Fig. 9: The performance of the FLUIDS built-in supervisor. The FLUIDS
supervisor performs reliably, with over a 90% success rate for up to 7 agents.
9 agents will deadlock in the intersection, due to the algorithmic supervisor’s
inability to respect precedence in driving.

to coordinate on challenging scenes with many multi-agent
interactions.

B. Evaluation of Policy
To evaluate how sensitive the learned policy is to obser-

vation noise and simulator parameters, we perform a grid
search over six parameters of the simulator:
• The number of cars in the scene, in the range [2, 5].
• The number of pedestrians in the scene, in the range

[0, 4].
• The variance, λl of quasi-LIDAR noise, in the range

[0, 1].
• The probability of omitting a sensor reading from the

quasi-LIDAR state, in the range [0, 1].
• The presence of traffic lights, [0, 1].
• The mass of the cars, in the range [0, 200].
See Fig. 10. FLUIDS evaluates the learned policy across

256 configurations, running in total over 5000 trajectories.
The analysis suggessts that the performance of the learned
policy is very sensitive to perturbations in the number of cars
in the scene, with more cars providing a challenge and leading
to a lower success rate. The sensitivity analysis also allows
us to visualize the effect of quasi-LIDAR dropout, with our
imitation learned agent being robust to increased omission
probability until all the quasi-LIDAR observations are omitted,
after which the success rate drops drastically. Additionally, the
sensitivity analysis indicates the importance of traffic lights,
which coordinate traffic through the intersection and prevent
gridlock. Finally, the sensitivity analysis shows the importance
of car mass. When model mismatch in this parameter is
present, the learned agent tends to under and over-accelerate,
causing collisions.

VIII. DISCUSSION AND FUTURE WORK

FLUIDS is a fast first-order simulator of multi-agent driving
behaviors. The interface is lightweight, highly configurable,
suitable for developing and evaluating autonomous agents in
urban environments.

FLUIDS is limited in its current form to simulating short
interactions across a single intersection. A town environment,
similar to those provided in CARLA [6], could prove useful
in evaluating agents across longer periods of time.



Fig. 10: Sensitivity analysis of the imitation learner to state complexity and observation noise, performed over 256 configurations by evaluating the learned
policy over half a million data points. For visualization we normalize all parameters between 0 and 1. We sweep between 2 and 5 cars, 0 and 4 pedestrians,
and vary the noise and dynamics parameters. We report success rate as the percentage of evaluations in which the learned policy successfully guides all
vehicles to their goals. The analysis reports that our imitation learned agent is tolerant to noisy observations, but fails when run in an environment with a
large number of cars or pedestrians. We also observe model mismatch when we alter the car mass and remove traffic lights.

Additionally, the included algorithmic supervisors of
FLUIDS, while sufficient for simulating simple multi-agent
interactions, fail to exhibit the more complex behaviors of
urban driving, such as yielding for pedestrians and right-of-
way awareness. The greedy algorithmic supervisors also fail
to capture cautious driving behaviours.

In the future, we wish to capture the diversity of driving
behavior via leveraging real world data of traffic intersections.
Recent work by Ren et al., shows promise in being able to
extend the realism of traffic intersection modeling with real
world behavior [25].

There are also a few major components that will make
FLUIDS more accessible to researchers. Creating an interface
to programmatically generate, load, or save new intersections
will allow researchers to conduct extensive studies across
a wide variety of intersections, hone in on particularly
tricky configurations for an in-depth study, and share driving
scenarios. Creating a ROS interface can allow researchers
with well-established software stacks to easily integrate with
FLUIDS.
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M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[2] R. Bergholz, K. Timm, and H. Weisser, “Autonomous vehicle arrange-
ment and method for controlling an autonomous vehicle,” Nov. 21
2000, uS Patent 6,151,539.

[3] A. Best, S. Narang, L. Pasqualin, D. Barber, and D. Manocha,
“Autonovi: Autonomous vehicle planning with dynamic maneuvers
and traffic constraints,” arXiv preprint arXiv:1703.08561, 2017.

[4] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[5] E. Catto, “Box2d: A 2d physics engine for games,” 2011.
[6] A. Dosovitskiy, G. Ros, F. Codevilla, A. López, and V. Koltun,
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[34] B. Wymann, E. Espié, C. Guionneau, C. Dimitrakakis, R. Coulom, and
A. Sumner, “Torcs, the open racing car simulator,” Software available
at http://torcs. sourceforge. net, vol. 4, 2000.

[35] J. Zhu, D. I. Ferguson, and D. A. Dolgov, “System and method for
predicting behaviors of detected objects,” Feb. 25 2014, uS Patent
8,660,734.

https://labix.org/python-constraint
https://pypi.python.org/pypi/Shapely
https://github.com/aitorzip/DeepGTAV

	Introduction
	Related Work
	Realistic End-to-End Simulators
	Lightweight Simulators
	Autonomous Vehicle Planning

	System Design
	Assumptions
	Terminology
	Architecture
	Agent Dynamics
	Pedestrian Dynamics
	Car Dynamics
	Traffic Lights and Crosswalk Lights

	Collision Interactions
	Designing Intersections

	State Spaces in FLUIDS
	Explicit View
	Bird's-Eye View
	Quasi-LIDAR Representation

	Hierarchical Control Spaces
	Behavioral Logic
	Nominal Trajectory Generator
	Velocity Planner
	Control Input

	Bench-marking FLUIDS with Imitation Learning
	Experiments
	Benchmarking Simulation Speed
	Evaluation of Policy

	Discussion and Future Work
	Acknowledgments
	References

