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Abstract— Control policies for home automation robots can
be learned from human demonstrations, and hierarchical con-
trol has the potential to reduce the required number of demon-
strations. When learning multiple policies for related tasks,
demonstrations can be reused between the tasks to further
reduce the number of demonstrations needed to learn each
new policy. We present HIL-MT, a framework for Multi-Task
Hierarchical Imitation Learning, involving a human teacher, a
networked Toyota HSR robot, and a cloud-based server that
stores demonstrations and trains models. In our experiments,
HIL-MT learns a policy for clearing a table of dishes from
11.2 demonstrations on average. Learning to set the table
requires 19 new demonstrations when training separately, but
only 11.6 new demonstrations when also reusing demonstrations
of clearing the table. HIL-MT learns policies for building 3- and
4-level pyramids of glass cups from 8.2 and 5 demonstrations,
respectively, but reusing the 3-level demonstrations for learning
a 4-level policy only requires 2.7 new demonstrations. These
results suggest that learning hierarchical policies for structured
domestic tasks can reuse existing demonstrations of related
tasks to reduce the need for new demonstrations.

I. INTRODUCTION

Advances in imitation learning (IL) from demonstrations
provided by human teachers kinesthetically or via teleop-
eration, have the potential to expand the set of industrial,
domestic, and agricultural tasks that robots can perform. IL
algorithms take as input a set of demonstrations, and output a
learned model representing the control policy. Such a policy
maps a sequence of robot sensory observations into a se-
quence of robot control actions. As providing demonstrations
by human control of a physical robot can be costly and time-
consuming, we seek to reduce the number of demonstrations
needed to learn control policies.

Hierarchical control policies allow the teacher to provide
more information with each physical demonstration, by an-
notating it with the hierarchical structure of the task, namely
the recursive decomposition of the task into smaller and
smaller sub-tasks [1]–[3]. A short-term policy, called a skill,
can be trained to perform each sub-task in the hierarchy,
and the set of trained skills can then be assembled into a
complete control policy for the task.

Rather than viewing the abundance of robot tasks as a
challenge, Cloud and Fog Robotics view it as an opportu-
nity [4], [5]. Automation tasks may differ in initial condi-
tions, system dynamics (due to variability in both robotic
platforms and their environments), and task success criteria,
but many sets of tasks also share similarities. For example,
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Fig. 1. The Toyota human support robot (HSR) performing two tasks,
setting a table and building a pyramid of glass cups. We use the proposed
HIL-MT framework to learn an autonomous hierarchical control policy
that sets the table (left) from 19 human demonstrations annotated with the
task’s hierarchical structure. Reusing demonstrations of clearing the table
reduces the required number of new demonstrations of setting the table to
11.6. HIL-MT can learn a policy that builds a 5-level pyramid (right) from
35 total demonstrations of 2, 3, and 4 levels, without additional 5-level
demonstrations (zero-shot).

the tasks of clearing and setting a table both require skills
for reaching and grasping dishes. Other aspects of the two
policies, such as deciding where to place dishes, must differ
due to the different success criteria of the tasks. The key
insight in multi-task learning is that successful control for
one task may be informative for other tasks.

We present HIL-MT, a framework for multi-task hierarchi-
cal imitation learning, involving: (1) a human teacher, who
demonstrates each new task on the robot; (2) a networked
Toyota Human Support Robot (HSR), which uploads the
demonstrations to a server during the training phase, and
queries the server for the trained policy during task exe-
cution; and (3) a cloud-based machine-learning-as-a-service
(MLaaS) server, which stores the demonstrations of past
tasks and trains new hierarchical policies. In our experiments,
demonstrations are provided by human teleoperation of the
HSR, in collaboration with Python-programmed skills.

We consider three alternative modes of multi-task imita-
tion learning, training each skill of the new policy from:
(1) only past demonstrations of related tasks; (2) only
demonstrations of the new task; or (3) the joint set of past
and new demonstrations. We attempt to use each one of the
three multi-task modes to learn each skill, and validate it
on a held-out set of demonstrations. The skill is considered



successfully trained if it accurately predicts the decisions
made by the human teacher in the held out demonstrations.

Which of the three multi-task modes requires the fewest
demonstrations to successfully train each skill? We hypoth-
esize that the answer varies among the skills, due to the
relative benefits of each mode. We analyze examples of
these benefits in Section V, and present experimental results
suggesting that simply selecting the same mode for all skills
can be less data efficient than per-skill mode selection.

We evaluate HIL-MT on two multi-task domains, using
the HSR robot augmented with pre-trained vision modules
(detailed in Section V). HIL-MT learns a policy for clearing
a table of dishes from 11.2 demonstrations on average.
Learning to set the table requires 19 new demonstrations
when training separately, but only 11.6 new demonstrations
when also reusing demonstrations of clearing the table. For
the tasks of building pyramids of glass cups of a given
number of levels, HIL-MT learns separate policies for build-
ing 3- and 4-level pyramids from 8.2 and 5 demonstrations,
respectively. Reusing the 3-level demonstrations reduces the
required number of new demonstrations for learning a 4-level
policy to 2.7. These results suggest that learning hierarchical
policies for structured domestic tasks can reuse existing
demonstrations of related tasks to reduce the need for new
demonstrations.

The contributions of this work are:
1) HIL-MT, a multi-task hierarchical imitation learn-

ing framework, involving a computer-assisted human
teacher, a networked robot, and a cloud-based learning
server. An implementation of the server and the robot-
facing client is available at https://github.com/
BerkeleyAutomation/HIL-MT.

2) Experimental data from two multi-task domains on the
Toyota HSR robot, clearing and setting a table (40
demonstrations of each task, each demonstration manip-
ulating between 2 and 6 dishes), and building a pyramid
of glass cups (a total of 35 demonstrations, arranging
a total of 170 cups in 2-, 3-, and 4-level pyramids), in
which our framework successfully learned hierarchical
policies with high data efficiency, and demonstrated the
benefits of multi-task hierarchical learning.

II. RELATED WORK

Imitation learning (IL) has been a popular and success-
ful framework for training control policies from teacher
demonstrations [6]–[10] or from annotation of correct control
during execution of the learner policy [11]–[13]. The policy
is often augmented with a memory state [14] so that it can
take actions that depend on hidden state features that were
revealed in past observations. In contrast, the internal struc-
ture of the teacher policy is rarely considered in IL settings to
explicitly inform the demonstrations or the learning process.

Structure in the control model, and hierarchical control
in particular, can assist in imitation learning [15], [16]
and in multi-task learning [17]–[19]. Many frameworks of
hierarchical control [3], [20]–[24] consider tasks as con-
sisting of simpler sub-tasks, or skills, that need to be per-

Fig. 2. The input–output interface of a skill in a hierarchical policy. In
each step, the skill selects an operation (calling a sub-skill, taking a control
action, or terminating to return to the caller skill) and generates either an
argument for the sub-skill or action, or a return value for the caller. The
input for each skill step is the skill’s own argument (generated once by
the caller and fixed for the skill’s entire execution), a step counter that is
incremented by 1 with each step, and the identifier and return value of the
previous sub-skill or action (except in the first step).

formed in sequence, each skill terminating for the next to
begin. Hierarchical control allows the teacher to make the
hierarchical structure explicit in demonstrations, to give a
more informative teaching signal from which the policy
can be learned with higher data efficiency [1]–[3], [25],
[26]. While hierarchical control policies can be trained from
weaker signals, such as rewards [21], [27]–[29], annotat-
ing demonstrations with the entire execution sequence of
each skill in the hierarchy facilitates more efficient learning
by decomposing the hierarchical imitation learning (HIL)
problem into independent IL of individual skills [1], [3],
[30]. This is particularly important in robot learning, where
annotation of demonstrations can be far less costly and
risky than physical demonstrations, which require expensive
hardware and risk breakage of the robot and of the objects
it manipulates. Compared with reinforcement learning (RL)
from reward signals, where even short-horizon skills require
months or even years of costly and risky interaction with the
environment [31], [32], HIL with annotated demonstrations
has the potential to train longer-horizon policies from few
hours of safer human demonstrations.

In RL and IL, hierarchies exhibit a number of benefits,
including reduction of the computational complexity of long-
horizon planning problems [27], [28], [33], [34], reduction of
the sample complexity in robot imitation learning tasks [35],
better generalization when the initial state has high variabil-
ity [2], [36], [37], and the possibility of skill transfer between
distinct tasks [25], [38].

Several hierarchical frameworks have been proposed [23],
including Hierarchical Abstract Machines [20], the options
framework [21], and MAX-Q [22]. In this work, we build
on the Parametrized Hierarchical Procedures (PHP) frame-
work [3], which in turn builds on Abstract Hidden Markov
Models [27], [35], [39]. We extend the PHP skill interface
of [3] by allowing each skill to accept an argument from its
caller when execution starts, and pass a return value back to
its caller when it terminates (Figure 2).

Earlier works in multi-task learning mostly studied transfer
learning, where previously trained models help solve new
tasks [40]. More recent works study shared learning methods,

https://github.com/BerkeleyAutomation/HIL-MT
https://github.com/BerkeleyAutomation/HIL-MT


where multiple tasks are solved jointly, either by learning
shared representations [41]–[43], shared value functions [44],
[45], or shared policies [18], [46], [47], or by distillation
of multiple existing policies into one [17], [48], [49]. Par-
ticularly relevant to this work are [18], [49], although they
only utilize 2-level hierarchical structures. In contrast to the
meta-learning approach of [18], which requires data for a
large number of tasks, and the distillation approach of [49],
which requires pre-trained value networks for each task, our
approach can reduce sample complexity using only human
demonstrations of two or more related tasks, but requires
these demonstrations to be annotated.

III. PROBLEM STATEMENT

A. Multi-Task Imitation Learning

We model the interface between the robot and its envi-
ronment as a stochastic process of observations ot in space
O and actions at in space A. The observation sequence is
generated by a latent Markov process (POMDP) with state st
in space S , induced by the the initial state distribution pps0q
and the observation and transition distributions ppot|stq and
ppst`1|st, atq. The action sequence is generated by a control
policy π, which upon seeing ot updates the controller’s
internal state and outputs at. The interaction terminates
in state sT when the robot selects the termination action
aT “ H.

In this work, all tasks involve the Toyota HSR robot, so
that the interface xO,Ay is fixed (detailed in Section V).
The latent state space S and its dynamics p will generally
change depending on the objects involved in each task. Each
task Ti “ xSi, pi, Ri, uiy is defined by: (1) the state space
Si; (2) the state dynamics pi; (3) a task success indicator
Rips0:T q, which is 1 on successful execution and 0 on failure;
and (4) a real-vector specification ui of the task, given as
input to the policy. The objective is to learn a policy πi
for task Ti that achieves high success rate, EπirRis « 1,
where the expectation is over the initial state and the system
dynamics (due to noise in the robot’s motion and sensing).

In imitation learning (IL), we assume the availability of a
teacher with policy π˚, and use it to train the control policy
π. A common IL setting is behavior cloning (BC), where the
teacher demonstrates a set of complete traces D by rolling
out π˚ and recording observations and actions. Given D,
BC uses supervised learning to fit a model π to the training
data, such that π would take the same actions as π˚ given
the same observations.

When learning to perform multiple tasks, applying BC
independently to each task would be inefficient, since the
demonstrations Di of task Ti can be informative of pol-
icy πj of task Tj . In this work, we consider the setting
of online multi-task learning, in which learning πi starts
after π1, . . . , πi´1 are fully trained, and D1, . . . ,Di´1 are
available through a cloud-based data-sharing service.

B. Hierarchical Control

We build on the hierarchical control framework of
Parametrized Hierarchical Procedures (PHP) [3], in which

Fig. 3. Hierarchical skill structure of the Clear/Set Table tasks (left) and the
Pyramid tasks (right). Each green block is a skill with the interface shown
in Figure 2. Yellow blocks are HSR control actions, called with arguments
that specify their goals. Execution of the hierarchical policy starts at the
root skill, follows an edge down with each call to a sub-skill, and traces
the edge back up when the sub-skill terminates.

a hierarchical control policy is represented as a set of skills,
where each skill performs a specific behavior by breaking
it down into a sequence of simpler motions, and calling a
sequence of sub-skills to perform these motions.

A hierarchical policy starts by executing a root skill. Then
the skill takes a sequence of operations, each operation being
either: (1) calling another skill as a sub-skill; (2) taking a
robot control action; or (3) terminating and returning to the
caller (the skill that called this skill). This process is a walk
on the controller’s call-graph (Figure 3), where calling a sub-
skill moves along a directed edge, and termination backtracks
through that edge in the opposite direction. When the root
terminates, the task is done and its success is evaluated.

Computer programs are executed in the same way, with
procedures calling other procedures, and a call-stack keeping
track of the active procedures to which we backtrack on
termination. Inspired by this analogy, we extend PHP to
allow skills to pass real-vector arguments to sub-skills and
control actions, and to return real-vector values to the caller
upon termination. As in PHP, we also maintain for each skill
a step counter, and increase it by 1 with every operation (i.e.,
calling a sub-skill or taking an action) that the skill makes.

The input–output interface of a skill is summarized in Fig-
ure 2. A skill is simply a function from its argument,
step counter, and the return value of the previous sub-skill
or action; mapping to its next operation (sub-skill, action,
or termination) and the argument or return value of that
operation. This function can be implemented by code, or
by a learned model.

Finally, we note that the robot’s sensory observations
are not provided directly as input to the skill. Instead, the
observation ot`1 is treated as the return value of action
at. This value can then be processed by each skill, and
only the relevant information propagated up the hierarchy
through return values. This feature is a form of attention
that leverages the structure of the hierarchy. It allows keeping
high-level skills simple by encapsulating low-level perceptual
features in low-level skills, and only returning higher-level
features. In processing perception, the levels of the hierarchy
therefore perform similarly to the layers of a deep network.



IV. HIL-MT FRAMEWORK

Our multi-task hierarchical imitation learning framework,
HIL-MT, consists of: (1) a human teacher providing an-
notated demonstrations in collaboration with programmed
skills; (2) a networked Toyota HSR robot used for demon-
strations; and (3) a cloud-based server that stores training
data, trains skills, and serves trained policies to the robot. In
this section we describe how demonstrations are generated
and how policies are learned.

A. Demonstrating and annotating hierarchical control

Learning a policy for a new task begins with a human ex-
pert identifying a decomposition of the task into a hierarchy
of skills. We start by specifying a set of skills that break
the task down into successively smaller sub-tasks (Figure 3).
For each skill, we then specify the metadata needed by the
framework (see for example Table I): (1) the arguments that
the skill takes when called; (2) the values that the skill returns
when it terminates; (3) the learnable model that implements
the skill; and (4) the set of sub-skills and actions that the
skill can call. The latter forms the edges of a call-graph of
skills (Figure 3), called the sketch of the hierarchical policy.

A human teacher can now demonstrate the task on the
physical robot. The hierarchical decomposition allows the
teacher to annotate the demonstration with the hierarchical
task structure, which improves the data efficiency of the
learning algorithm. An annotated demonstration details the
execution of each skill in the hierarchy (see for example Ta-
ble II): which sub-skills and actions were called, what their
arguments were, when the skill terminated, and what the
return values were.

Annotated demonstrations can be entirely manual. This is
a tedious process, but manageable when only few demonstra-
tions are needed. In this work, we streamlined this process
by coding most of the skills in Python, typically in under 10
lines of code per skill. Our Python infrastructure records the
execution of each skill, i.e. its inputs and outputs. Skills that
involve visual and physical features, such as those mapping
from pixel positions to physical locations, are challenging
to program. Instead, the infrastructure for these skills pauses
the policy execution and waits for a human to teleoperate
the robot. It then records the change in the robot’s pose, and
appended it to the demonstration as a call to the appropriate
control actions, with the recorded arguments, e.g. “Move
Base Rel (difference in base pose)”.

B. Learning Method

HIL-MT is organized around a cloud-based machine-
learning-as-a-service (MLaaS) server, that provides an ap-
plication programming interface (API) for registering new
task metadata, uploading annotated demonstrations, learning
hierarchical policies, and serving learned policies to the robot
for execution. After a task is registered by uploading the
metadata of all its skills and linking to potentially related
tasks, the networked robot uploads to the server each new
demonstration of the task. The server adds the demonstration
to the task’s database, attempts to learn a hierarchical policy,

and notifies the user whether all skills are successfully trained
or more demonstrations are needed.

The learning method follows these steps:
1) Load the set of demonstrations of the new task Dnew

and of all past related tasks Dpast.
2) For each skill s, extract from these demonstration sets

the steps taken by s, respectively Ds
new and Ds

past. Each
datapoint in these sets is given by an input–output pair
pi, oq of the skill step function (Figure 2).

3) Split each set into a training set T s
new and a validation

set Vsnew (and similarly for past). This is repeated
k “ 20 times, with |Vsnew| “ 1

k |D
s
new| for k-fold cross-

validation.
4) Apply a learning algorithm A to learn three skill

models: mpast “ ApT s
pastq, mnew “ ApT s

newq, and
mjoint “ ApT s

past Y T s
newq.

5) For each model mj , compute the prediction of each
datapoint ô “ mpiq in the corresponding validation
set Vsj . Accept the first model mj for which the
RMSEpo, ôq ă α, where RMSE is the root mean square
error over all k validation sets, and α is the required
accuracy.

This process repeats for each new demonstration, until all
skills have a successfully validated model, and can be
assembled into a hierarchical policy.

The server is implemented with a RESTful API in the
flask Python library, using a SQLAlchemy backend over
SQLite. The code is available at https://github.com/
BerkeleyAutomation/HIL-MT.

V. EXPERIMENTS

A. Experiment setup
We experiment with HIL-MT in two multi-task object

manipulation domains on the Toyota Human Support Robot
(HSR): clearing and setting a table, and building a pyramid of
glass cups. Each experiment proceeds according to the pro-
tocol detailed in Section IV-B. Our hypothesis is that reusing
demonstrations of related tasks reduces the required number
of new demonstrations in some skills, but hinders learning
other skills; therefore per-skill selection of the multi-task
mode may help reduce the total number of demonstrations
needed for training the hierarchical policy.

We defined an observation–action interface xO,Ay for the
HSR, with 4 actions that accept real-vector arguments:
‚ Move Arm (lift, arm flex, arm roll, wrist flex, wrist roll)
‚ Move Gripper (0=open; 1=close)
‚ Move Base Abs (X, Y, heading)
‚ Move Base Rel (∆X, ∆Y, rotation)

Move Base Abs and Move Base Rel use the robot’s internal
motion planner to reach a goal position and heading in the
robot’s initial and (respectively) current coordinate frame.
There is no observation after these four actions. For each
domain, we augmented the HSR with an active-perception
action; see details for each domain below. The observation
returned after this action is a real vector of domain-relevant
features, extracted by a pre-trained module from an image
captured by the robot’s right head RGB camera.
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B. Experiment 1: Clearing and setting a table

Domain specification. This domain consists of two tasks,
Clear Table and Set Table (Figure 1). In each of the tasks,
the robot starts facing a standard IKEA table (height=45cm).
The robot’s initial position and heading relative to the
table is drawn at random from a Gaussian with mean and
standard deviation (30˘2cm, 0˘2cm, 0˘2˝). On the table
are scattered between 2 and 6 dishes, in arbitrary quantity and
positions determined by the human experimenter (the same
author conducted all of our experiments). The dishes are of
two types, plates and cups, and of three colors, blue, green,
and red. To the robot’s left, in a fixed position relative to the
first table, is a second table. In the Clear Table task, we place
a large bin on the second table, and the success criterion is
to place all dishes in the bin in any order. In the Set Table
task, the dishes must be moved in a specific order of colors
(blue, green, red), with the plate of that color moved first to
a specific position on the left table (respectively (0, 20cm),
(30cm, 20cm), and (15cm, 0) in the robot’s initial coordinate
frame), and the matching cup placed centered atop the plate.

The active-perception action Locate Dish is given the type
(plate/cup/any) and color (blue/green/red/any) of an object to
locate, and returns the type, color, and pixel position of the
nearest matching object, if any were found. We programmed
a vision module that: (1) downsizes the captured image
to 920x690 with 4x4 bicubic interpolation; (2) feeds the
image into the YOLO object detection algorithm [50] to find
candidate bounding boxes, and filters them by the detected
class (allowed classes: bowl, cup, frisbee, and orange);
(3) classifies the dish type of each detected object by the
pixel coordinates of its bounding box, using a classifier that
we pre-trained on 264 labeled images; (4) extracts the dish
color as the maximum channel of the mean RGB color
in the bounding box; (5) returns the center of the lowest
(i.e., physically nearest) bounding box matching the action’s
argument.

Policy metadata. We designed a hierarchical decomposi-
tion into sub-tasks that is shared by both Clear Table and Set
Table policies. Table I details the metadata of each of the 8
skills in the hierarchy. The possible arguments:
‚ Task ID is 0 for Clear Table and 1 for Set Table.
‚ Dish # is a counter of the dishes moved so far.
‚ Dish type and color are described above.
‚ Segment # is a counter of the motion segments towards

the dish; due to large errors in the HSR’s motion over
large distances, the teacher policy reaches for the dish in
two segments: a longer rough approach, and a shorter,
more accurate corrective motion.

‚ Pixel X and Y of the center of the detected bounding
box, as described above.

The possible models:
‚ A quadratic model extracts quadratic features (the prod-

uct of each pair of input variables) and performs logistic
regression on these features to decide on the sub-skill /
action / termination; and quadratic regression to decide
on the argument / return value.

TABLE I
METADATA FOR SKILLS OF THE CLEAR/SET TABLE POLICIES

Skill name Arguments Returns Model Sub-skills

Move Dishes Task ID – quadratic Move Dish
Move Home

Move Dish Task ID Success quadratic Pick Dish
Dish # or table Place Dish

Pick Dish Dish Type Dish Type quadratic Move to Dish
Dish Color Dish Color Grasp Dish

Place Dish
Task ID

– quadratic
Move Arm

Dish Type Move Base Abs
Dish Color Move Home

Move to Dish
Dish Type Dish Type

Dish Color
timed
quadratic

Locate Dish
Move to LocDish Color

Segment #

Grasp Dish Dish Type Dish Type quadratic Move Gripper
Dish Color Dish Color Move Arm

Move Home – – quadratic
Move Gripper
Move Arm
Move Base Abs

Move to Loc

Dish Type

quadratic Move Base RelDish Color Dish Type
Pixel X Dish Color
Pixel Y

TABLE II
ANNOTATED DEMONSTRATION OF SET TABLE, FIRST 11 SKILL STEPS

Active skill Step Prev. sub-skill Operation
(arguments) cnt. (return values) (arguments)

Move Dishes (1) 0 – Move Home ()
Move Home () 0 – Move Gripper (0)

Move Home () 1 Move Gripper () Move Base Abs
(0cm,0cm,0˝)

Move Home () 2 Move Base Abs () Move Arm
(45cm,0˝,0˝,´90˝,´90˝)

Move Home () 3 Move Arm () H ()
Move Dishes (1) 1 Move Home () Move Dish (1,0)
Move Dish (1,0) 0 – Pick Dish (plate,blue)

Pick Dish (plate,blue) 0 – Move to Dish (plate,blue,0)
Move to Dish 0 – Locate Dish (plate,blue)(plate,blue,0)
Move to Dish 1 Locate Dish Move to Location
(plate,blue,0) (plate,blue,589.5,361) (plate,blue,589.5,361)

Move to Location 0 – Move Base Rel
(plate,blue,589.5,361) (1.2cm,´30cm,0.1˝)

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

‚ A table model is a simple look-up table for inputs seen
in training; the most common output is used for unseen
inputs.

‚ A selection between two models (here, quadratic or
table) is performed by internal 20-fold cross-validation
on the training set.

‚ A timed model learns a different model for each value
of the step counter, to more easily learn a fixed sequence
of sub-skills.

Regressors are optimized using the sklearn Python library.
The accuracy required for successful validation of each of the
skills is perfect prediction of the operation, and RMSE less
than ε “ 10´6 of the arguments; except for Move to Location
which requires 1cm, 1cm, and 1˝ accuracy respectively in
its first, second, and third arguments (interpreted as X, Y
translation and rotation when calling Move Base Rel).

Results. Each task was demonstrated 40 times (see for
example Table II). The demonstrations were then uploaded to
the server in a random order, until validation was successful.



TABLE III
# OF DEMONSTRATIONS TO LEARN SET TABLE AFTER CLEAR TABLE

Dclear Dset Dclear YDset Per-skill selection
Failed 19˘0.3 Failed 11.6˘0.25

Clear Table was successfully trained by 11.2 demonstrations
on average.

Set Table was then trained with each of the three multi-task
modes, and with a per-skill selection of the mode that trains
it from the fewest demonstrations (Table III). Training all
skills with only past data Dclear failed, because in the Place
Dish skill, which puts a dish down in a position that depends
on its type and color, the two tasks disagree on the correct
position. Training with joint data Dclear YDset also failed,
because a successful Place Dish skill for both tasks requires
a higher-dimensional model than quadratic. Attempts to learn
it with higher-dimensional polynomial regression failed due
to insufficient data.

Training Set Table independently with only new data Dset
was successful after 19 demonstrations on average. Allowing
per-skill mode selection improved this to 11.6 demonstra-
tions, because data from the Clear Table task reduced the new
data requirements of the Move to Location skill, which has
high sample complexity due to noise in its demonstrations.
In detailed analysis of the multi-task learning modes that
required the fewest demonstrations for each skill, we found
that transfer from only past data was strictly best in Pick
Dish, Grasp Dish, and Move Home, but these were also
easily learnable in other modes and not a limiting factor.

Successful task execution was also evaluated physically
on the HSR robot, and matched the validation results. Each
trained policy was executed 10 times. Depending on lighting,
object detection fails on about 5% of the calls to the active-
perception action. Policies where some skills did not pass
validation always failed their execution. Validated policies
succeeded in every execution to clear or set all successfully
detected dishes.

C. Experiment 2: Pyramid of glass cups

Domain specification. This domain consists of the tasks
Pyramid<n>, in which the goal is to build a pyramid of glass
cups of height n between 2 and 5 on a table (Figure 1). These
tasks are very related to each other, but considered distinct
because each has a different success criterion. The same two
tables as in the previous domain were used, with the same
initial position distribution relative to the robot. To keep the
experiment focused on building the pyramid, cups were fed
manually into the robot’s gripper in a fixed position on one
table, and two AR markers were taped to the wall behind the
other table were the pyramid is built, 30cm above the table
and 50cm apart.

The active-perception action Locate Markers takes no ar-
guments, and returns the pixel positions of 4 corners of each
of the two markers (a vector of 16 integers). We programmed
a module that: (1) passes the RGB image through a binary
threshold at 12.5% intensity; (2) feeds the black–white result

TABLE IV
METADATA FOR SKILLS OF THE PYRAMID POLICIES

Skill name Arguments Returns Model Sub-skills

Pyramid – timed
linear

Move Home
Height Build Pyramid

End Task

Move Home – – timed Move Gripper
linear Move Arm

Build Pyramid Height – linear Build Level

End Task – – timed Move Armlinear

Build Level Level # – linear Move CupLevel size

Move Cup Level # – timed Pick Cup
linear Place Cup

Pick Cup – – timed
linear

Move Gripper
Move Arm
Move Base Rel

Place Cup – timed
linear

Move to Pos
Level # Put Cup

Move Base Rel

Move to Pos
Level #

– timed
linear

Locate Markers
Move Base RelSegment #

Direction

Put Cup Level # – timed Move Gripper
linear Move Arm

into the ar_markers Python library, which returns the 8 pixel
positions.

Policy metadata. We designed a hierarchical decomposi-
tion into sub-tasks that is shared by all Pyramid<n> tasks.
Table IV details the metadata of each of the 10 skills in the
hierarchy. The possible arguments:
‚ Height is the number of levels in the pyramid.
‚ Level # is the index of the level currently being built.
‚ Level size is the number of cups in the current level.
‚ Segment # is the same as for Clear/Set Table.
‚ Direction is 0 for motion towards the table, 1 for away

from the table.
The possible models are similar to the Clear/Set Table
policies, except that only linear features of the input are used.
The required validation accuracy for generated arguments
is ε “ 10´6, except for the Move to Position skill which
requires 1cm accuracy in translation and 1˝ in rotation.

Results. The tasks Pyramid2, Pyramid3, and Pyramid4
were demonstrated 20, 10, and 5 times, respectively, so
that a total of at least 50 cups were placed for each task.
The demonstrations were then uploaded to the server in a
random order, until validation was successful. Policies were
successfully trained with an average of 16.5, 8.2, and 5
demonstrations, respectively.

Training Pyramid4 with access to the demonstrations of
Pyramid3 reduced the number of new Pyramid4 demon-
strations to 2.7. The challenging skill is Move to Position,
which converts marker pixel positions (returned from Locate
Markers) to relative physical translation and rotation. Due
to human error in demonstrating this skill, it requires many
demonstrations on which to average out the error, and reusing
past demonstrations reduces the need for new ones. In this
case we find that learning all skills from joint data performs
as well as per-skill mode selection.



Similarly to Clear/Set Table, successful task execution was
also evaluated physically on the HSR robot, and matched the
validation results. In addition, we trained the skills from all
demonstrations of Pyramid2–4, and tested the hierarchical
policy on Pyramid5. Despite not seeing any demonstrations
of this task (zero-shot), the policy generalized to successfully
build a higher pyramid than seen in training. The reason is
that our hierarchical decomposition ensures linear generaliza-
tion of each skill in the hierarchy, although the entire policy
is highly non-linear.

VI. CONCLUSION

We presented HIL-MT, a multi-task hierarchical imitation
learning framework that allows training hierarchical robot
control policies from human demonstrations that are an-
notated with hierarchical skill structure. Reusing demon-
strations from related tasks can reduce the need for new
demonstrations, but not equally for all skills: some skills
benefit from the larger amount of joint data, while others are
hurt by conflicting demonstrations. In these cases, per-skill
selection of the multi-task mode further reduces the total
number of demonstrations.

We experimented with HIL-MT in two multi-task do-
mestic object manipulation domains, in which a Toyota
HSR robot clears and sets a table, and builds a pyramid
of glass cups. HIL-MT was successful in training inter-
esting tasks with high data efficiency, and even achieved
zero-shot generalization to unseen tasks. HIL-MT brings
together multiple factors that have the potential to reduce the
number of demonstrations: hierarchical imitation learning,
annotated demonstrations, multi-task learning, and finally
per-skill mode selection.

In future work, we will explore how the hierarchical ab-
straction of higher-level skills can allow sharing training data
and trained skill models between distinct robotic platforms
that have different form factors.
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