
Int. J Human~Computer Studies (1997) 46, 773~ 788

FixtureNet: interactive computer-aided design
via the World Wide Web

RICK WAGNER AND GIUSEPPE CASTANOTIO

CS Department, University of Southern California, CA, USA . email: rwagner@usc.edu

KEN GoLDBERG

IEOR Department, University of California at Berkeley, CA, USA.
email: goldberg@tinguely. ieor. berkeley. edu

The Internet offers tremendous potential for rapid development of mechanical products
to meet global competition. In the past several years, a variety of geometric algorithms
have been developed to evaluate computer-aided design (CAD) models with respect to
manufacturing properties such as feedability, fixturability, assemblability, etc. Unfortu­
nately, most of these algorithms are tailored to a particular CAD system and format and
so have not been widely tested by industry. The World Wide Web may offer a solution: its
simple interface language offers a de facto standard for the exchange of geometric data
with industry and research groups. In this paper, we describe a feasibility study for such
an interactive system, which can be tested directly at http : / /teamster.usc.edu/
fixture / © 1997 Academic Press Limited

1. Motivation

The Internet has launched a revolution in the means of worldwide data transfer and
resource sharing. T his has fueled the emergence of ma ny commercial services and
products that are marketed and accessed over the Net. World Wide Web (WWW)
technology also offers potential for the design and manufacture of new products as
suggested in sites such as:

http : //acorn.eit .com/acorn-info.html
http : //www . autodesk . com/products/datapub/rnechlibr/rnechlib .htrn

Digital communication over the Internet offers advantages in terms of speed, efficiency
and a utomation. New geometric algorithms for design, simulation and manufacture have
been developed a nd reported in the research literature. Unfortunately, the impact of
these advances on the manufacturing community has been limited despite a well­
documented need for improved communication during product development. At the
same time, researchers rarely have access to each others' algorithms as implementations
are difficult to port from one platform to another.

The WWW may offer a solution as it provides a standard that works with different
hardware platforms and with different software data standards. However, the design of
interactive computer-aided design CAD for the WWW requires systems that have the
following characteristics.

773

1071-5819/97/060773 + I6$25.00/0/hc960107 © 1997 Academic Press Limited

774 R. WAGNER ET AL.

• Minimize data transfer.
• Can be understood solely from on-line documentation.
• Synchronize service requests from multiple simultaneous users.

In this paper we describe one model for interactive CAD via the WWW that meets
these criteria and can benefit both industry and research. As a feasibility study, we draw
on our recent study of fixtures. A fixture is a device for holding parts during machining,
inspection or assembly. FixtureNet is an interactive fixture design service on the WWW
that uses the Brost- Goldberg (Brost & Goldberg, 1994) algorithm to consider systemat­
ically all possible modular fixtures for a given part: http : I I teamster . usc . edu /
fixture / .

2 . Related work

Commercially available "modular fixturing" systems typically include a square lattice of
tapped and doweled holes with precise spacing and an assortment of precision locating
and clamping elements that can be rigidly attached to the lattice using hardened
bushings or expanding mandrels. Ordinarily, human expertise is required to synthesize
a suitable arrangement of these elements to hold a given part (Hoffman, 1987). Besides
being time-consuming, if the set of alternatives is not systematically explored, the
designer may fail to find an acceptable fixture or may settle upon a sub-optimal fixture.
Our fixture design algorithm often generates counterintuitive solutions that may be
overlooked by even an experienced machinist, much as chess machines can play moves
that look naive at fi rst glance but lead the experienced chess player to explore new
variations.

Work related to ours includes user-interface design, software testing and CAD. The
WWW provides an unprecedented opportunity for a large number of researchers to test
experimental computer programs. Often the designers of a research algorithm cannot
anticipate the kinds of inputs to which a variety of users in related disciplines might
subject the program. The automated design of fixtures is a challenging research area. The
earliest work in this area is related to the necessary conditions for holding p'lts (work
pieces) securely.

2.1. FORM CLOSURE

Reuleaux (1963) first described form closure which captures the intuitive requirement of
a fixture: a part is held in form closure if it can resist arbitrary forces and torques.
Lakshminarayana (1978) showed that seven frictionless contacts are necessary to hold
a three-dimensional part in form closure; Mishra, Schwartz and Sharir (1987) showed
that seven frictionless contacts are also sufficient.

Goldman and Tucker (1956), in a purely mathematical paper on linear algebra.
described the necessary and sufficient conditions for positively spanning an n-dimen­
sional Euclidean space, which coincidentally describes the necessary and sufficient
conditions for form closure. Wagner, Zhuang and Goldberg (1995) make use of a simpli­
fication of that proof in validating an intuitive form-closure test.

FIXTURENET 775

::!.2. MODULAR FIXT URI NG

Hoffman's (1987) text provides an overview of conventional practice with modular
fixtures. Research on modular fixturing includes basic questions about the existence of
solutions (Zhuang, Goldberg & Wong, 1994), practical extensions to three-dimensions
(Wagner, Zhuang & Goldberg, 1995) and the problem of fixture loading (Yu & Gold­
berg, 1995). We are a lso studying how the model can be extended to curved parts
(Wallack & Canny, 1994).

Asada and By (1985) describe an automatic fixture reconfiguration system using
a robot manipulator and a CAD system to provide a systematic method for designing
fixtures. They also provide an analytic test for form closure and suggest how contact
points might be applied, but they did not consider how a restricted set of modular
elements could be used to reach those points. They call fixture synthesis "designing
a fixture layout", which is in keeping with the mechanical drawing practice of calling
a drawing tha t gives the locations of parts a "layout" drawing. They develop analytic
tools for designing fi xture layouts using a set of ha rdware primitives implemented at
MIT. They also considered loading and unloading of their fixtures.

Wolter and Trinkle (1994) describe a non-modular fixture synthesis that uses analysis
of frictionless stability in "A utomatic Selection of Fixture Points for Frictionless Assem­
blies". T his is an impressive paper because it applies to both two- and three-dimensional
fixtures, but it is "non-modular" because the fixture points selected are from a continuum
in space and not from a discrete set of locations. In their problem, frictionless elements of
assemblies need to be held together by a fixture. They analyse fixtures for "stability" in
terms of virtual work. T heir fixture synthesis algorithm uses a "shotgun" approach: they
scatter fixels about the assembly and solve a linear program to minimize contact forces at
the :fixels by having fixe! loca tion on the part boundary be a system variable. Fixels that
have reaction forces of zero get discarded. T his is an effective approach, but it is not
guaranteed to find an optimal solution. Also, it is not applicable to modular fixturing
hardware sets as currently available.

Brost and Goldberg (1994) have demonstrated a complete algorithm for synthesizing
two-dimensional fix tures that forms the basis of Fix tureNet. Since this paper, other
papers regarding planar modular fixturing have appeared, including "Planning for
Modular and Hybrid F ixtures" by Wallack and Canny (1994), which describes a vise-like
fixture with four cylindrical loca tors. Clamping motion is provided by a translating
lattice, and they give a complete algorithm to evaluate all possible configurations.

Until recently there have been few papers describing modular fixture synthesis algo­
r ithms in three-dimensions. However, Wagner et at. (1995) have described a new modular
strut ha rdware set and a complete algorithm for automated fixture synthesis with these
primitives, which is the subject of an extension to FixtureNet in Section 6.

Recently, P once, Burdick and Rimon (1995) have described "immobilizing" grasps,
and have proposed their possible application in fix turing in both two and three dimen­
sions. Immobilizing fixtures require only three contact points in the plane and four
contacts in three dimensions. The practical application of immobilizing fixtures is
somewhat limited, however, in that when they are evaluated in terms of the quality
metrics generally applied to form closure fixtures, they will be ranked below fixtures with
form closu.re. This is because an immobilizing fixture generates very large reactions
(assuming no fr iction and rigid parts and fixture elements) with the application of

776 R. WAGNER ET AL.

a moment load. Immobilizing fixtures may be a very attractive alternative for ligh t-duty
applications with friction.

2.3. RELATED WEB SITES

Related web sites include the following. All of these can be reached from our FixtureNet
"Related Links" page.

• University of Minnesota's Geometry Center has a great collection of interactive
geometric algorithms:

http://www.geom . umn . edu : 80/apps/

• David Eppstein's Discrete and Computational Geometry page:

http: I / www . ics . uci . edu / ~ eppstein / geom . html

• Jeff Erickson has been maintaining a small collection of computational geometry
World Wide Web pages:

http: //www . cs .duke .edu/ ~ jeffe/ compgeom/

• Prof Antonio Bicchi's Non-Holonomic M otion Planning Site at University of Pisa
allows users to define obstacles for path planning and even sets up a standard for
others to submit algorithms for comparison:

http : //www . piaggio . ccii.unipi.it /prova/motion . html

• The AutomationNET ! In December 1996, PC Computing as one of the best engineering
web sites:

http://www.AutomationNET . com/

3. The modular fixturing algorithm

Brost and Goldberg (1995) considered a class of modular fix tures that prevent a part
from translating and rotating in the plane, based on three round locators, each centered
on a lattice point, and one translating clamp that must be attached to the la ttice via
a pair of unit-spaced holes, thus allowing contact at a variable distance along the
principal axes of the lattice (see Figure 1). Brost and Goldberg gave an algorithm that
accepts part geometry as input and synthesizes the possibly empty set of all fixture
designs in this class that achieve form closure for the given part. If the part has n edges
and its maximal diameter (in units of lattice spacing) is d, the algorithm runs in time
O(n5d 5

). T he paper describes extensive experiments run on a Lisp machine. This is the
first fixture synthesis algorithm that is complete in the sense that it is guaranteed to find
an admissible fixture if one exists.

3.1. QUALITY METRIC

The Fix tureNet a lgorithm is complete in the sense that it will find all solutions to
a fixturing problem if any exist and report failure if no solutions exist. FixtureNet often

FIXTURENET

• • • • • •••• • •a• •
~(~·· "
(9 •.

·~ ~:1
/ . . .~ .. • •• • ••

• • • • • •

777

FIGURE l. Modular fix turing system. Left: three circular fix ture elements (fixels) and a sliding clamp are shown
on a regular lattice of mounting holes. The L-shaped bracket is a typical industrial part. Center: a geometric

fixture found by FixtureN eL. Right the corresponding fixture and L-shaped bracket.

finds a large number of solutions. The user generally cares only about a subset of the best
solutions. The issue of measuring the quality of a fixture is a research topic in its own
right. FixtureN et provides two very different quality metrics, a default J11etric that
minimizes part interface reactions under a "general" load and an optional metric that
minimizes locator interface reactions for a fixed-clamp load. The "best" fixtures selected
under these two metrics are usually quite different sets.

4. FixturefVetinterface

Recently, we developed a WWW server to provide modular fixture design alternatives to
engineering users around the world. We refer to this service as FixtureNet. The first
version is based on the Brost- Goldberg algorithm as described above; subsequent
versions will incorporate the three-dimensional extensions described in Wagner et al.
(1995).

We invite readers to test the software by going to the FixtureNet home page:

http:/ / teamster.usc.edu / fixture /

The home page is shown in Figure 2 and includes a graphical introduction to the
algorithm, many examples, and links to related work and papers. It also includes an
on-line manual detailing how to use the Fix tureNet service (and documentation on the
FixtureNet implementation itself, including system architecture, etc.).

When the user clicks on the FIXTURE SERVICE link, he or she is given an option for
the input data style and then encounters the appropriate form to describe the user's
polygonal part, including a graphical interface to permit users to point and click to define
parts (using a·n "ISMAP" that is a feature of the HTML language) (Figure 3). All
processing is done on the servers at the USC campus, not on the client machine as with

778

FixtureNet

Modular Fixture Design for Polygonal Parts

Abstract

~~CastanctJo
1/u:k Wapr

Proj.Kfln Goldlxrg

FlldUreNet enables anyone Wllh a Web browser ro cocnect to a ser<er and submtt a
polygonal part specdicanon for a 6xiUnng solution. WWW servers proVIde a mulb-me<ha
lllltlface that spans all ma.Jor platforms Thousands Slles have been set up m the past year

R. WAG ER ET AL.

The user an.swers the quenes and the server solves the problem, outputbJlg a hst of posSible
solubons and a picture of any solubon requestrd The user can also submtt an unage of a part
C¢< whtch he wants to create a lixlure and FIXIUreNet W!l1 also return the problem soluuoo
and fixture nnages

FIGURE 2. The FixwreNel home page.

Java applications. The data is then submitted by clicking on a SUBMIT button and the
server responds with a line drawing of the user's part (Figure 4).

After pressing CONTINUE, the system returns with an estimate of the approximate
time required to run the algorithm for the user's part (Figure 5). The time estimate
is computed by sampling the server's current CPU processing power (a function of the
current load) and evaluating the complexity of the computation by analysing the part
size and number of edges. The algorithm currently runs on a 25 MHz 486 machine
with limited (4 Mbyte) memory and can require several minutes to compute a set of
solutions:!· One issue is that the system currently permits only one user at a time; hence
users must queue and long run times can become a problem (see Section 7). The HTML
server needs to be responsive to the client browser requests to avoid browser time-out, so
the server sends back a place holder (teaser), an im portant innovation in this project.

t If the estimated time is over 7 mins, the user is encouraged to select another part.

-

FlXTURENET 779

Close Polygon lind submit pllrt design!~

FIGURE 3. The user may use the mouse to click vertex points to draw a new part. Here the hook-shaped pari is
nearly completed.

After the estimated time, the user presses the CONTINUE button and the server either
asks for more time (with an appropriate estimate), or returns images of the user's part in
each of the "best" four solutions (Figure 6) (modular fixture configurations) ranked on
the basis of a quality metric related to the fixture's ability to resist a combination of forces
in the. plane of the fixture and moments about a normal to the lattice plane.

The user can also request other solutions and is given an ID number so tha t he or she
can view the solutions any time within 24 h (after which the solutions are deleted and
must be regenerated).

5. Implementation

5.1. ARCHITECTURE

The Fix tureNet system architecture is shown in Figure 7 and is also illustrated on-line.
FixtureNet involves two machines connected via an Ethernet local area network (LAN).

780 R. WAGNER ET AL.

!!elp

This is the drawing of Your Input Polygonal Pa:rt on a regular lauice lx!jore the

FixtureNet &rvit:e.

:J rwo.gner:Service request acknowledgedJ

Click just one tinu! on the CONTINUE btaton to know the computation lime.

CONTINUE ..

FIGU RE 4. The input part is shown in relation to the fixel grid (lattice).

The LAN is in turn connected via the USC gateway to the Internet. Machine A (host
T easer in Figure 8) runs the Brost- Goldberg algorithm. It is a dedicated 486DX 25 M Hz
PC [industry standard architecture (ISA)] running the Microsoft Windows 3.1 environ­
ment on MS-DOS. Machine B (host T eamster in Figure 9) is a WWW server and uses
custom cgi-bin routines to send requests to the fix ture server running on Machine A.
Machine B is a 90 MHz Pentium ™ PC (ISA, industry standard architecture) running the
Linux operating system. Machine A communicates with B via EthernetTM using the
TCP/IP protocol.

The user accessses the Teamster HTTP server (a Linux client with respect to the fixture
server on Teaser) via the Internet (with Netscape or some other WWW browser
application). The ability of the user to describe the part to be fixtured by drawing with
the mouse is a convenient fea ture.t The mechanism behind image maps is straightfor­
ward: the image that we wish to use (in our case a square where the user can draw his

t But for serious use with real parts we emphasize that tbe user can submit a descriptive file via FTP.

'

FIXTURENET

- ~--- --~---~~--

YOUR REQUEST WILL BE READY IN:

3.9 1lti1uaes.. Sorting 460 jixtllres, please wait.

I CON11NU(1
(ENO SEAVlCE

FIGURE 5. Time estimate generation considers current CPU load on the host machine.

781

part) consists of an array of picture elements (pixels) and the coordinates that define these
points are determined by the local operating system and recorded by the browser
application when the user clicks his mouse. When the user selects a point, its coordinates
are passed to a drawing program (written in the C language). The coordinates are stored
for use when the part will be submitted to FixtureNet. The user can also enter the part
vertex coordinates manually through the keyboard, prepare and send (by FTP) a tile
listing of the coordinates which the server can read or can change and submit default
inputt provided in input text boxes.

We used the Unix ™ Bourne shell script language to build our gateway scripts. These
scripts embody a powerful feature of web browser and server interaction: they enable the
users to interact with the web document.

A gateway script is a program that is run on a web server activated by input from
a browser. lt is usually a link between the server and some other program running on the
system: they are also called CGI (common gateway interface) scripts. The gateway scripts
are called by the server based on information from the browser. The URL (uniform
resource locator) points to a gateway script in the same way that it points to any other

t Several simple sample parts, including a square, a pentagon and a star, are provided for those wishing for
a quick-trial of FixtureNet.

782

YOUR REQUEST IS READY!

VIEW SOlUTIONS

ENOSERVIC£

FirtureNet found
460

fixtures for your part.

R. WAGNER ET AL.

•

FIGURE 6. If more than zero fix tures are found for the part, FixtureN et offers to display the best four.

HTML page on a server; when the server receives the request, it notes that the URL points
to a script (based on the file location, usually the cgi-bin directory) and executes that script.

The script performs some action based on the input, in our case, simply to call
a correspondent C program. Then the script formats its result in a manner that the web
server can understand. The web server receives the result from the script and passes it
back to the browser, which formats and displays it for the user. Fix tureNet uses 13
different gateway scripts and 13 correspondent C programs. Each script is a web server
interface to call a C program binary.

When the part is submitted, Fix tureNet parses the input in accordance with the input
format specification (described for the user on the "explanation") page. If an error is
found, a message is returned to the user, otherwise FixtureNet opens network commun­
ication with the fixture server on Machine A (Teaser) and sends the formatted input part.

After the Linux client sends the fixture server the data describing a polygonal part, the
fixture server initiates the fixture design algorithm by spawning a fixture synthesis
process which estimates run time based on part size and grid pitch.t The estimate is

t T he grid pitch is the inverse of the distance between holes in the fixture plate. For example, a plate with
holes spaced 2 in apart has a grid pitch of one-half(holes per inch), while if there were ! in between holes, the
pitch would be two. The hardware has a maximum grid pitch, but by ignoring every other hole, we can reduce
the virtual grid pitch by half, reducing computational complexity.

f

FIXTURENET 783

• • +

T.h.z.rd Solut..1on Fourth Solution

F IGURE 7. The four best solutions (fixture configurations) for the hook-shaped part. The defau lt quality metric
is formulated to resist several generic combinations of forces and moments.

returned to the Linux client, which formats it into an HTML page and returns it to the
user.

When the fixture synthesis program completes the design algorithm, it communicates
the data via Windows dynamic data exchange (ODE) to the fixture server which relays it
to the Linux client in the form of textual descriptions of solutions. Each solution includes
the pose (position and orientation in the plane) of the user's part, the position of three
locators on the lattice and the position and offset for a clamp such that the part is held in
form closure.

The Linux client then runs a custom graphics routine to generate (CompuServe's)
graphic interchange format (.gif) images of the part in each of the best four solutions.

Communication via Berkeley sockets is the key to building a cross-platform WWW
service of this kind. We used the Windows Socket application programming interface

784

to Internet

+ + +

+ + +

+ +

+ +

+ +

+ +

+ +

+ +

+ + +

Unix
Host: teamster

HTMLscript -r-
HTIP server I

Pentium 486

R. WAGNER ET AL.

MS Windows
Host: teaser

[Fixture synthesizerl

tooE!

I Fixrure server I

Socket connection

Ethernet LAN

FIGURE 8. The FixtureNet architecture.

+ + +

+ + +

F IGURE 9. A typical part (left) submitted by a user with the drawing input feature, shown in its optimal fixture
and an atypical part (right). The part on the right is not a valid part because it has a self-intersecting edge.
Submitted parts like this are rare because users intuitively know that parts cannot have this configuration.

FixtureNet, however, computes fixtures for invalid parts.

(API), a subset of Berkeley sockets. For rapid development, we implemented the algo­
rithm in Visual Basic using a Windows Socket custom control [a precompiled MS
Windows dynamic link library (DLL)] from Distinct Corporation.

There are a number of architectures that can be used for communication with sockets,
and we experimented with several of them before finally settling on using a single client
socket in the Linux client and a server socket in the fixture server. We used a 7-bit ASCII

FIXTURE ET 785

string to pass information through the socket connection formatted with an 8-digit
service request identifier and a 3-digit-type code.

The Linux client initiates a fixture service request with a socket connect request and an
initial fixture request message (code 001) that includes the part data (number of vertices
and x-y coordinates of each vertex) and the desired grid pitch (coarse, medium or fine).
When the fixture server receives the request, it responds with a "request acknowledged"
string, and then spawns an instance of the fixture synthesis program which then
generates a time estimate for the job based on the current CPU load and the part
parameters. When the Linux client requests job status, the fixture server then relays the
fixture synthesis program time estimate and state to the client. While multiple fixture
synthesis program instances can be run simultaneously, the throughput of the system will
not be increased by doing so. FixtureN et can be easily extended by adding additional
server machines.

5.2. USER STATISTICS AND FEEDBACK

FixtureNet was first operational and publicly available in July of 1995. Some problems
were identified at that time and remedied in August. Incremental improvements were
incorporated through November, and usage statistics were compiled starting 16
December 1995. FixtureNet has been publicly available continuously since then. From
16 December 1995 to 31 March 1996, the FixtureNet usage statistics are as given in
Table 1.

In many cases (35, 25%), users jump to another page and do not return to request to
view the solutions. These solutions are computed, but are not delivered and not captured
into the "sets delivered" statistics. A typical run time for a fixture computation is about
a minute. The "square" example part takes 4 s.

The "user friendliness" of the input interface seems to have a strong influence on the
types of requests submitted. The easiest way to submit a part is to use the drawing
interface in which the user clicks the vertices of the part using his mouse on an image
representation of the part. Most requests were submitted using the part drawing feature.
Keyoard input is significantly more difficult. The user must compute the vertices of
a part himself and submit them via keyboard entry. The "canned" parts fo r demonstra­
tion are counted as "keyboard" input and, if these were not available, it is not likely that
the keyboard input count would be as high as it is. FTP file submission is by far the most

T ABLE 1
FixtureN et statistics

FixtureN et statistics

Requests of FixtureNet service input (keyboard)
Requests of FixtureNet service input (FTP file)
Requests of Fix tureNet service input (drawing)
Solution sets delivered
Total fixture configurations computed

Number

149
0

281
287

19731

786 R. WAGNER ET AL.

.. .. + + + + + + +

+ + + + + + + +

+ + + + + + + + +

+ + + +

+ + + + + + + +

+ + .. + + +

+ + + + + + + + + +

+ + + + + ,.. + + + + +

+ + + + + + + + + + +

+ + + + + + !+ + + + + +

+ + + + + + + + + + + +

+ + + + + + + + + .. + +

FIGURE 10. This user-submitted part (left) was drawn in reverse order (clockwise). As a result, Fi;'CtureNet
interpreted the part as a hole in a plate and located the fixturing elements accordingly (on the interior of the
polygon). The user learned rapidly, as shown by his subsequent submittal (right), drawn in the correct order.

difficult option, and exactly zero people chose to submit parts in this manner. We can
hardly blame them. This option requires the user to compute the vertices of the part,
store them in a prescribed file format, connect to the site via FTP and send the file. The
user must then record an interaction identification number, and request the solution at
a later time by submitting the ID number.

User feedback was generally enthusiastic and positive. Some samples are as follows.

• "This is really cool. I wish more researchers would dare to have their work mass­
tested."

• "It is very nice drawing the polygon with the mouse!"
• "Nice with interactive WWW-services. You can do a very good CAL (computer-aided

learning) package this way."

As is frequently the case with software applications, users did not always read all the
instructions before jumping in. One feature of our fix turing algorithm is that if the part
shape is drawn in a clockwise ordering of vertices, the shape is treated as negative (a bole
in a plate, e.g.) and fixtured as such. There are two ordering possibilities for drawing
parts, and several users, choosing the wrong one for their purposes, reported our
hole-fixturing feature as a bug, indicating that they had not read all the instructions.
Some of the parts submitted by users are shown in Figures 9 and 10.

6. Discussion

We do not claim that FixtureNet is ready for practical use by industrial designers.
FixtureNet is a feasibility study for how the Internet can be used as an interactive
resource for design and manufacturing analysis. We have demonstrated how geometric
part descriptions can be sent over the Internet and how the WWW can provide remote
execution of geometric algorithms and graphical display of results. Much remains to be
done.

FIXTURENET 787

FixtureNet also suggests a model for sha ring software that is not used frequently.
Rather than owning a user license and copy of the software, users can send data and
receive results, with payment based on usage. For designers of algorithms, the Internet
provides access to an enormous community of tinkerers who will be more than happy to
discover flaws in an algorithm. The Internet is also a great way to disseminate research
results to academic colleagues, industrial users and ultimately to the taxpayers who
support the work directly or indirectly.

7. Future work

Since FixtureNet was developed in the summer of 1995, WWW software has improved
dramatically. The introduction of client-side processing languages such as Java will
allow us to replace the current graphical input method which requires a new image to be
generated at the server and transmitted to the client after each vertex is clicked in. The
new input method uses a Java appleton the client side that is by far faster and gives more
flexibility, such as the ability to edit the part locally. The resulting geometry will be
transmitted to the server, which will compute the set of fixtures and return them to the
Java client for display. The Java client could also allow users to apply forces interactively
(graphically with the mouse) and view reaction fo rces. We expect this new versiOn,
FixtureNet II, to be available in Spring 1997.

We thank Steven G entner and Jeff Wiegley (gradua te students at USC) for their generous
assistance with the details of the WWW, Linux, sockets a nd .gif images. Steven was instrumental in
getting over some initial ro ugh spots and it was with J eff's continued prodding that we arrived a t
a satisfactory socket communication architecture. We also thank George Bekey and Ari Requicha
(Professors a t USC) for their advice and discussions on modular fixturing.

This work was supported in part by the Nationa l Science Foundation under Award DDM-
9215362 (Strategic Ma nufacturing Ini tiative) and by NSF Young Investigator Award IRI-9457523,
~nd by a grant from Cu-Co, Inc., a vendor of modular fixture systems. Part of this research was
performed while Goldberg was at the University of Southern California.

References

ASADA, H. & BY, A. B. (1985). Kinematic analysis of work part fix turing for flexible assembly with
automatically reconfigurable fixtures. IEEE Journal of Robotics and Automation, RA-1.

BROST, R. & GOLDBERG, K . (1995). A complete algorithm for synthesizing modular fixtures for
polygonal parts. International Conference on Robotics and Automation, IEEE, May, 1994.

ENGEL, F. L. & HAAKMA, R. (1993). Expectations and feedback in user-system communication.
International Journal of Man- Machine Studies, 39, 427- 452.

GOLDMAN, A. J. & TUCKER, A. W. (1956). Polyhedral Convex Cones. Princeton, NJ: Princeton
U niversity Press.

HOFFMAN, E. G. (1987). M odular Fix turing. Lake Geneva, WI: Manufacturing Technology Press.
LAKSHMINARAYANA, K. (1978). T he mechanics of form closure. Technica l Report 78-DET-32,

ASME.
MISHRA, B., SCHWARTZ, J. J. & SHARIR, M. (1987). On the existence and synthesis of multifinger

positive grips. Algorirhmica, 2, 641- 658
Po CE, J., BURDICK, J. & RI MO• . E. (1995). Computing the immobilizing three-finger grasps of

planar objects. Draft.

788 R. WAGNER ET AL.

REULEAUX, F. (1963). The K inematics of M achinery. New York: Macmillan, 1876 (Republished by
New York: Dover, 1963).

WAGNER, R., ZHUANG, Y. & GOLDBERG, K. (1995). Fixturing faceted parts wi th seven modular
struts. International Symposium on Automation and Task Planning, IEEE.

WALLACK, A. S. & CANNY, J. F. (1994). Planning for modular and hybrid fixtures. International
Coriference on Robotics and Automation, IEEE.

WALLACK, A. S. (1995). Algorithms and techniques for manufacturing. Ph.D. Dissertation.
WOLTER, J. D. & TRINKLE, J. C. (1994). Automatic selection of fixture points for frictionless

assemblies. I EEE Transactions on Robotics and Automation.
Yu, K. & GOLDBERG, K. (1995). Loading planar fixtures in the presence of uncertainty. I nterna­

tional Symposium on Assembly and Task Planning, ISATP Proceedings, August.
ZHUANG, Y., G OLDBERG, K. & WONG, Y. C. (1994) On the existence of modular fixtures. IEEE

International Conference on Robotics and Automation, pp. 543- 549. San Diego, CA.

