
Learning Traffic Behaviors for Simulation via Extraction of Vehicle
Trajectories from Online Video Streams

Xinhe Ren∗,1 David Wang∗,1 Michael Laskey,1 Ken Goldberg1,2

Abstract— To collect extensive data on realistic driving behav-
ior for use in simulation, we propose a framework that uses
online public traffic cam video streams to extract data of driving
behavior. To tackle challenges like frame-skip, perspective, and
low resolution, we implement a Traffic Camera Pipeline (TCP).
TCP leverages recent advances in deep learning for object
detection to extract trajectories from the video stream to
corresponding locations in a bird’s eye view traffic simulator.
After collecting 2618 vehicle trajectories, we compare learned
models from the extracted data with those from a simulator
and find that a held-out set of trajectories is more likely to
occur under the learned models at two levels of traffic behavior:
high-level behaviors describing where vehicles enter and exit the
intersection, as well as the specific sequences of points traversed.
The learned models can be used to generate and simulate more
plausible driving behaviors.

I. INTRODUCTION

Autonomous driving simulators offer the potential to
rapidly prototype behavioral algorithms. However, a signifi-
cant concern with developing in a simulation is how accurately
it reflects the physical world.

We examine how to leverage online video streams (e.g.,
a YouTube stream of a four-way traffic intersection at 7
Ave and Main St in Canmore, Alberta†) to learn high-
level driving behaviors and trajectories capturing vehicle
motions (Figure 4). Using online video streams for data
collection has the potential to capture a significant amount of
driver demonstration data. We must address the challenges
of perspective, skipping, and low resolution.

We propose a Traffic Camera Pipeline (TCP), which applies
recent deep learning advances in object detection [13] to
detect vehicles in the video stream. We then use homography
to register the located vehicles to the corresponding positions
in the intersection. We also propose a filtering algorithm to
assign observations of vehicles to their respective trajectories
by maximizing the likelihood of an estimated distribution over
observations. The output of the system is a set of trajectories
of vehicles.

We use the extracted trajectories from TCP to learn two
levels of traffic behaviors. First, we consider the high-level
behaviors of vehicles, which describe where they enter and
exit the intersection. From this information, we can compute
plausible distributions of where vehicles appear and what
general movement actions (i.e., turning or moving forward)
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Fig. 1: Example trajectories extracted by TCP: top left image is an illustration
of trajectories overlaid onto camera perspective; top right image shows the
trajectories in bird’s eye view in FLUIDS, a traffic intersection simulator.
Bottom row compares three groups of left turn trajectories of vehicles
coming from the top of the scene. A real-world held-out set consists of
trajectories that real drivers took, but are not used in any training. The
middle figure shows trajectories generated by the RRT* [10] algorithm. The
right figure shows TCP-generated trajectories sampled from a model trained
on collected driving data. We observe that the TCP-generated trajectories
better approximate the held-out set.

they take based on real data. For example, in the traffic
feed, we detect a preference for Main St over 7 Ave. Next,
we consider the specific positional trajectories traversed by
the agents. We train a generative model on the trajectories
extracted by TCP as a distribution over cubic-splines in the
plane. We compare the learned models of traffic behaviors
against those used in a simulator, and we find that the
learned models better fit a held-out set of TCP-collected
data, suggesting that TCP is able to produce models that
simulate more plausible driving behaviors.
Summary of Contributions:

1) A novel pipeline for extracting vehicle trajectories from
online traffic camera video streams for simulating traffic
intersections.

2) A dataset of 234 annotated, minute-long videos with
2618 labeled vehicle trajectories, and 8980 additional
unannotated minute-long videos (6+ days).

II. RELATED WORK

A. Automated Extraction of Traffic Data

Traffic data historically has been sourced from both traffic
cameras and sensors as well as onboard sensor arrays.
Research on traffic detection using traffic cameras historically
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used classical machine vision and digital signal processing
techniques to produce real-time traffic scene analysis [9].
More recent work has investigated improving static inter-
section vehicle detection methods with existing video image
vehicle detection systems [27] through improved sensor fusion
with camera systems.

Current sources of traffic and vehicle detection data for
autonomous vehicle research mostly focus on using vehicle
sensors, such as onboard cameras or LIDAR, to detect and
identify nearby objects [11]. Another approach is to equip
vehicles with GPS sensors and then analyze the decision-
making data afterward to examine traffic congestion in urban
settings [2]. With the rising popularity of deep convolutional
neural networks, it is interesting to explore collecting traffic
behavior through fixed traffic cameras without the need for
sophisticated vehicle telemetry.

B. Simulating Driving Behavior

Driving Simulators There exist several open-source driving
simulation platforms that have been used extensively in
autonomous driving research. CARLA [6], an end-to-end sim-
ulation platform, provides photorealistic urban environments
from a first-person perspective. These simulators leverage
hand-tuned controlled agents, and both vehicles and pedes-
trians are designed to follow specific rules such as staying
in lanes and stopping at traffic lights. FLUIDS‡ is another
open-source light-weight Python-based traffic intersection
simulator intended for easily customizable extensions. In our
experiments, we apply TCP to FLUIDS. However, our method
could potentially be extended to more complex simulators.
Data-Driven Simulation Improvement Cha et al. [3] built
an interactive driving simulator in a data-driven approach:
they collect control inputs (steering, acceleration, braking) and
dynamic motions (linear acceleration and angular velocity)
from real road-driving samples to build a database of
primitives. The simulator is then able to produce realistic
motions in response to user inputs. Chu et al. [4] analyze
traffic at a highway using inductive loop detectors and use the
observations to build a microscopic traffic flow model. Ngan
et al. [14] take traffic videos and use the data to develop a
model for traffic behaviors such as vehicle speeds and queue
lengths. We aim to fine-tune a simulator that can exhibit
more plausible behavior using similar data-driven methods
via video streams.

C. Inverse Reinforcement Learning for Driving Behaviors

Inverse reinforcement learning (IRL) is a method that uses
demonstrations of a task given by an expert to learn a policy
that matches the expert’s behavior by recovering an underlying
cost function. Our work is similar in that we attempt to
learn traffic behaviors from driving data observed from a
traffic cam stream, although we differ in implementation
details in that we do not explicitly learn the cost function.
Several driving applications have used IRL to learn behaviors.
Abbeel et al. [1] used IRL to learn various driving styles in
a highway driving simulation with multiple lanes. Ziebart et
al. [29] proposed a maximum entropy approach to IRL, and
they demonstrate their algorithm on the problem of learning

‡https://github.com/BerkeleyAutomation/Urban Driving Simulator

taxicab drivers’ decision-making behaviors in a road network.
Sadigh et al. [20] use IRL to learn behaviors for human
drivers in a simulation environment with autonomous agents.

D. Learning from Online Videos
There have been many instances of learning from online

videos, which can be noisy and ill-constrained. Ulges et
al. [25] utilized YouTube content for the autonomous training
of a video tagger. Prest et al. [17] trains an object detector
from weakly annotated videos on the internet using domain
adaptation to improve the performance of the detector. In
robotics, Yang et al. [28] explored learning robot manipulation
tasks (grasping) by processing videos from the World Wide
Web. The paper used CNN for object recognition, and action
grammar parse tree to interpret the videos’ unconstrained
semantic structures. Niebles et al. [15] developed a system
to learn human motions from YouTube videos. Srivastava et
al. [22] use LSTM neural networks to perform unsupervised
learning on YouTube videos. Sorschag [21] conducted a
survey of video annotation techniques by examining how
to collected large amounts of video for machine learning
algorithms. Another survey by Vishnu et al. [26] examined
how the prevalence of web videos has enabled large-scale
learning.

In this paper, we use websites such as earthcam.com
and YouTube, which feature more than hundreds of live
traffic cam streams. We apply deep learning object detection
networks to these videos to extract driving behaviors that can
be used in simulations.

III. PROBLEM STATEMENT

A. Assumptions
We assume access to real-world traffic camera streams.

B. Metrics
We model the learned traffic behaviors as probability

distributions, from which we can sample from to generate
behaviors for use in simulations. We quantitatively evaluate
the ability of the learned model to generate plausible traffic
behavior by using the log-likelihood [24]. Denote Θ as the
space of parameters for a probability distribution over a set
X . For a particular distribution parameterized by some θ ∈ Θ
and x ∈ X , the log-likelihood is

LL(x|θ) = log[p(x; θ)],

the log of the probability of observing x given the model.
We partition the set of trajectories extracted from TCP into a
training set and a held-out set. Our goal is to learn a model
θTCP ∈ Θ using the training set that minimizes the negative
log-likelihood of observing the held-out data. We compare
the learned model to a baseline model θBASE ∈ Θ used in
a simulator of traffic intersections.

C. Objective
We want to learn traffic behaviors based on real data

via online video streams on two primary levels: high-level
behaviors and trajectories of agent movement. These are
common components in the software stack for driving
simulators [6]. High-level behaviors capture general actions
of vehicles at the intersection: which lane they started on, and
what action they took (turn left or right, move forward, etc).
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Fig. 2: TCP system architecture (excluding learning and analysis). First, we capture a video stream of a traffic intersection and use SSD, a deep object
detection network, to identify and label vehicles. Then, we manually label the first detection of each vehicle in the video stream. Finally, we map the
identified vehicles to a bird’s eye view using homography and run a probabilistic grouping algorithm to extract trajectories.

Fig. 3: TCP captures a four-way intersection in Canmore, Alberta at different
times of day. It features a variety of lighting conditions, weather, and road
conditions. For the following experiments, we only labeled a small subset
of the daytime videos.

Trajectories consist of a sequence of Cartesian (x, y) points
that capture the path taken. We can then use the learned
behaviors to simulate more plausible driving behaviors.

IV. SYSTEM ARCHITECTURE

A. Overview
Figure 2 shows the video processing procedure of TCP.

The pipeline has four main steps:
1) Collect traffic video.
2) Detect vehicles via convolutional neural network.
3) Extract valid trajectories.
4) Learn high-level statistics about trajectories of vehicle

motions.

B. Example Intersection
Figure 3 illustrates the four-way intersection in Canmore

in our experiment. It was chosen for its unobstructed view
of the intersection. We downloaded footage from the traffic
cam video stream for further processing. However, we also
noticed frame skips in the collected videos.

C. Labeling Vehicles
Advances in deep learning over the last several years

have significantly improved perception and object detec-
tion in images. Recently, deep neural networks such as
Single Shot Detector (SSD) [13] and Faster-RCNN [18]
have demonstrated surprising performance on many object
detection datasets, including PASCAL VOC [7] and COCO
[12], in which the goal is to classify objects and localize
them using bounding boxes. These datasets include familiar
objects, such as vehicles and pedestrians. After benchmarking
several deep networks on a hand-labeled held-out dataset of
collected images from TCP, we found that SSD has the highest

performance. See Supplementary Materials for additional
details. TCP utilizes the pre-trained SSD network§ to label
vehicles in the collected data with real-time performance.

D. Homography: From Camera to Bird’s Eye Perspective

The bounding boxes generated by SSD gives the location
of vehicles within the RGB image taken from the traffic
camera perspective. To obtain the locations of the agents
in the simulator, we utilize homography [23] to rotate the
camera to a bird’s eye viewpoint.

Homography works by estimating a projective matrix that
morphs pixel locations from a source domain into a target
domain. The target domain, in this case, is the simulator, and
the source is the traffic camera view. We estimated the matrix
on four pairs of corresponding points between the camera
and the simulator views. The points were selected such that
the corners of the intersection in the traffic camera matched
the corners in the simulator.

After homography, we still need to specify a point from
the bounding box that corresponds to where the vehicle is
centered on the road. To determine a point on the road, we
use the midpoint of the bottom edge of the bounding box.
However, this selected point may not correspond the the
vehicle’s true point on the road, so we learn a linear mapping
from selected point to a corrected point to adjust for the
inaccuracy using a hand-labeled dataset of corrections to
apply.

E. Extracting Trajectories

Each extracted point denotes an observation yt ∈ R2 in
the bird’s eye view. A filtered trajectory τ , is a sequence of
observations (i.e., τ = {yt}T ). Our filtering algorithm works
by first having a human manually label the initial state of
each vehicle (i.e., decide when a vehicle enters the scene),
which creates a list of trajectories, each with a single initial
observation. This manual step is required even in recently
developed tracking methods of objects in videos [8], but we
discuss potential ways to automate this step in future work.

Given existing trajectories, τ , we can define the probability
of a new observation as p(yt+1|τ). The probability of a new
observation on a trajectory, p(yt+1|τ), is specified as a Gaus-
sian over four features Φ(yt+1, τ) = [xt+1, yt+1, ψt+1, λt+1]:
(xt+1, yt+1) = yt+1 indicates the position of the vehicle, ψt+1

indicates the angle giving the orientation of the vehicle, and
λt+1 is an indicator if the evaluated state violates the traffic
laws with respect to the rest of the trajectory. Let ys be the

§https://github.com/balancap/SSD-Tensorflow
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Fig. 4: We can simulate vehicles at a four-way intersection by specifying
traffic behaviors in two steps. (Left) First, we choose a starting lane for a
vehicle (the west lane in the figure), and an ending lane (north lane). (Right)
After the starting and end lanes are chosen, we can specify a trajectory
consisting of a sequence of points for the vehicle to traverse.

latest observation added to τ . We define ψt+1 and λt+1.
ψt+1 = arctan2(yt+1 − ys, xt+1 − xs)
λt+1 = f(yt+1, ys)

f is an indicator function for violation of traffic laws
(e.g., merging into lanes with oncoming traffic) based on
the new observation and the most recent observation in
τ from which we can infer if there is a violation. Then,
p(yt+1|τ) is a Gaussian N (µ,Σ) with µ = Φ(ys, τ). We
manually set the parameters of the covariance matrix, Σ, to be
diag([6.0, 6.0, 2.0, 100.0]), a diagonal matrix with the given
entries along the diagonal. These values represent a preference
for choosing points that are close together in position, and
then using the similarity of angles of the two points as a
second criteria. Finally, a substantial weight is placed on the
violation of a traffic law if it occurs. The algorithm works
by iteratively assigning each new observation to the existing
trajectories with the highest probability.

Due to noise in object detection and dropped frames,
once we have a filtered trajectory, τ = {yt}T consisting
of a sequence of T observations, we still want a smooth
representation of the trajectory using two dimensional cubic
polynomials, a good low-approximation of the vehicle’s path.
We consider a function f : R×R8 → R2, which corresponds
to a parameterized polynomial with 8 parameters, which we
denote as ϕ. See [5] for more details.

We can fit this function to a trajectory via the following
optimization problem

ϕ∗ = arg min
ϕ∈R8

T−1∑
t=0

‖yt − f
(

t

T − 1
, ϕ

)
‖22

to get the parameters to fit the curve. Using this fitted curve,
we extract two high-level features of the trajectory: the starting
location of the trajectory, and the high-level action taken (left
turn, right turn, forward, or stopped). Finally, a Gaussian
filter is applied to further smooth the curve.

V. LEARNING DRIVING BEHAVIORS FOR SIMULATION

We learn traffic behaviors at a four-way intersection, which
can later be used in simulation, by using the trajectories
collected by TCP. We consider behaviors on two levels, as
shown in Figure 4.

A. High-Level Behaviors
High-level behaviors describe where a vehicle begins and

ends at the four-way intersection. We use two types of

distributions to capture these behaviors: distributions over the
starting lanes of the vehicles, and distributions over the actions
taken (left, right, forward, or stopped) by vehicles given the
starting location. We want to learn realistic distributions based
on observed trajectories at a real-world intersection.

The high-level behaviors are given by multinomial discrete
probability distributions over a set S containing k elements.
In the case of the start state distribution for vehicles, we
have k = 4 for the four lanes. In the case of the action
taken by the vehicle given the starting location, we also
have k = 4 types of actions. Let Dϕ = {ϕi ∈ R8}N−1i=0
be a set of cubic spline parameters determined by TCP (as
described in Section IV-E) for a set of N extracted trajectories
from TCP. We choose to use the spline representation of a
trajectory due to its smoothness, which allows us to more
accurately infer the trajectory’s starting state and action. Then,
if we have a function g : R8 → S that maps a cubic
spline parameterization to element in S, we can estimate
a distribution over S, such that for s ∈ S,

p(s) =
|{ϕ ∈ Dϕ : g(ϕ) = s}|

N
.

Then, for a cubic spline parameterization ϕ corresponding
to a held-out trajectory from TCP, we can compute the
negative log-likelihood of observing g(ϕ) by computing
− log[p(g(ϕ))].

We will estimate several functions g. The first is gL,
which maps a cubic spline parameterization of a trajectory
to one of the four starting lanes: “East, “North, “West, or
“South. We also estimate gA,E , which maps a cubic spline
parameterization of a trajectory starting in the east lane to
one of the four action primitives: “left turn”, “right turn”,
“forward”, or “stopped”. Similarly, we estimate gA,N , gA,W ,
and gA,S , the distributions of action primitives of trajectories
starting in the north, west, and south lanes, respectively.

B. Trajectories

An agent’s motion at the traffic intersection can be specified
by a sequence of Cartesian coordinates in the bird’s eye view
perspective. Using trajectories collected by TCP, we learn a
data-driven trajectory generator model.

We partition the collected trajectories from TCP into 12
sets: one for each combination of starting lane and the action
(left, forward, or right). Let Dϕ = {ϕi}Ni=0 be the set of
cubic spline parameters determined by TCP in Section IV-E
corresponding to the trajectories in one of these sets. We fit
a multivariate Gaussian distribution N (µTCP ,ΣTCP ) to the
Dϕ by using the following [19]:

µTCP =
1

N

N∑
i=0

ϕi

ΣTCP =
1

N

N∑
i=0

(ϕi − µTCP )(ϕi − µTCP )T

Then, for a cubic spline parameterization ϕ corresponding to
a held-out trajectory from TCP corresponding to the same
starting lane and action, we can evaluate the negative log-
likelihood of observing ϕ from the learned distributions
by computing −LL(µTCP ,ΣTCP |ϕ). Note we repeat these
processes for each of the 12 sets. We choose to learn



Fig. 5: Google Map view of the intersection in TCP. Top image shows the
street names of the intersection. Bottom image shows the surrounding area of
the intersection, and the dropped pin shows the location of the intersection.

distributions over the cubic spline fit parameters because
they are low dimensional approximations of the trajectories.

VI. EXPERIMENTS

We explore three questions.
1) How good is TCP in terms of collecting trajectories?
2) How well can we learn high level behaviors?
3) How well can we generate trajectories?
We perform all timing experiments on a 6-core 12-thread

Intel Core i7-6850K CPU @ 3.60GHz. We use a traffic cam
stream from an intersection in Alberta, Canada§.

For context, Figure 5 shows the map of Canmore, a small
tourist town surrounded by mountains. Trans-Canada Highway
(Hwy 1) connects the town with the rest of the nation, and
Main St, featured in the intersection, joins Canmore with
Hwy 1. Additionally, Main Street is in the heart of a busy
commercial district.

We labeled four hours of videos from our complete
dataset to generate training data. This labeled subset of data
correspond to 234 minute-long videos, and 2618 vehicle
trajectories.

A. Evaluating Traffic Cam Pipeline
1) Trajectory Yield: The trajectory filtering method some-

times fails when TCP initially detects vehicles in the center
of the intersection, where traffic rules are not rigid or well-
defined. Hence, we discard filtered trajectories that do not
have a clear starting location, action primitive, or contain
insufficient (less than 20) data points. With 30 fps input videos,
this means that this candidate has less than 0.6 seconds of
screen time. Most trajectory rejections are due to object

§https://canmorealberta.com/webcams/main-street
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Fig. 6: Distribution of vehicles by starting lane. The cleaned up data
contains 1872 vehicle trajectories. The dotted lines show the baseline uniform
distributions.

detection failures. Unusually shaped vehicles like delivery
trucks are often only detected when they are closer to the
camera.

Out of a total of 2618 candidate vehicle trajectories, 13.98%
are discarded for having an undefined primitive, and 14.51%
are rejected for insufficient data.

2) Time Efficiency: Table I contains the average time it
takes at each stage of TCP to process a minute-long video clip.
SSD [13], or Single Shot MultiBox Detector, is a real-time
deep convolutional neural network running in TensorFlow.
It omits the need for region proposal, and can achieve fast
and accurate detection results that are comparable to that
of the state-of-the-art Faster-RCNN [18]. SSD inference
performance is heavily dependent on the computing hardware.
Table I shows that a Nvidia Titan Xp GPU can accomplish
the object detection task in real-time, but a Nvidia Tesla K40
GPU struggles.

Pipeline Component Mean Time (s) Std. Dev. (s)
SSD Detection (Nvidia Titan Xp) 26.11 4.54

SSD Detection (Nvidia Tesla K40) 99.82 18.22
Manual Initial State Labeling 90.36 27.72

Homography & Trajectory Extraction 1.01 0.45

TABLE I: Average time for a pipeline component to process a one minute
clip video (30 FPS), averaged over a total of 100 videos.

Manual labeling of initial state bounding boxes is the
most expensive and labor-intensive step, where a human
manually labels which bounding box contains a vehicle
never seen before. It is typical in tracking to hand label the
initial appearance of an object, and redetect it in subsequent
frames[16], [17]. Automating this stage is discussed in
future work. In comparison, homography transformation and
trajectory extraction are very efficient; all of the computations
for a minute-long video clip take one second on average.

B. Learning High-level Behaviors

1) Start Location: We use TCP to estimate the vehicle
start location distribution. As a comparison, we use the
FLUIDS simulator, which uses uniform lane sampling for the
vehicle start location distribution, in which vehicles randomly
appear at one of the four lanes of the intersection.

Figure 6 shows frequencies at which vehicles appear from
each of the four cardinal directions. The data shows that
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Fig. 7: Distribution of vehicle trajectory primitives at each cardinal direction.
The dotted lines show the default uniform distribution.

significantly more vehicles come from the north of the
intersection. The dashed line in Figure 6 represents the
uniform distribution in the baseline.

For a quantitative analysis of the learned distributions of
start states for vehicles, we use a held-out set of trajectories
collected by TCP, each of which have a corresponding start
state. We compare the negative log-likelihoods of learned
model and the default model in the baseline given the held-
out observations, and we find that the held-out set is more
likely under the learned model, as shown in the first row of
Table II.

2) Trajectory Primitive: We classified each vehicle’s
trajectory into sets of primitives given the starting lane:
“forward”, “right turn”, “left turn”, or “stopped”.

Figure 7 illustrates the frequency of each primitive executed
by vehicles coming from each of the four directions. For
comparison, we examine the distribution used in the FLUIDS,
which chooses each of the four actions uniformly at random.

We examine the vehicle primitives. With the exception
of the east, all other directions have more vehicles driving
forward. East has more vehicles making right turns toward
north instead. Figures 5 and 6 explain that the north direction
is more popular due to the abundance of businesses and
connectivity to a major national highway. This knowledge
extracted by TCP is currently not reflected by the baseline,
which samples from a uniform distribution over the trajectory
primitives. The vehicle trajectory primitive information in
Figure 7 can be used in driving simulators to capture behaviors
in a real-world intersection: in this case, to go forward more,
and turn more onto the major route.

Similar to the start locations, we also examine the quality of
the learned distribution of primitive behaviors by examining
the negative log-likelihood of the held-out samples under
the learned distributions and the default distributions. Again,
we find that the learned distributions perform better than the
default distributions, shown in Table II.

3) Vehicle Arrival: We analyze when vehicles appear in
the intersection. Figure 8 shows the probability of a new
vehicle appearing in the next video frame given the number
of vehicles in the current frame. A scene containing many
vehicles means that the road is busy. Hence, it is more likely
for another vehicle to appear in the next frame. The vehicle

Distribution
Baseline
Negative

Log-Likelihood

TCP
Negative-Log

Likelihood
Vehicle Start State 1.39± 0.0 1.34± 0.04

Vehicle Primitives (East) 1.39± 0.0 1.19± 0.09
Vehicle Primitives (North) 1.39± 0.0 1.14± 0.10
Vehicle Primitives (West) 1.39± 0.0 1.30± 0.07
Vehicle Primitives (South) 1.39± 0.0 1.17± 0.16

TABLE II: We examine several distributions and compare the confidence
intervals for the negative log-likelihood of observing the samples in the
held-out set under the default distributions and the learned distributions using
TCP (lower is better). We find that the learned model better approximates the
held-out distribution in all cases. Note that the confidence intervals for the
baseline consist of a single point due to the uniformly random distributions.

arrival distribution can be applied to simulators, which should
decide if a new vehicle should be added according to the
current number of vehicles in the scene.
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Fig. 8: Probability of new vehicle appearing given the number of vehicles
in current frame.

C. Trajectory Generator
We use RRT* [10] as the baseline trajectory generator for

comparison, the implementation in FLUIDS: given a start
and end position in the intersection, the RRT* algorithm
attempts to minimize distance traveled, while obeying traffic
rule restrictions such as lane directions and road boundaries.

Using a similar process to learn the generative model from
TCP trajectories, we learn the parameters of a similar model
on a set of 277 trajectories from the baseline: a multivariate
Gaussian distribution models the parameters of a cubic-spline
fit for trajectories from each combination of starting lane and
primitive action. Then, we evaluate the models by computing
the negative log-likelihood given samples in the held-out
set. The results are shown in Table III. We observe that the
negative log-likelihood of the generator trained on TCP data
is significantly lower than that of the baseline model for 10
of the 12 combinations of vehicle behavior.

Figure 9 shows the qualitative results. It includes examples
of real-world held-out trajectories, trajectories sampled from
the baseline generative model, and trajectories sampled from
the learned TCP generative model for 3 of the 12 primitive
behaviors. We observe that the trajectories generated by the
baseline generally have less variance than the real-world held-
out trajectories due to the many possible trajectories that can
be executed by real drivers: many drivers like to cut into the
opposing lane for a left turn if they observe no opposing
traffic. Similarly, drivers waiting for opposing traffic before a
left turn like to pull forward far into the intersection before
stopping and yielding. We also observe that the learned TCP
model can better match this variability in extracted held-out
trajectories.



Lane Action Baseline Negative
Log-Likelihood

TCP Generator
Negative

Log-Likelihood
East Forward 2, 537.1 44.7

Left 2, 559.8 356.6
Right 6, 161.5 41.1

North Forward 9, 238.8 44.3
Left 3, 174.4 50.0

Right 2, 952.5 48.0
West Forward 18, 717.5 47.8

Left 7, 707.6 59.4
Right 703.4 42.1

South Forward 18, 340.8 56.3
Left 2, 727.0 857.3

Right 3, 652.9 52.0

TABLE III: We compare trajectories from the learned generator model and
the baseline generator model by computing the negative log-likelihood of
observing the held-out trajectories given the model (lower is better, bold
indicates statistical significance with 95% confidence intervals). We find that
the learned generator model is more likely to produce the trajectories in the
held-out set than the baseline model for 10 of the 12 primitive behaviors.

Fig. 9: Examples of held-out trajectories, trajectories sampled from the
baseline trajectory generator, and trajectories sampled from the learned TCP
generative model. We show five examples each for three primitive behaviors:
left turn from the north, right turn from the north, and left turn from the
west. We see that the real-world held-out trajectories exhibit greater variance
in paths, and the learned generator better matches this behavior. However,
the difference is not as apparent in the bottom row.

VII. DISCUSSION AND FUTURE WORK

TCP can extract vehicle data from readily available, yet
often unstructured, online public video streams. By learning
probability distributions over driving behaviors inferred from
the data, we can generate new samples of plausible driving
behavior that can be used in driving simulators.

A. Evaluation
One challenge with measuring the performance of TCP in

learning real-world driving behavior is the lack of ground-
truth data to evaluate against. In future work, we will
develop better methods to evaluate the learned models by
using other metrics, examining intersections with accurate
sensors to record ground-truth measurements, or using human
annotations as ground-truth.
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Fig. 10: Distribution of pedestrians by crosswalk location. The cleaned up
data contains 209 pedestrian trajectories. The dotted lines show the default
uniform distribution.

B. Towards Real-Time and Higher Robustness

Figure 2 and Table I show that the efficiency bottleneck of
TCP is the manual initial state labeling. One potential solution
to is the Re3 algorithm by Gordon et al. [8]. They propose a
deep neural network architecture that is part convolutional
neural network for video frame processing and part recurrent
neural network for temporal information handling. It can
achieve real-time object tracking at 150 FPS without having
to learn object classification explicitly. In future work, we
will experiment with replacing manual initial state labeling
and trajectory filtering with this new tracking algorithm,
while using SSD object detection to find initial appearances
of objects. We hope this will allow TCP to scale up its
data-collecting ability and extend more easily to different
intersections.

C. Pedestrians

We hope to expand our pipeline experiment to include
pedestrians in the next version: TCP-IP (Traffic Camera
Pipeline - Including Pedestrians).

We have conducted some preliminary experiments with
pedestrians to extract their start state distribution, shown in
Figure 10. We speculate that the skew in data is because the
camera is mounted in the southeast corner of the intersection.
Since pedestrians are much smaller than vehicles, pedestrians
in the north and west of the intersection are much harder
for SSD to robustly detect and track. Identifying individual
pedestrians in groups is also difficult. As a result, 63.81% of
the 1213 pedestrian trajectories are rejected due to insufficient
data points.

For more details and to download our dataset,
see: https://berkeleyautomation.github.io/
Traffic_Camera_Pipeline/.
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