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ABSTRACT

Even and odd functions of time - symmetric functions -
have been used to simplify the control of nmning robots
and have been observed in the body and leg motion of
nmning anunals. This paper explores the relationship be-
tween symmetric motion of the body and symmetric use

of the legs in three planar models. The algebra of sym-
metric functions is applied to the equations of motion to

show that symmetric leg actuation is required for sym-
metric body motion in the single-support case, but not in
the double-support case unless additional constraints are
imposed.

1. Introduction

There are many- patterns of motion a .legged system
can use to propel itself forward in steady-state travel.
One interesting class of such patterns is the symmetric
motions. When motion of the body through space is de-

scribed by appropriate even and odd functions of time,
the body experiences zero average acceleration in the for-
ward, vertical, and angular directions. These kinds of
symmetric motions have been used to control thebe'hav-

ior of legged robots (Raibert 1986a), and data from an-
imals suggest that they sometimes nm with symmetric

motion (Hildebrand 1966, 1976; Raibert 1986b, 1986c).

In this paper we explore the necessity of symmet-
ric motion for simple legged models. The models assume

massless legs, mechanically symmetric bodies, and motion
restricted to the sagittal plane. The main finding is that
in order to nm with symmetric body motion, symmetric
actuation is required for the single-support model but not
for the double-support model. If additional constraints

are imposed, such as requiring the legs to act like springs
and the hip forces to have the same direction, then sym-
metric actuation is also required in the double-support
case.
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2. Review of Symmetry

Motivation for symmetry in running comes from con-

sidering the requirements for steady-state. In steady-
state, the net acceleration of. the syst~m over an. entire
stride is zero. There is no forward accelerati()n during
the flight phase if we assume negligible air resistance, so
the acceleration during stance must integrate to zero

! Izdt=O.
stride

(1)

where Ix is the forward force acting on the body. If
the time origin is defined so that t =0 nudway through
the stance phase and if Iz is an odd function of time,
fx(t) ==-fx(-t), then (1) is satisfied""':theintegral of an
odd function over symmetric limits is zero.

~

Figure 1: Symmetric running. The left-most drawing shows
the system at the point of touchdown; the cen~er drawing
shows the system halfway through stance, and the rightmost
drawing shows the system just before liftoff. H the origin,
x = t = 0, is defined to be at halfway point, the tra,jectory
of the body's center of mass can be described by symmetric
functions of time.
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For a legged system like the one shown in Fig. 1, a
forward force that varies as an odd function of time can be

achieved by arranging for the body and legs to move with

patterns of even and odd symmetry. Symmetric body
motion is given by

x(t) =-x( -t)
z(t) = z(-t)

4>(t) = -4>(-t)

(2)

where x, z, and 4>specify the forward, vertical, and angu-
lar position of the body in the sagittal plane. Symmetric
leg motion is given by

8i(t) =-8j(-t)

ri(t) = rj(-t)
(3)

and symmetric actuation is given by

Ti(t) =-Tj( -t)

Ii(t) = Ij( -t).
(4)

where 8 is the angle of the leg with respect to the vertical,
r is the length of the leg, T is hip torque, and I is axial
leg thrust. Subscripts identify the legs. For single-support
i = j = 1. For double-support i = 1,j = 2.

One can understand symmetry by considering the
instant during stance when the foot is directly under the
center of mass and the vertical component of the body's
velocity is zero (see t = 0 in Fig.1). H the mechanical
system has left-right symmetry at this instant, then the
expected behavior going forward in time is the same as

the past behavior going backward in time, except for a
left-right reversal. The equivalence is formulated in the
symmetry equations (2). More details of symmetry the-
ory, including the case of multiple support can be found
in (Raibert 1986c).

In general, symmetric body motion is only sufficient

for steady-state behavior-many patterns of body and leg
motion can produce zero net acceleration. of the system
throughout a stride. In this paper we assume that the

body moves with the symmetries given in (2) and examine
the implications for motion of the legs.

3. Single-Support Model
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J4> = - l1'dsin(8 - 4»+ -d cos(8 - 4» + Tr

(5)

(6)

(7)

Figure 2. Single-support model: one leg on the ground dur-
ing stance. Position and orientation of the body's center of
mass is (:.:,%,4». The offset between the hip and the center
of mass is d. Distance from the center of mass to the foot
is :.:/. The leg has length r and makes an angle 8 with the
vertical. Axia11eg force f. and hip torque T can be resolved

into. Cartesian components f., and f..

The single-support case is illustrated in Fig. 2. A
massless leg of length r is connected by a hinge joint to
a rigid planar body of mass m and moment-of-inertia J.

The distance between the hip and the body's center of
mass is d. The body is free to move in the plane. The
pitch angle of the body 4>is defined so that the center of

mass is aligned directly above the hip when 4>= O. The
forward displacement of the body x is defined for each

stance phase so that x(t =0) =O. The angle of the leg
with respectto the verticalis 8. .
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We focus on the stance interval, which begins at the

instant the foot first touches the ground ttd and ends at
the instant the foot last touches the ground tZo' During
this interval the leg can apply axial force, fret) 2 0 and
the hip can exert arbitrary continuous torque T(t) between
the body and the leg. We assume that friction between
the foot and the Hoor is suH1cient to prevent the foot from
slipping during the stance phase. The equations of motion

are found in (5- 7).

3.1. Leg Symmetry in Single-Support

Assertion. If body motion is symmetric in single-
support, then leg motion must be symmetric.

Proof: Since the restrictions on body m()tion are ex-
pressed in Cartesian coordinates, we first resolve body
moment (7) into Cartesian components.

J ~(t) =- fx(t)z(t) - fz(t) (x1(0) - x(t)) (8)

where

fx
z
fz

xI
the center

is the horizontal force by the leg,
is the vertical position of the body,
is the vertical force exerted by the leg,
is the horizontal distance from
of mass to the foot, and
is the horizontal position of the body.X

The second component of body moment is due to the
vertical force fz acting through a horizontal moment arm
which is the horizontal displacement of the foot from the

center of mass, XI(t) = x1(0) - x(t). Because the foot is
fixed with respect to the ground during stance, the length
of the moment arm is a function of x(t), the distance from
the origin to the body's center of mass. Rearranging (8)

to solve for x1(0)

xI(O) = (-I/fz)(J~+fxz) +x. (9)

Differentiating (2), we note that body moment J~, hori-
zontal force fx = mx, and position x must be odd func-

tions of time and that vertical force fz = rr¥+ ~and
position z are even functions.

The algebra of symmetric functions, summarized in
the Appendix, can be used to show that the right hand.
side of equation (9) is odd during stance. The left hand

side is constant. Thus x 1(0) =O. The only way to satisfy
the symmetry constraints and the equations of motion is

for the foot to be located directly under the center of mass.
when t =O.

With the foot constrained to be at the origin, leg
angle and leg length depend only on body position

0 (x - dsintP)tan =
(z - dcostP)

r =V(x - dsin tP)2+ (z - dcostP)2

(10)

Applying the rules in the Appendix to (10), 0 must be
odd and r even. This establishes that leg motion must

be symmetric. Writing actuator forces in terms of body
forces and leg angle 0

T/r = - fx cosO+ fz sin 0

fr = fx sin 0+ fz cosO.
(11)

Substituting odd 0 and even r in (11) shows that r is odd
and fr is even.

We next considljI the case where two legs provide
support simultaneously during the stance phase. For the
case of double-support, we find that leg motion does not
have to be symmetric in order for a legged system to travel
with symmetric body motion.

4. Double-Support

2

~d + d -\
:_-::::_-::f:+

14 Xf1
~

Xf2

..
f

. 0 Tl 0 f
. 0 1"2 8mx = r 1 sm 1 - - cos 1 + r 2 sm 2 - - cos 2,

, rl ' r2
..

f 0 Tl' 0 f 0 1"2' 0mz = r 1cos 1 + - sm 1 + r 2cos 2 + - sm 2 - mg,
, rl ' r2

J ~ = fr,1(d cos 61 - Ze sin 61) + ;~ ( d sin 61 + ZeCOS61 + rl)

- Ir,2 (d cos 62 + Ze sin 62) + ;~ ( -d sin 62 + Ze cos 62 + r2) .
(12)

Figure 3. Double-support model: two legs on the ground at
a time. Position of the center of mass of the body is [z, z,
4>].The horizontal distance between each hip and the center
of mass is d. The vertical offset of the body's center of mll8ll
from the centerof the hips is z., and 5, = 0, - 4>is the angle
between leg i and the line connecting the hips. Other leg
variables are defined as in Fig.!.
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Consider the model shown in Fig. 3. The center

of mass is equidistant from the two hips. The legs and

hips are like those of the previous model and motion is
again planar. Equations of motion for the system during
double-support are in (12).

The equations of motion for double-support in Carte-
sian coordinates are:

mx = Ix,1+ Ix,2 (13)
mz= Iz,1+ Iz,2- mg (14)

J~ = -(lx,1 + Ix,2)%- Iz,1xI,1 - Iz,2xI,2, (15)

where

I x,i = Ir,i cos 8i + t. sin 8i
is the horizontal force
exerted by leg i,
is the vertical force

exerted leg i,
is the vertical position
of the body's c.o.m.,
is the horizontal
distance from the com
to foot i,

I z,i = Ir,i sin 8i - t. cos 8i

z

x/,i = XI,i(O)- x(t)

4.1. Asymmetric Leg Motion in Double-Support

To preserve symmetric body motion in double-

support, asymmetries in leg"and hip actuation can com-
pensate for asymmetries in leg motion. We start by find-
ing vertical leg forces that satisfy the requirement for odd
body torque.

We can tewrite the definition of symmetric body mo-

ment, J~(t) = -J~( -t), in terms of Cartesian forces (15)
and simplify by taking advantage of symmetries in the
vertical and horizontal forces. Applying body symmetry

to (13) and (14),

Ix,1(t)+ Ix,2(t) = -lx,1(-t) - Ix,2(-t),

Iz,1(t) + Iz,2(t) = Iz,1(-t) + Iz,2(..,..t).

(16)

(17)

Cancelling terms and rearranging, the equation for sym-
metric body moment can be solved for the vertical leg

forces,

Iz,l(t) = -Alz,1(-t) + (1- A)lz,2(-t)

Iz,2(t) = Alz,2(-t) + (1+ A)lz,1(-t),

(18)

.(19)

where

A = x 1,1 (0) + x f,2(0)
x 1,1 (0) - x 1,2(0) .

A is a measure of the asymmetry in position of the
feet. Since the feet do not move during stance, A is con-
stant over the stance period. When the feet are symmet-
rically placed about the origin, A = O. The degenerate

case where x1,1(0) = x1,2(0) occu~s when the feet are
placed together at the origin, in which case the system
behaves as though it were in single-support. IT vertical

leg forces obey (18) and (19), symmetric body motion
can be produced without symmetric leg motion.

,
4.2. Leg Symmetry under Additional Constraints

In double-support there are enough control vari-
ables to allow symmetric body motion without symmetric

placement of the feet. However, if additional constraints

are put on the model these extra control freedoms are lost.
For instance, assume that the legs are springy in the axial
direction so they cannot exert arbitrary axial force. They
are modelled as springs in ~ompressioJl, with their axial

force related to length by Ii = k/ri' We assume that both
legs have the same spring constant, k = k1 = k2' Fur-
ther assume that the control system restricts hip torques
so that they do not fight each other during the support
phase. This prevents the system from doing isometric
exercises with itself during running. With the addition
of these constraints, symmetric body motion once again

implies symmetric leg motion in double-support.

Assertion. ITbody motion is symmetric in double-

support, with legs such that Ii = k/ri and sgn(Jx,1) =

sgn(Jx,2), then leg motion must be symmetric.

Proof: The fact that both legs have the same stiffness
is used to establish that the feet must be placed symmet-
rically about the origin in order to generate symmetric
body moment }Vhent =O.

.
Expressing axial leg force in terms of Cartesian body

forces (11) when t = 0,

li(O) = Ix,i(O) sin 8i(0) + Iz,i(O) cos 8i(0). (20)

. Eliminate the first term by observing that the total hori-
zontal forcemust be zero as required by the assumption of

body symmetry, 0 = Ix(O) = Ix,1(0) + Ix,2(0). Because
the legs do not oppose each other,sgn(Jx,l) = sgn(!z,2),
SQIz 1(0) = Ix 2(0) = O. Thus axial leg force is solelya., ,
function of vertical force and leg angle,

/i(0) = Iz i(O) cos 8i(0)., (21)

.
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Rearrange (21) noting that cos(Ji = zi/ri' and ap-
ply the assumption that each leg acts like a spring k =
Ii (O)ri(0). Both legs have the same stiffness, k, so the
product of axial leg force and leg length is constant and

equal for both legs. The legs are related by

Iz,I(O)Zl(O) =Iz,2(0)Z2(0). (22J

Body attitude is an odd function, so when t = 0 the
body must be horizontal and both hips have the same
height. Thus vertical forces from each leg must be equal,

Iz,l(O) = Iz,2(0). Odd body moment must equal zero at
t = o. Applyingbody symmetryto (15)

0 = -lz,l(O)xI,l(O) - Iz,2(O)xI,2(0). (23)

Because vertical forces 3.!eequal as established above, the
only way to maintain zero bod:; moment when t =0 is for
the feet to be symmetrically placed about the midpoint
of stance.

XI,l(O)= -XI,2(0). (24)
Since the feet cannot move with respect to the ground

during stance, leg positions are a function of body posi-
tion and must have reciprocatmg symmetry throughout

stance, 81(t) = -82(-t), and r1(t) = r2(-t). Because
axial leg force is proportional to leg length, axial leg force

must be an even function, Ir,l(t) = Ir,2(-t).

It remains to show that hip torques must exhibit re-
ciprocating. symmetry. Recall that (18) with symmetric
leg positions reduces to reciprocating symmetry, so verti-
calleg forces are related by Iz l(t) = Iz 2(-t). Convert-, ,
ing back to machine coordinates using (11), and eliminat-

ing horizontal forces, I:z;,i'

ri = .ri(J (Iz i - lri COS(Ji).
SJD. , ,.

(25)

It follows that 1"l(t) = -r2(-t). Thus leg motion must
be symmetric for the constrained model to move with
symmetric body motion.

5. Conclusion

Symmetric patterns of body and leg motion are inter-

esting because. they help simplify the control of running
machines, and because they may help us to understand
the behavior of running animals. This paper explores

the degree to which leg motion must be symmetric, given
symmetric body motion, for a simple class of planar mod-
els with massless legs. We have shown that symmetric

actuation is not always necessary to provide symmetric
body motion.

For the single-support case, symmetric ):>odymotion
requires symmetric motion and actuation of the leg. In
double-support, motion of the leg mayor may not be sym-
metric. Symmetric leg motion becomes a necessity ODce
again when the legs are constrained to act like springs
and hips do not generate opposing ground forces.

This result n.:>,ybe understood in terms of the de-

grees of freedom available to each model. The single-
support model has two actuators controlling motion in
three dimensions. The double-support model has four
actuators controlling the same motion. The redundancy
allows asymmetry in actuation to compensate for asym-
metry in leg motion. Whe~ the actuators of the double-
support model are constrained by to act like springs and
the hip torques do not oppose, the extra degrees of free-
dom are lost - symmetric actuation is necessary to pro-
duce symmetric motion.
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8. Appendix: Symmetric Functions

Symmetric functions are either odd, f(t) = - f(-t),
or even, f(t) = f(-t). The followingare properties of
symmetric functions:

.Any function can be written as the sum of an odd
and an even part,

f(t) = ef(t)+ °f(t)

where

ef(t) =1/2 (f(t) + f( -t) ),

°f(t) = 1/2(f(t) - f(-t~).

. Coustants are even, except f(t) = 0, which may be
considered both odd and even.

@ The cosine of an even or odd function is even. The
sine of an even function is even. The sine of an odd
function is odd.

. The derivative of an even function is odd. The deriva-
tive of an odd function is even.

. All functions can be categorizedas either Odd, Even,
Mixed, or Zero. Addition and multiplication obey
the followingrutes:

0+0 -+ °IZ
O+E-+M
O+M-+EIM
O+Z-+O
E+E -+ EIZ
E+M-+°IM
E+Z-+E
M + M -+ ZjEIOIM
M+Z-+M
Z+Z-+Z

O.O-+E
O.E-+O
O.M-+M
O.Z-+Z
E.E-+E
E.M-+M
E.Z-+Z
M . M -+EIOjM.
M.Z-+Z
Z.Z-+Z

. Reciprocatingsymmetry describes pairs of functions
that together form either an odd reciprocating pair,
fI(t) = -h(-t), or an even reciprocating pair,
fI (t) = h( -t).
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