
Dex-Net as a Service (DNaaS):
A Cloud-Based Robust Robot Grasp Planning System

Pusong Li1, Bill DeRose2, Jeffrey Mahler1, Juan Aparicio Ojea3, Ajay Kumar Tanwani1,2, Ken Goldberg1,2

Abstract— Accessing software resources via the Cloud has
become increasingly popular as a means to configure and man-
age automation systems with reduced infrastructure overhead.
Dex-Net as a Service (DNaaS) is a cloud-based grasp planning
system for parallel-jaw grippers that provides a graphical user
interface and API access to Dex-Net 1.0, a robust grasp planning
system based on wrench mechanics and stochastic sampling.
DNaaS allows anyone online to compute parallel-jaw grasps
on triangular meshes and visualize the results. This paper
presents system architecture, examples of generated grasps,
and timing data for DNaaS. DNaaS takes under 75 seconds
on average to process grasp requests. DNaaS is available at
http://automation.berkeley.edu/dex-net.

I. INTRODUCTION

The ability to compute robust robot grasps remains a
grand challenge for robotics in manufacturing, agriculture,
and home care. Today, most robots and automation systems
operate independently using onboard computation and mem-
ory. The development of Cloud Robotics [32] highlights the
role that collective robot learning, Cloud Computing, and
open-source software can play in achieving robust robotic
manipulation of everyday objects [38]. Whether leveraging
analytic methods or learning based approaches to achieve
dextrous robotic manipulation, the increasing ubiquity of
Cloud resources suggests new approaches to robot grasping,
where processing is performed remotely with access to large
shared datasets, can increase the reliability, performance, and
cross-platform flexibility of robotic systems.

Robotics and Automation as a Service (RAaaS) [38] can
play an important role in a Cloud Robotics framework by
avoiding complex software installation and maintenance, al-
lowing remote robots to scale beyond their onboard hardware
limitations, and facilitating the sharing of robot trajectories
and outcomes. RAaaS benefits users building robotics ap-
plications by making state-of-the-art algorithms and training
datasets available without the need to perform data collection
or algorithm implementation themselves.

The Dexterity-Network 1.0 (Dex-Net) [45] is an algo-
rithm for robust grasp planning which relies on Unix-based
libraries and operating systems. We present Dex-Net as a
Service (DNaaS), an HTTP API which uses Dex-Net 1.0
[45] to compute and rank parallel-jaw grasps on triangular-
faced, 3D object meshes using parametric parallel-jaw grip-
pers under user-specified physics and robustness parameters.

1 Dept. of Electrical Engineering and Computer Science;
2 Dept. of Industrial Engineering and Operations Research;
AUTOLab at University of California, Berkeley,

USA {alanpusongli, bderose, jmahler,
ajay.tanwani, goldberg}@berkeley.edu

3 Siemens Corporation; juan.aparicio@siemens.com

Fig. 1: Four ”adversarial” (difficult to grasp) objects (top) and the corre-
sponding grasps (bottom) generated by DNaaS for the parallel-jaw gripper
shown (gripper width and depth are adjustable parameters). Candidate grasps
are represented by oriented line segments along the grasp axis, colored by
their robustness (green more robust, red less robust).

Grasps generated by DNaaS can be viewed in a web-based
graphical user interface where users may choose their desired
gripper parameters, explore grasps on example watertight 3D
object meshes, and upload custom objects to evaluate DNaaS
on their own meshes. Users interact with mesh objects and
candidate grasps in a 3D scene with the ability to filter grasps
to specific stable poses. This allows industrial practitioners
to easily access Dex-Net 1.0 through the Web. Examples of
grasps generated by DNaaS are shown in Figure 1.

This paper makes three contributions:
1) DNaaS, a RAaaS architecture for Dex-Net 1.0 and

public HTTP API which takes as input a 3D object
mesh (in .obj format with triangular faces) and
computes stable poses, grasps, and robust grasp quality
metrics for parallel-jaw grippers under uncertainty in
object pose, gripper pose, and friction,

2) An implemented graphical interface where users up-
load object meshes and visualize the quality of can-
didate grasps to better understand or debug grasping
models, and

3) Experiments evaluating failure modes of the system,
the real-time performance of the DNaaS API across
multiple parallel-jaw grippers and adversarial meshes,
and the effect of gripper width on predicted grasp
quality.

II. RELATED WORK

Cloud robotics. The term “Cloud Robotics” was coined

http://automation.berkeley.edu/dex-net

Fig. 2: DNaaS user interface. Parametric gripper model is rendered along the z-axis. Candidate grasps (green more robust, red less robust) are super-imposed
on the target object. The gripper width can be adjusted manually (bottom left). Grasps are filtered by their grasp quality (bottom right) or by their feasibility
for a given stable pose (top right).

in 2010 [39] to describe systems that allow robots to offload
compute, storage, and software requirements from local
hardware to the Cloud [32]. [3], [8], [9], [15]. “Fog Robotics”
(analogous to Fog Computing) explores architectures for
balancing these resources between onboard edge computing
devices and centralized cloud-based data centers [27]. Cloud
Robotics, spurred on by the general availability of Cloud
Computing resources, has had an impact on robotics efforts
in industry Though a complete survey of Cloud Robotics is
beyond the scope of this paper, we direct interested readers
to works which cover the topic in more depth [28], [38].

Grasp planning and simulation systems, such as GraspIt!
[31] and OpenGRASP [43], allow users to interact with
objects in a virtual world and compute quantitative grasp
quality metrics to evaluate candidate grasps. These sim-
ulators have been used to collect novel datasets [46] of
thousands of distinct object models and associated grasps to
bootstrap the study of grasp planning at scale. More recently,
Dex-Net [44], [45] has addressed the issue of robust grasp
planning and dataset generation for learning-based grasping
algorithms.

Programs like GraspIt! may be downloaded and run by
end-users locally, or used with ROS [11], [18]. RAaaS [38]
introduces a layer of abstraction on top of systems like
ROS to isolate end-users from manual management of Cloud
Robotics software. RAaaS relies on software developers to
deploy their projects to the Cloud where they may be used
directly by end-users, each with possibly different robots and
applications, without knowing the details of a specific robotic
software package.

Brass [53] accessed Dex-Net remotely but had no user
interface with adjustable parameters. DNaaS accepts gripper-
parameterized grasp requests via a public HTTP REST API
[26] to enable the computation of robust grasps over a
wide variety of parallel-jaw grippers. These grasps are then
visualized in the web user interface.

Grasp Planning. Given an object, gripper parameters, and
reachability constraints due to the environment, grasp plan-
ning considers finding a gripper configuration that maximizes
a certain metric. Methods fall into one of two categories
based on success criteria: analytic methods [49], which
consider performance according to physical models such as
the ability to resist external wrenches [48], and empirical
(or data-driven) methods [20], which typically use human
labels [19] or the ability to lift the object in physical
trials [47].

Analytic Methods. Analytic approaches typically assume
that object and contact locations are known exactly and
consider either the ability to resist external wrenches [49]
or the ability to constrain the object’s motion [51]. To
execute grasps on a physical robot, one approach is to
precompute a database of known 3D objects labeled with
grasps and quality metrics using software like GraspIt! [31].
Precomputed grasps are indexed at execution time using
point cloud registration: matching point clouds to known
3D object models in the database using visual and geometric
similarity [20], [21], [22], [30], [33], [35], [37].

Robust grasp planning methods maximize grasp robust-
ness, or the expected value of an analytic metric under
uncertainty in sensing and control. This involves labeling

Fig. 3: User specifiable parameters for parallel-jaw gripper in DNaaS.

grasps on a database of 3D object models with robust metrics
such as the probability of force closure [37] or the pose
error robust metric [55]. Recent research has demonstrated
that the sampling complexity of robust grasp planning can
be improved using Multi-Armed Bandits [41] and datasets of
prior 3D objects and robust grasps, such as Dex-Net 1.0 [45].

Empirical Methods. Empirical approaches typically use
machine learning to develop models that map from robotic
sensor readings directly to success labels from humans or
physical trials. Human labels may be expensive to acquire for
large datasets and irregular objects. Research in this area has
largely focused on associating human labels with graspable
regions in RGB-D images [42] or point clouds [23], [34],
[36]. Lenz et al. [42] created a dataset of over 1k RGB-
D images with human labels of successful and unsuccessful
grasping regions, which has been used to train fast CNN-
based detection models [24], [40], [50].

III. PROBLEM STATEMENT

The goal of Dex-Net as a Service (DNaaS) is to provide
a public API which computes a set of robust parallel-jaw
grasps for a given 3D object using a Cloud-based implemen-
tation of the Dex-Net 1.0 grasp computation pipeline [45].
Specifically, DNaaS takes as input an object specified as a 3D
triangular mesh and outputs a set of collision-free parallel-
jaw grasps ranked by their robustness to perturbations in ob-
ject pose, gripper pose, and the Coulomb friction coefficient.
Optionally, users can set application-specific parameters of
the robust quasi-static analysis engine including the parallel-
jaw gripper geometry, the Coulomb friction coefficient, and
the grasp quality metric (either force closure [55] or the
epsilon metric [25]). DNaaS can also compute the subset of
grasps whose grasp axis is parallel to the table plane for each
stable resting pose of the object on a planar worksurface [29].

A. Assumptions

The robust quasi-static grasp analysis engine of DNaaS
assumes quasi-static physics, a rigid object with uniform
mass density, and a known friction coefficient. We assume
that the parallel-jaw gripper geometry can be approximated
with four parameters: the gripper width, the palm depth, and
the cross-sectional dimensions of the fingertip, (see Figure

DNaaS Web User Interface (jQuery, flexbox,
three.js)

Serve web app and assets
(HTML, JS, CSS) over HTTP

Python Flask API Server

Request and receive grasps over HTTP:
POST /api/upload-mesh
GET /api/grasps

Unix Grasp Computation Server

Dex-Net
Worker

Dex-Net
Worker

Mesh Pre-
processing

Grasp
Sampling

Collision
Checking

Metric
Computation

Apache Web Server

Submit and monitor grasp generation process

Fig. 4: DNaaS architecture. DNaaS consists of a front-end website, served
statically by an Apache web-server, and a backend Python Flask API which
communicates with a worker pool of Dex-Net processes to orchestrate grasp
generation.

3). DNaaS assumes that the input mesh has triangular faces
and fewer than 70k total faces to ensure grasp computation
latency remains under two-minutes.

IV. DEX-NET AS A SERVICE (DNAAS) ARCHITECTURE

DNaaS is comprised of three distinct layers of abstraction,
depicted in Figure 4. The frontend of the system is a web-
based graphical user interface based on jQuery [12], [13] that
parses user mesh models and grasp computation requests
from a web browser. The frontend uploads mesh models
and makes requests for grasp computations via DNaaS’s
public grasping API [5]. Requests are forwarded to the robust
grasp analysis backend using a Python-based Flask API. The
backend spawns worker processes which analyze the input
mesh model using the robust grasp analysis engine from Dex-
Net 1.0. Each worker process returns a set of parallel-jaw
grasps with robustness metrics. The grasps are retrieved from
the worker by a monitor process on the API server, which
relays the JSON encoded grasps to the DNaaS frontend via
HTTP. Finally, the frontend renders the grasps on the 3D
object model in the browser. Readers interested in using the
DNaaS API may consult our Python example [6] as a guide
to computing candidate grasps and stable-poses for object
meshes. Figure 5 depicts a typical API workflow.

A. Grasp Computation

The DNaaS backend uses an updated version of the robust
grasp analysis engine of Dex-Net 1.0 that represents the
object as an explicit surface (3D triangular mesh) rather
than an implicit surface (3D Signed Distance Function), as
was used in the original system [45]. The DNaaS backend
consists of four stages: mesh pre-processing, grasp planning,
collision checking, and metric computation.

Mesh pre-processing: When a user uploads a 3D object
mesh to DNaaS, the service first preprocesses the mesh for

GET /api/{MESH_ID}/stable_poses

Enqueue successful

return { filtered_stable_poses: [...] }

return { stable_poses: [...] }

GET /api/{MESH_ID}/processing-progess

return { mesh_id: <UUID> }

Grasp Computation
Server

API
Consumer

POST /api/upload-mesh

return { state: "pre-processing" | "sampling" |
 "collision_checking" | "metric_computation" | "done" }

GET /api/{MESH_ID}/grasps
return { grasps: [...] }

Preprocess Mesh

GET /api/{MESH_ID}/stable_poses/{POSE_ID}/filtered_grasps

Sample Grasps
Collision Checking

API
Server

Fetch progress

Current state

Enqueue grasp sampling job

Computed grasps, metrics, stable poses
Cache computed results

Retrieve from cache

Compute Metrics

Retrieve from cache

Retrieve from cache

Fig. 5: DNaaS API sequence diagram. This workflow depicts the steps necessary to initiate, monitor, and retrieve a grasp computation request for a given
object and parallel-jaw gripper as well as the back-end steps executed during such a request . ”API Consumer” denotes the end user, ”API Server” denotes
the public-facing HTTP API, and ”Grasp Computation Server” denotes the back-end worker process. An end-user following this workflow would POST
the mesh and gripper parameters to the server, follow progress with GET, then retrieve the newly cached results with GET after computation is completed.

grasp computation. We estimate the center of mass for the
object by assuming a uniform density when the mesh is
watertight and taking the centroid of the mesh bounding box
otherwise. Next, we compute the stable resting poses of the
object on a planar worksurface under quasi-static physics and
a uniform initial object orientation [29].

Grasp planning: The second stage in our pipeline samples
an initial set of antipodal grasps using an implementation of
the grasp sampling algorithm of Dex-Net 1.0 that operates on
triangular meshes. First, we sample a set of candidate contact
points from the surface of the mesh that are approximately
evenly spaced using the trimesh library’s [17] implementa-
tion of the triangle point picking algorithm [54]. For each
candidate contact point, we search for a second contact
point to form an antipodal pair by sampling a direction
uniformly at random from the friction cone around the
contact normal (inward-pointing surface normal). We then
trace a ray along the sampled direction to find the most
distant point of intersection with the mesh surface that is
within the maximum opening width of the gripper. If no
such intersection point exists, the candidate contact point
is discarded. If one exists, we compute the surface normal
and friction cone at the point of intersection and determine
whether the candidate contact point and point of intersection
form an antipodal pair. If the pair is antipodal, we construct
a candidate grasp with center at the midpoint between the
pair of contact points and grasp axis along the line between
the contacts and add the candidate grasp to the set.

Collision checking: The set of antipodal contact points
is then pruned by checking for collision-free configurations
of the gripper relative to the object that reach the contact
points. We search over all rotations of the gripper about the
grasp axis (line between the contact points). For each grasp
and stable resting pose, we also check whether or not the
grasp axis is parallel to the planar worksurface to mark valid
crane grasps.

Metric computation: Finally, we compute grasp robust-
ness for the set of candidate grasps using Monte-Carlo
sampling. For each grasp we iteratively sample an object
pose, a gripper pose, and a friction coefficient from Gaussian
distributions using the graphical model of [52]. We then
compute the contact points for the perturbed grasp and
evaluate the grasp quality metric. The backend implements
force closure using a soft finger contact model by computing
the angle between the line segment joining the contacts and
the friction cone. We also implement the epsilon metric
by Ferrari and Canny [25] using a Python implementation
based on pyhull [14]. We estimate the mean and standard
deviation of the quality metric over all samples. We stop
sampling when either (a) the 95% upper confidence bound
on the quality metric is less than a threshold value, or (b) the
maximum number of samples has been reached. The final set
of grasps and metrics are JSON-encoded and returned to the
end user when queried.

B. HTTP API

The full API specification implemented by DNaaS is
available online [5] with an accompanying example of how
to query DNaaS for grasp candidates [6] and stable poses.

Figure 5 depicts the HTTP sequence workflow of a
typical request to the service. Users initiate requests for
grasp computation by submitting a POST request to the
upload-mesh API endpoint with their desired object mesh
and gripper parameters attached as files. Each request to
process a mesh is associated with a globally unique iden-
tifier which is returned in the HTTP response to the initial
request. Grasp computation progress can be monitored by
querying the processing-progress endpoint with the
corresponding mesh identifier to receive fine-grained updates
on the state of a given request.

Once computation is complete, any future requests made
to the grasps endpoint associated with the unique mesh

2cm 4cm 6cm

0.000 0.005 0.010 0.015 0.000 0.005 0.010 0.015 0.000 0.005 0.010 0.015
0e+00

2e+05

4e+05

6e+05

Grasp Quality Metric

G
ra

sp
 C

ou
nt

Fig. 6: Grasp quality and count for three gripper widths (2, 4, and 6 cm) generated by DNaaS on the spray bottle mesh object depicted in the bottom
row. The gripper width increases from left to right. The images of the grasps superimposed on the spray bottle are taken directly from the DNaaS web
interface. The dimensions of the spray bottle are 12.7cm tall, 3.1cm deep, and 5.0cm wide.

identifier bypass the computational pipeline and immediately
return the previously computed grasps, allowing for efficient
reuse of prior computation.

The API provides the additional ability to query a given
mesh’s stable poses via the stable-poses endpoint and
allows users to retrieve feasible grasps corresponding to a
specific stable pose.

C. Web Interface

Figure 2 shows the DNaaS web user interface. When users
visit the site, they can explore the grasps DNaaS predicts on a
example set of 3D object meshes from the Dex-Net database.
The quality of different grasps is visually distinguished on
a spectrum from green (more robust) to red (less robust)
by using the grasp quality metrics DNaaS computes. The
interface allows users to cycle through an object’s stable
poses and filter grasps based on their robustness or feasibility
for a given pose. Users may also compute and visualize
grasps on objects they upload themselves and, for any object,
the mesh and the candidate grasps are downloadable through
the website.

The client-side user interface and server-side Flask API
run, alongside Dex-Net itself, on a quad-core Intel(R)
Xeon(R) CPU E3-1220 v3 with a clockrate of 3.10GHz
and 16GB of RAM. The website is written using HTML,
JavaScript, and CSS served statically by an Apache web
server [1]. We use three.js [16] to render a 360◦ 3D scene
in the browser where candidate grasps are super-imposed on
the target object mesh. The page is designed using a flexible
box layout [10] for easy accessibility across modern web-
browsers (Chrome, Safari, Firefox) and on mobile devices.

The website uses the latest version of jQuery [12] for DOM
[7] manipulation, event handling, and Promise-based [2]
asynchronous HTTP requests. The graphical user interface
combines elements from jQuery UI [13], Bootstrap [4], and
custom CSS.

V. EXPERIMENTS

In the following experiments, we evaluate DNaaS as an
end-to-end system, using only the HTTP API as an interface
to the Dex-Net 1.0 grasp planner. We present grasp examples
generated by DNaaS for multiple parallel-jaw grippers and
adversarial object meshes. We report detailed system timing
measurements and present failure modes encountered during
the development of DNaaS.

A. Grasp Quality and Gripper Width

DNaaS’s ability to process grasp requests using parametric
parallel-jaw grippers allows us to describe the differences
between sets of grasps generated for different gripper param-
eterizations. We present an analysis which varies the gripper
width, but other gripper parameters may be specified in a
similar manner.

We measure the distribution of DNaaS’s grasp quality
metric (the epsilon metric under uncertainty in object pose,
gripper pose, and friction coefficients) for gripper models
with different widths (see Figure 6). Intuitively, as the width
of the gripper increases from 0 to the longest dimension of
the target object’s bounding box, we expect the distribution
of the grasp quality metric to shift from a point mass at
grasp quality 0 out to the right tail. The positive relationship
between parallel-jaw width and grasp quality should hold
up to the point when the width of the parallel-jaw gripper

Bar Clamp Endstop Holder Spray Bottle

1000 10000 1000 10000 1000 10000
0

50

100

Triangular Faces

To
ta

l E
la

ps
ed

 T
im

e
(s

)

Processing Stage

collision checking

grasp sampling

mesh preprocessing

metric computation

Fig. 7: Data on computation time vs mesh complexity. We measure the elapsed time of the major stages in the grasp generation pipeline, segmented by
mesh, and colored by the processing stage. Timing measurements are given for three adversarial object meshes: a bar clamp, an endstop holder, and a
spray bottle. Cloud overhead remained less than 1.5 seconds and is not visible on the graph. Note: x-scale is log-transformed.

reaches the longest dimension of the target object’s bounding
box. Beyond that, any additional width of the parallel-
jaws does not enable additional grasps that were previously
infeasible.

Concretely, we can see these three phases in Figure 6
where we generate grasps on a spray bottle object using
parallel-jaw grippers of different widths. On the far left we
begin with a gripper too narrow to grasp the spray bottle
robustly. As the width is increased from 2cm to 4cm, the
parallel-jaw gripper begins to fit around parts of the bottle
that allow for more robust grasps. The maximum width of
the bottle is approximately 5cm, so although the increase in
width from 4cm to 6cm continues to shift the distribution of
grasp quality out to the right tail, it does not have the same
magnitude of effect as the jump from 2cm to 4cm does.

B. Processing Time Analysis

We gather system timing measurements to evaluate the
performance of DNaaS as a software system and benchmark
the speed of our grasping service. A single trial measures
the time from the initial incoming request for grasps on a
given mesh until DNaaS has completed all stages of the grasp
generation pipeline and is ready to return a set of candidate
grasps to the user. When measuring the performance of
DNaaS, we consider two criteria: overall timing and timing
of the individual steps in the grasp generation pipeline. We
conduct 25 trials across 4 objects whose triangular faces
are subdivided to simulate increased mesh complexity. The
resulting meshes ranged from 284 to 72704 triangular faces.
We find that on average DNaaS takes under 75 seconds
to process grasp requests on adversarial meshes using a
parameterized gripper model.

The individual steps of the DNaaS grasp generation
pipeline are dependent on both object geometry and mesh
complexity (measured by the number of triangular faces in a
mesh). Figure 8 depicts the difference in timing across object
geometries by splitting out the distributions of processing
time across three example meshes. Figure 7 shows the
positive relationship between the number of triangular faces
in the target object’s mesh and grasp generation runtime.

Although there is an upfront cost in the initial grasp
computation step, the grasps computed by DNaaS are cached

●●●●

50

75

100

125

Bar Clamp Endstop Holder Spray Bottle

Mesh Name

To
ta

l E
la

sp
ed

 T
im

e
(s

)

Mesh Name

Bar Clamp

Endstop Holder

Spray Bottle

Mesh Avg. Processing Time (s) Std. Dev. Avg. Num. Faces
Bar Clamp 49 16 14747
Endstop Holder 61 23 19368
Spray Bottle 81 30 17255
Overall 72 35 13271

Fig. 8: Measuring the elapsed time of the major stages in the grasp
generation pipeline, segmented by mesh. Timing measurements are again
given for three adversarial object meshes: a bar clamp, an endstop holder,
and a spray bottle.

on the server and may be queried quickly thereafter. This
suggests that DNaaS could be a feasible solution to grasping
scenarios where the target objects are known in advance
so grasps can be pre-computed and cached for faster on-
the-fly access. In its current form, DNaaS is unsuitable for
applications where grasping of previously unknown objects
is required. For high-throughput applications a grasp planner
co-located with robot hardware may be necessary to ensure
all service-level latency constraints are satisfied by the grasp-
ing system.

C. Failure Modes

We present a series of failure modes encountered during
the development of DNaaS in hopes of galvanizing users to
further test the system’s capabilities.

Perturbation During metric robustness computation, we
perturb candidate grasps with random noise. For parallel-jaw
grippers with small widths, the contact points of the grasp
can be close to the surface of the object. When we attempt
to perturb such grasps, sometimes the contact point is moved
inside the object mesh, resulting in an infeasible grasp whose
metric score should be zero. However, as collision checking

each perturbation would take a prohibitive amount of time,
these grasps receive non-zero scores. This means that even
though this type of grasp is not robust, they can potentially
receive relatively high metric scores.

Stable Poses During our performance testing, we noticed
an anomalous result on a spherical adversarial object. For
low face-count spherical meshes, one stable pose exists for
every face. This results in a large number of symmetric
stable poses. Due to collision checking being run for each
stable pose, this causes low triangle count spheres to have
significantly longer runtimes when compared to other meshes
with a similar number of triangular faces. As the number of
faces increases and the mesh more closely approximates a
true sphere, the faces become smaller and the probabilities
of the associated stable poses decrease. Once this probability
becomes small enough, the poses associated with each face
are no longer considered stable, and the object has zero
stable poses. This means that once the spherical mesh has
enough faces, its collision checking runtime drops instead of
increasing. Figure 9 depicts this effect.

Uniform Density Center of Mass When computing the
center of mass (COM) for an object mesh, we assume
uniform density. This can lead to counter-intuitive grasps,
for example the ones in Figure 6, where the most robust
grasps are around the uniform-density COM. Humans may
see the spray bottle and infer that there is likely liquid inside
which leads to a lower COM and an entirely different set
of robust grasps. Thus, DNaaS may counter-intuitively rank
certain grasps as robust when given objects of non-uniform
density.

D. Usage Data

The DNaaS frontend web interface and backend API
server are instrumented to record usage data to improve
future versions of the service. Over the past three months,
the DNaaS web interface has received 182 page-views from
32 unique users located across North America, Europe, and
Asia. The backend DNaaS API server logged 96 requests
for grasp computation on 33 unique user-uploaded object
meshes. 15 users made grasp requests with one gripper
configuration for the uploaded mesh, 10 users requested with
two configurations, and 8 users requested with three or more
gripper configuration for their specific mesh.

VI. DISCUSSION AND FUTURE WORK

We present DNaaS, a RAaaS architecture, which combines
a public HTTP API and graphical web user interface to
Dex-Net 1.0. We report example grasps generated by DNaaS
across multiple parallel-jaw gripper hardware configurations
and adversarial objects. The distribution of grasp quality pre-
sented for the experimental hardware configurations allows
us to make qualitative observations about the space of grasp-
enabling parallel-jaw grippers.

System timing measurements suggest that DNaaS could
be used in industrial settings such as multi-item, single-line
production lines where the up-front cost of grasp compu-
tation for objects can be pushed to the change-over times

Sphere

100 1000 10000

0

50

100

150

Triangular Faces

To
ta

l E
la

ps
ed

 T
im

e
(s

)

Processing Stage

collision checking

grasp sampling

mesh preprocessing

metric computation

Fig. 9: Timing measurements for a spherical mesh, which has many equally
likely stable poses. This leads to a peak in the time it takes to collision
check around 100 triangular faces.

between items and subsequent computations can make use
of DNaaS’s grasp caching or some home decluttering settings
where the set of objects encountered is limited.

By making Dex-Net 1.0 widely accessible, we invite
research and industrial users to experiment with the sys-
tem, evaluate performance, and identify new failure modes.
DNaaS hopes to motivate future data-driven grasping al-
gorithms by including objects submitted to DNaaS in the
growing collection of 10,000 unique 3D objects models and
2.5 million associated parallel-jaw grasps in the Dex-Net
database.

ACKNOWLEDGMENTS

This research was performed at the AUTOLAB at UC
Berkeley in affiliation with the Berkeley AI Research (BAIR)
Lab, the Real-Time Intelligent Secure Execution (RISE) Lab,
and the CITRIS ”People and Robots” (CPAR) Initiative.
and by the Scalable Collaborative Human-Robot Learning
(SCHooL) Project, NSF National Robotics Initiative Award
1734633.

The authors were supported in part by donations from
Siemens, Google, Amazon Robotics, Toyota Research In-
stitute, Autodesk, ABB, Samsung, Knapp, Loccioni Honda,
Intel, Comcast, Cisco, HP, and PhotoNeo, as well as GPU
donations from NVIDIA. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of the Sponsors. We thank our colleagues who provided
helpful feedback, code, and suggestions, in particular Roy
Fox, David Gealy, Sanjay Krishnan, Animesh Garg, Michael
Laskey, Matt Matl, and Vishal Satish.

REFERENCES

[1] “Apache web server.” [Online]. Available: https://httpd.apache.org/
[2] “Asynchronous operations in javascript using promises.” [Online].

Available: https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Global Objects/Promise

[3] “Autonomous solutions (asi).” [Online]. Available: https://www.
asirobots.com/research/

[4] “Bootstrap front-end component library.” [Online]. Available: http:
//getbootstrap.com/

[5] “Dnaas api documentation.” [Online]. Available: https://gist.github.
com/bderose/61d70384d159af3715865b35b75e96e0

[6] “Dnaas api example.” [Online]. Available: https://gist.github.com/
bderose/0c1c2cad2d4291b16a9a24d4b271da1f

https://httpd.apache.org/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://www.asirobots.com/research/
https://www.asirobots.com/research/
http://getbootstrap.com/
http://getbootstrap.com/
https://gist.github.com/bderose/61d70384d159af3715865b35b75e96e0
https://gist.github.com/bderose/61d70384d159af3715865b35b75e96e0
https://gist.github.com/bderose/0c1c2cad2d4291b16a9a24d4b271da1f
https://gist.github.com/bderose/0c1c2cad2d4291b16a9a24d4b271da1f

[7] “Document object model.” [Online]. Available: https://
developer.mozilla.org/en-US/docs/Web/API/Document Object Model/
Introduction

[8] “Dropblet home automation.” [Online]. Available: http://smartdroplet.
com/

[9] “Emerald cloud labs.” [Online]. Available: https://www.
emeraldcloudlab.com/about/

[10] “Flexbox.” [Online]. Available: https://www.w3.org/TR/css-flexbox-1/
[11] “graspit - ros wiki.” [Online]. Available: http://wiki.ros.org/graspit
[12] “Jquery javascript library.” [Online]. Available: https://jquery.com/
[13] “Jquery ui library.” [Online]. Available: https://jqueryui.com/
[14] “Pyhull.” [Online]. Available: http://pythonhosted.org/pyhull/
[15] “Tempo automation.” [Online]. Available: https://www.

tempoautomation.com/capabilities
[16] “three.js.” [Online]. Available: https://threejs.org/
[17] “Trimesh.” [Online]. Available: https://github.com/mikedh/trimesh
[18] R. Arumugam, V. R. Enti, L. Bingbing, W. Xiaojun, K. Baskaran, F. F.

Kong, A. S. Kumar, K. D. Meng, and G. W. Kit, “Davinci: A cloud
computing framework for service robots,” in Robotics and Automation
(ICRA), 2010 IEEE International Conference on. IEEE, 2010, pp.
3084–3089.

[19] R. Balasubramanian, L. Xu, P. D. Brook, J. R. Smith, and Y. Matsuoka,
“Physical human interactive guidance: Identifying grasping principles
from human-planned grasps,” IEEE Trans. Robotics, vol. 28, no. 4,
pp. 899–910, 2012.

[20] J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven grasp
synthesisa survey,” IEEE Trans. Robotics, vol. 30, no. 2, pp. 289–309,
2014.

[21] P. Brook, M. Ciocarlie, and K. Hsiao, “Collaborative grasp plan-
ning with multiple object representations,” in Proc. IEEE Int. Conf.
Robotics and Automation (ICRA). IEEE, 2011, pp. 2851–2858.

[22] M. Ciocarlie, K. Hsiao, E. G. Jones, S. Chitta, R. B. Rusu, and
I. A. Şucan, “Towards reliable grasping and manipulation in household
environments,” in Experimental Robotics. Springer, 2014, pp. 241–
252.

[23] R. Detry, C. H. Ek, M. Madry, and D. Kragic, “Learning a dictionary
of prototypical grasp-predicting parts from grasping experience,” in
Proc. IEEE Int. Conf. Robotics and Automation (ICRA). IEEE, 2013,
pp. 601–608.

[24] K. Fang, Y. Bai, S. Hinterstoisser, and M. Kalakrishnan, “Multi-task
domain adaptation for deep learning of instance grasping from
simulation,” CoRR, vol. abs/1710.06422, 2017. [Online]. Available:
http://arxiv.org/abs/1710.06422

[25] C. Ferrari and J. Canny, “Planning optimal grasps,” in Proc. IEEE Int.
Conf. Robotics and Automation (ICRA), 1992, pp. 2290–2295.

[26] R. T. Fielding and R. N. Taylor, Architectural styles and the design
of network-based software architectures. University of California,
Irvine Doctoral dissertation, 2000, vol. 7.

[27] K. Goldberg, May 2018, in TechCrunch Robotics Symposium, Berke-
ley, CA.

[28] K. Goldberg and B. Kehoe, “Cloud robotics and automation: A
survey of related work,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2013-5, 2013.

[29] K. Goldberg, B. V. Mirtich, Y. Zhuang, J. Craig, B. R. Carlisle, and
J. Canny, “Part pose statistics: Estimators and experiments,” IEEE
Trans. Robotics and Automation, vol. 15, no. 5, pp. 849–857, 1999.

[30] C. Goldfeder and P. K. Allen, “Data-driven grasping,” Autonomous
Robots, vol. 31, no. 1, pp. 1–20, 2011.

[31] C. Goldfeder, M. Ciocarlie, H. Dang, and P. K. Allen, “The columbia
grasp database,” in Proc. IEEE Int. Conf. Robotics and Automation
(ICRA). IEEE, 2009, pp. 1710–1716.

[32] E. Guizzo, “Cloud robotics: Connected to the cloud, robots get
smarter,” Jan 2011. [Online]. Available: https://spectrum.ieee.org/
automaton/robotics/robotics-software/cloud-robotics

[33] C. Hernandez, M. Bharatheesha, W. Ko, H. Gaiser, J. Tan, K. van
Deurzen, M. de Vries, B. Van Mil, J. van Egmond, R. Burger, et al.,
“Team delft’s robot winner of the amazon picking challenge 2016,”
arXiv preprint arXiv:1610.05514, 2016.

[34] A. Herzog, P. Pastor, M. Kalakrishnan, L. Righetti, J. Bohg, T. Asfour,
and S. Schaal, “Learning of grasp selection based on shape-templates,”
Autonomous Robots, vol. 36, no. 1-2, pp. 51–65, 2014.

[35] S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige,
N. Navab, and V. Lepetit, “Multimodal templates for real-time detec-
tion of texture-less objects in heavily cluttered scenes,” in Proc. IEEE
Int. Conf. on Computer Vision (ICCV). IEEE, 2011, pp. 858–865.

[36] D. Kappler, J. Bohg, and S. Schaal, “Leveraging big data for grasp
planning,” in Proc. IEEE Int. Conf. Robotics and Automation (ICRA),
2015.

[37] B. Kehoe, A. Matsukawa, S. Candido, J. Kuffner, and K. Goldberg,
“Cloud-based robot grasping with the google object recognition en-
gine,” in Proc. IEEE Int. Conf. Robotics and Automation (ICRA).
IEEE, 2013, pp. 4263–4270.

[38] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A survey of research
on cloud robotics and automation,” IEEE Transactions on automation
science and engineering, vol. 12, no. 2, pp. 398–409, 2015.

[39] J. Kuffner, “Cloud-enabled robots,” in IEEE-RAW International Con-
ference on Humanoid Robots, 2010.

[40] S. Kumra and C. Kanan, “Robotic grasp detection using deep
convolutional neural networks,” CoRR, vol. abs/1611.08036, 2016.
[Online]. Available: http://arxiv.org/abs/1611.08036

[41] M. Laskey, J. Mahler, Z. McCarthy, F. T. Pokorny, S. Patil, J. van den
Berg, D. Kragic, P. Abbeel, and K. Goldberg, “Multi-armed bandit
models for 2d grasp planning with uncertainty.” in Proc. IEEE Conf.
on Automation Science and Engineering (CASE). IEEE, 2015.

[42] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic
grasps,” Int. Journal of Robotics Research (IJRR), vol. 34, no. 4-5, pp.
705–724, 2015.

[43] B. León, S. Ulbrich, R. Diankov, G. Puche, M. Przybylski, A. Morales,
T. Asfour, S. Moisio, J. Bohg, J. Kuffner, et al., “Opengrasp: a
toolkit for robot grasping simulation,” in Proc. IEEE Int. Conf.
on Simulation, Modeling, and Programming of Autonomous Robots
(SIMPAR). Springer, 2010, pp. 109–120.

[44] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A.
Ojea, and K. Goldberg, “Dex-net 2.0: Deep learning to plan robust
grasps with synthetic point clouds and analytic grasp metrics,” in Proc.
Robotics: Science and Systems (RSS), 2017.

[45] J. Mahler, F. T. Pokorny, B. Hou, M. Roderick, M. Laskey, M. Aubry,
K. Kohlhoff, T. Kröger, J. Kuffner, and K. Goldberg, “Dex-net 1.0:
A cloud-based network of 3d objects for robust grasp planning using
a multi-armed bandit model with correlated rewards,” in Proc. IEEE
Int. Conf. Robotics and Automation (ICRA). IEEE, 2016.

[46] A. T. Miller and P. K. Allen, “Graspit! a versatile simulator for robotic
grasping,” IEEE Robotics & Automation Magazine, vol. 11, no. 4, pp.
110–122, 2004.

[47] L. Pinto and A. Gupta, “Supersizing self-supervision: Learning to
grasp from 50k tries and 700 robot hours,” in Proc. IEEE Int. Conf.
Robotics and Automation (ICRA), 2016.

[48] F. T. Pokorny and D. Kragic, “Classical grasp quality evaluation: New
algorithms and theory,” in Proc. IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS). IEEE, 2013, pp. 3493–3500.

[49] D. Prattichizzo and J. C. Trinkle, “Grasping,” in Springer handbook
of robotics. Springer, 2008, pp. 671–700.

[50] J. Redmon and A. Angelova, “Real-time grasp detection using con-
volutional neural networks,” in Proc. IEEE Int. Conf. Robotics and
Automation (ICRA). IEEE, 2015, pp. 1316–1322.

[51] A. Rodriguez, M. T. Mason, and S. Ferry, “From caging to grasping,”
Int. Journal of Robotics Research (IJRR), p. 0278364912442972, 2012.

[52] D. Seita, F. T. Pokorny, J. Mahler, D. Kragic, M. Franklin, J. Canny,
and K. Goldberg, “Large-scale supervised learning of the grasp robust-
ness of surface patch pairs,” in Proc. IEEE Int. Conf. on Simulation,
Modeling, and Programming of Autonomous Robots (SIMPAR). IEEE,
2016.

[53] N. Tian, M. Matl, J. Mahler, Y. X. Zhou, S. Staszak, C. Correa,
S. Zheng, Q. Li, R. Zhang, and K. Goldberg, “A cloud robot system
using the dexterity network and berkeley robotics and automation
as a service (brass),” in 2017 IEEE International Conference
on Robotics and Automation, ICRA 2017, Singapore, Singapore, May
29 - June 3, 2017, 2017, pp. 1615–1622. [Online]. Available:
https://doi.org/10.1109/ICRA.2017.7989192

[54] E. W. Weisstein. Triangle point picking. From MathWorld–A
Wolfram Web Resource. Last visited 3/14/18. [Online]. Available:
http://mathworld.wolfram.com/TrianglePointPicking.html

[55] J. Weisz and P. K. Allen, “Pose error robust grasping from contact
wrench space metrics,” in Proc. IEEE Int. Conf. Robotics and Au-
tomation (ICRA). IEEE, 2012, pp. 557–562.

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
http://smartdroplet.com/
http://smartdroplet.com/
https://www.emeraldcloudlab.com/about/
https://www.emeraldcloudlab.com/about/
https://www.w3.org/TR/css-flexbox-1/
http://wiki.ros.org/graspit
https://jquery.com/
https://jqueryui.com/
http://pythonhosted.org/pyhull/
https://www.tempoautomation.com/capabilities
https://www.tempoautomation.com/capabilities
https://threejs.org/
https://github.com/mikedh/trimesh
http://arxiv.org/abs/1710.06422
https://spectrum.ieee.org/automaton/robotics/robotics-software/cloud-robotics
https://spectrum.ieee.org/automaton/robotics/robotics-software/cloud-robotics
http://arxiv.org/abs/1611.08036
https://doi.org/10.1109/ICRA.2017.7989192
http://mathworld.wolfram.com/TrianglePointPicking.html

	Introduction
	Related Work
	Problem Statement
	Assumptions

	Dex-Net as a Service (DNaaS) Architecture
	Grasp Computation
	HTTP API
	Web Interface

	Experiments
	Grasp Quality and Gripper Width
	Processing Time Analysis
	Failure Modes
	Usage Data

	Discussion and Future Work
	References

