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Abstract— Rapid and reliable robot grasping for a diverse set
of objects has applications from warehouse automation to home
de-cluttering. One promising approach is to learn deep policies
from synthetic training datasets of point clouds, grasps, and
rewards sampled using analytic models with stochastic noise
models for domain randomization. In this paper, we explore
how the distribution of synthetic training examples affects the
rate and reliability of the learned robot policy. We propose
a synthetic data sampling distribution that combines grasps
sampled from the policy action set with guiding samples from
a robust grasping supervisor that has full state knowledge. We
use this to train a robot policy based on a fully convolutional
network architecture that evaluates millions of grasp candidates
in 4-DOF (3D position and planar orientation). Physical robot
experiments suggest that a policy based on Fully Convolutional
Grasp Quality CNNs (FC-GQ-CNNs) can plan grasps in 0.625s,
considering 5000x more grasps than our prior policy based on
iterative grasp sampling and evaluation. This computational
efficiency improves rate and reliability, achieving 296 mean
picks per hour (MPPH) compared to 250 MPPH for iterative
policies. Sensitivity experiments explore the effect of supervisor
guidance level and granularity of the policy action space. Code,
datasets, videos, and supplementary material can be found at
http://berkeleyautomation.github.io/fcgqcnn.

I. INTRODUCTION

Robots must be able to rapidly and reliably plan grasps
for a wide variety of objects under inherent uncertainty in
sensing, physics, and control. One approach is to compute
grasps for a set of known 3D objects using analytic mod-
els and to plan grasps online by matching sensor data to
known objects. However, this requires a perception system
that can recognize object instances, making it difficult to
scale to many novel objects. An alternative approach is
to use machine learning to train a robot policy to predict
the probability of success for candidate grasps based on
sensor data such as images or point clouds. Recent results
suggest that learned robot policies can generalize to a wide
variety of novel objects on a physical robot. Learning-based
grasp planning approaches require a data collection policy
for collecting training examples. Empirical methods collect
training data from human labeling [16], [25], [38], dataset ag-
gregation from self-supervision [18], [28], or reinforcement
learning [12]. However, these dataset collection approaches
may be time-consuming and prone to mislabeled examples.

An alternative is to rapidly generate massive synthetic
training datasets using analytic metrics and structured do-
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Fig. 1: Grasp action distributions for generating synthetic data to train robust
grasping policies. (Top Left) 3D antipodal grasps sampled from object
models (used by Dex-Net 2.0 [21]). (Top Middle) 2D antipodal grasps
sampled from depth images. (Top Right) The proposed on-policy distribution
where grasp actions are sampled from a 4-DOF dense discretization of
actions based on a depth image and segmask. (Bottom) Performance in
simulation on a singulated set of 10 objects with varying geometries of the
FC-GQ-CNN policy trained on actions sampled from the off-policy APD-
3D and APD-2D distributions and the on-policy FC-GQ-CNN distribution
with supervisor guidance. The guided on-policy approach is able to reach
performance close to that of a supervisor with full state knowledge.

main randomization for robust transfer from simulation to
reality [11], [20], [34], [35]. The synthetic data distribution
can be tuned to the expected sensor, robot, and environment.
However, many systems sample training grasps from a fixed
distribution different from the set of actions that the policy
must evaluate at runtime. For example, several approaches
sample training grasp actions that are constrained to known
3D object surfaces while the learned policy samples grasps
from observations [20], [21]. This may lead to reduced
performance due to covariate shift [15], [32]. This raises the
question: Is it possible to develop faster and more reliable
grasping policies by modifying the data collection policy
used for sampling synthetic training examples?

In this paper, we propose a dataset distribution that
samples grasps from synthetic observations to approximate
the distribution that the policy will evaluate with a learned
quality function at runtime, as illustrated in Fig. 1. We refer
to this as the on-policy distribution and distinguish this from



prior approaches that train and evaluate on two different
distributions. To guide data collection towards successful
grasps, the distribution samples a mixture of grasps from
the action space of the robot policy and from an algorithmic
robust grasping supervisor that leverages the known geome-
try and pose of 3D objects to index pre-computed grasps. We
use this to train an efficient single-shot grasping policy based
on Fully Convolutional Networks, an architecture introduced
in computer vision for image segmentation [19] that has re-
cently shown promising results for learning grasping policies
from human labeled datasets [25], [38]. We develop a novel
variant of this architecture that evaluates grasps in 4-DOF
(3D position and planar orientation) by parallelizing standard
Grasp Quality Convolutional Neural Networks (GQ-CNNs).
The architecture can rapidly produce dense and reliable grasp
predictions by evaluating millions of grasps in parallel.
This paper contributes:

1) A novel dataset collection policy for sampling syn-
thetic training datasets that reflects the distribution of
actions that the learned policy evaluates at runtime
utilizing guidance from a robust supervisor.

2) Experimental data from a physical robot comparing the
performance of this approach to current state-of-the-art
approaches for training a policy based on a 4-DOF (3D
position and gripper orientation) Fully Convolutional
Grasp Quality CNN (FC-GQ-CNN).

3) Experimental data in simulation exploring the sensitiv-
ity of policy performance to supervisor guidance level
and action space granularity.

Physical robot experiments suggest that a policy based on
Fully Convolutional Grasp Quality CNNs (FC-GQ-CNNs)
can plan grasps in 0.625s, considering 5000x more grasps
than a policy based on iterative grasp sampling and evalua-
tion. This computational efficiency improves rate and relia-
bility, achieving 296 mean picks per hour (MPPH) compared
to 250 MPPH for iterative policies.

II. RELATED WORK

A. Learning for Grasp Planning

The goal of grasp planning is to find a gripper config-
uration that maximizes a quality metric. Initial approaches
to the problem utilized analytic approaches (see [29] for a
survey). However, the difficulty in using these approaches to
generalize to novel objects has lead to the use of empirical
and hybrid approaches, the latter of which utilizes massive
synthetic training datasets generated with analytic models.

Combined with advances in deep learning, these ap-
proaches utilize policies that query a neural network to locate
the highest quality grasp. These fall into two categories.
Discriminative approaches utilize a neural network to rank
grasps based on a quality metric and optimization techniques
to search for high quality grasp candidates [21], [34]. Gener-
ative approaches instead directly generate a grasp set given
sensor data, and may use heuristics to select the optimal
grasp from this set. One popular approach is to regress to
grasp coordinates in image space [16], [30].

These deep approaches have been trained on mas-
sive datasets of human-labeled [13], [16], [30], self-
supervised [8], [18], [26], [28] or synthetic [3], [6], [11],
[21], [36] grasps, images, and quality labels. A popular
human-labeled dataset is the Cornell Grasping Dataset de-
veloped by Lenz et al. [16], which consists of 1k RGB-D
images labeled with grasps parametrized by oriented bound-
ing boxes. This has been extensively used to train CNN-
based models for singulated objects [14], [25], [30]. Self-
supervised datasets have been collected from grasp attempts
on a physical robot. Pinto and Gupta [28] collected over 40k
grasp attempts on a Baxter to train a CNN, whereas Levine
et al. [18] expanded this approach even further by collecting
over 800k datapoints using numerous robot arms. Synthetic
datasets such as Dex-Net [21] have been used to train state-
of-the-art hybrid approaches. We explore the effect of the
distribution of synthetic training examples on the rate and
reliability of learned policies.

B. Dense Predictions and Fully Convolutional Networks

Recent approaches to grasping have leveraged dense eval-
uations of the entire grasp action space instead of selectively
choosing grasps to evaluate based on heuristics or iterative
optimization techniques [21]. These approaches utilize deep
neural networks to rapidly evaluate millions of grasps by
offloading computation to specialized GPU hardware. Johns
et al. [11] evaluated a dense set of output poses and applied
a function to this output to make it robust to gripper pose
uncertainty. However, the standard CNN architecture they
chose limited them to a pre-determined image size and
required the final layer of the network to scale with this
image size, which can become large and computationally
expensive.

The need for dense evaluations with smaller networks
that scale to arbitrary image sizes led to the development
of Fully Convolutional Networks (FCNs) in the field of
computer vision for tasks requiring pixel-wise discrimination
such as image segmentation [19], object detection [4], and
visual tracking [37]. Several successful empirical grasping
approaches have taken advantage of FCNs. Zeng et al. [38]
trained FCNs on hundreds of human-labeled images to
predict the probability of success for four grasp primitive
actions. Morrison et al. [25] used FCNs to increase grasp
planning frequency to 50Hz, using a discriminative head to
predict the probability of grasp success and separate network
heads to generate the grasp angle and gripper width.

The approaches used by [11], [38], [25] all evaluate
grasps based on 3-DOF (planar position and orientation). We
extend this approach to 4-DOF, including the grasp height
in evaluation.

C. Training Distribution

Learning-based approaches to grasp planning require a
large labeled dataset of training data, and the distribution of
the training data may affect the performance of the learned
policy. Prior approaches have used a distribution based on
human labels [16], [38], random exploration [18], [28], or the



set of antipodal grasps on 3D mesh surfaces [21]. The fields
of IL [32] and RL [33] have considered how to optimize the
distribution of training data to improve learning efficiency
and to reduce covariate shift. In IL, approaches are either
on-policy, using supervisor labels on actions taken by the
current learned policy [32], or off-policy [15], using actions
taken by the supervisor. In RL, a common approach is to
sample actions using epsilon greedy, which mixes random
actions from the action set with actions preferred by the
current trained policy [33]. Supervised actor-critic [31] ap-
proaches to RL, such as Actor-Mimic [27], use a supervisor
policy to guide the distribution of actions taken to train a
policy. Several methods incorporate similarity to supervisor
actions into the RL reward function, such as Deep Learning
from Demonstrations [10] and Guided Policy Search [17].
In comparison, we consider data collection for supervised
learning and use a training dataset distribution based on a
robust grasping supervisor that uses a database of 3D object
models to index grasps.

III. PROBLEM STATEMENT

We consider the problem of learning a robot grasping
policy for a wide variety of novel objects as measured by
Mean Picks Per Hour (MPPH) [23], the number of objects
that are successfully grasped per hour. This depends on rate,
or frequency of grasp planning and execution, and reliability,
or percentage of successful grasps.

The goal is for a robot to iteratively grasp and transport a
single object from a bin to a receptacle based on point clouds
from a depth camera. The state x includes the geometry,
pose, and material properties of each object. The robot
acquires a point cloud observation y represented as a depth
image. Then the robot uses a grasp policy πθ with parameters
θ that takes as input an observation y and returns a grasp
u = πθ(y). A grasp is specified as the 3D position and planar
orientation of a parallel-jaw gripper. Upon executing the
grasp, the robot receives a binary reward R(x,u) ∈ {0, 1}
based on whether or not an object is successfully grasped
and transported to the receptacle. The grasp attempt has a
duration consisting of the combined sensing time ts, grasp
computation time (GCT) tc, and grasp execution time te, in
fraction of hours, which we assume to be constant.

The objective is MPPH:

max
θ∈Θ

E
[
R(x, πθ(y))

ts + tc + te

]
= max

θ∈Θ
E [R(x, πθ(y))]

The expectation is taken with respect to the grasping en-
vironment, a distribution over possible states, observations,
rewards, and actions based on the policy:

p(R,x,y,u | θ) = π(u | y, θ)︸ ︷︷ ︸
policy

p(R | x,u)︸ ︷︷ ︸
reward

p(y | x)︸ ︷︷ ︸
observation

p(x)︸︷︷︸
state

MPPH can be increased by improving rate, reliability, or
both. In this paper we focus on improving rate by reducing
GCT. Since MPPH depends on hardware, we individually
measure GCT in our experiments to control for network,
sensor and arm-movement speed.

IV. LEARNING OBJECTIVE

We use supervised learning to train a policy based on a
quality function Qθ that predicts the probability of success
for a given grasp using a deep neural network with parame-
ters θ [2], [16], [11], [21]. The policy maximizes this function
over all grasps in the action space U(y) to select a grasp:

πθ(x) = argmax
u∈U(y)

Qθ(y,u) (IV.1)

To train the network, we minimize the cross-entropy loss
between the predicted grasp quality and reward:

min
θ∈Θ

E [L(R,Qθ(y,u))]

Here the expectation is taken with respect to a dataset
distribution defined by a dataset collection policy τ that may
be independent of the policy parameters:

p(R,x,y,u | θ) = τ(u | x,y)︸ ︷︷ ︸
policy

p(R | x,u)︸ ︷︷ ︸
reward

p(y | x)︸ ︷︷ ︸
observation

p(x)︸︷︷︸
state

The distribution τ is designed to reflect a diverse set of
actions that may be evaluated by the learned quality function
at runtime. Note that this is distinct from the distribution of
actions planned by the policy, as the quality function must
evaluate a diverse set of grasp candidates and discard poor
actions. In prior work, τ is sampled off-policy by collecting
data from a human supervisor [25], [38], the current best
policy [18], [28], or 3D antipodal grasps [21].

V. ON-POLICY DATASET SYNTHESIS

The hybrid approach to learning robust grasping policies
samples training datasets from a synthetic dataset distribution
that is the product of a simulated training environment
ξ(R,x,y | u) and a data collection policy τ(u | x,y). The
training environment ξ models the distribution of rewards,
states, and point clouds using analytic models based on
physics and geometry [21] with domain randomization for
robust sim-to-real transfer [35]. The data collection policy
τ attempts to sample a diverse set of actions that the
learned quality function may need to evaluate at runtime.
Nonetheless, several hybrid methods such as the Dexterity
Network (Dex-Net) 2.0 [21], [20] use different distributions
of grasp actions for training and policy deployment (See
Fig. 1), which may reduce performance due to covariate
shift [32], [15].

Drawing inspiration from approaches in imitation learn-
ing [15], [32] and reinforcement learning [17], [31], we
propose an on-policy dataset distribution. The distribution
uses a data collection policy that uniformly samples grasps
from the action space U(y) that the policy evaluates with
the learned quality function at runtime (see Equation IV.1).
To increase the percentage of successful grasp actions, the
distribution uses guiding samples from a robust grasping
supervisor that plans robust grasps analytically using full
knowledge of 3D object geometry and pose.

Formally, the data collection policy is

τ(u | x,y) = (1− ε)U(U(y)) + εΩ(x),



a mixture of a uniform distribution over the grasp action
space U(y) and the Dex-Net 1.0 [24] robust grasping su-
pervisor distribution Ω(x). The parameter ε controls the
percentage of actions to sample from the supervisor. A larger
value of ε may increase covariate shift as more actions are
sampled from the supervisor, while smaller values of ε may
skew the distribution toward many negative examples and
require larger training datasets.

To increase the rate of grasp computation, we use this
data collection policy to train a Fully Convolutional Grasp
Quality CNN (FC-GQ-CNN) on a 4-DOF action space (3D
position and planar orientation). Fig. 1 (Top Right) illustrates
the dense discretization of the 4-DOF grasp action space that
is evaluated at runtime and used to sample training data.

VI. FULLY CONVOLUTIONAL 4-DOF ARCHITECTURE

Prior to the use of FCNs, grasping policies could only
evaluate a comparably limited number of grasps in a rea-
sonable computational budget. With this constraint, many
prior approaches used iterative optimization methods such as
the cross-entropy method (CEM) [18], [21] to approximate
(IV.1).

One drawback of these approaches is that they must be
implemented in a serial fashion. In the particular case that
they are implemented with a neural network quality function,
they require significant computational overhead, such as
copying data between device and host memory, every time
the network must be queried for a new batch of predictions.
Also, the iterative optimization itself often involves many
parameters such as the ideal number of iterations, which may
be difficult to tune.

As an alternative to these sparse approaches, Zeng [38]
and Morrison [25] have proposed using Fully Convolutional
Networks (FCNs) that can produce an extremely dense yet
efficient set of predictions over the entire state space in
a single-shot evaluation. This reduces the search over the
action space to an argmax of the network output.

The denser we can make the FCN evaluation, the more
efficiently we can cover the state space by offloading com-
putation to neural network inference, which can be highly
optimized on specialized GPU hardware. With this goal in
mind, we extend an FCN to 4-DOF as opposed to prior 3-
DOF approaches such as [38] and [25]. This is achieved by
parameterizing the action space using 3D gripper position
and planar orientation.

A. Architecture

We build the 4-DOF FC-GQ-CNN by:
1) Initially training a 4-DOF CNN.
2) At policy evaluation time converting all fully con-

nected layers into fully convolutional layers, resulting
in an FCN.

Although [25] and [38] choose to directly train the FCN,
we choose to train a CNN and convert it to a FCN because
this eliminates the need for densely-labeled ground-truth
images during training. Instead, the CNN can be trained on
much smaller crops of individual grasps.

1) 4-DOF GQ-CNN Architecture: We first design a 4-
DOF CNN architecture. We take inspiration from the GQ-
CNN [21], extending it to 4-DOF by incorporating the grasp
angle θ. This takes as input a cropped thumbnail depth image
of a single grasp centered on the grasp center pixel, ytrain,
along with the corresponding grasp depth relative to the
camera, z. It computes a set of k success probabilities, each
corresponding to a planar gripper angle.

Unlike in the original GQ-CNN, we cannot incorporate
depth using a separate network stream. The separate stream
presents a computational bottleneck during the FCN conver-
sion because its output must be expensively tiled across the
output of the final convolution layer, which can be fairly large
for larger input sizes. We instead incorporate the depth z into
the network by subtracting it from the depth image ytrain,
thus transforming the depth image into the grasp frame
of reference. Following standard conventions, we normalize
the transformed depth images by subtracting the mean and
dividing by the standard deviation of the training data.

2) Conversion to FCN: By converting each of the fully
connected layers of the 4-DOF GQ-CNN into a convolution
layer, we define the FC-GQ-CNN architecture. This is a valid
transformation because of the one-to-one mapping between
convolution and fully connected layer weights. The FC-GQ-
CNN, illustrated in Fig. 2 (Top) and detailed in the caption,
takes as input an arbitrarily sized depth image y and corre-
sponding gripper depth relative to the camera z, and evaluates
a dense 4-DOF set of grasp quality predictions. This allows
us to evaluate the 4-DOF GQ-CNN over the entire input
image in an efficient manner, as if it were a giant convolution
filter. The stride of the FC-GQ-CNN is determined by the
amount of pooling present in the convolution layers of the
4-DOF GQ-CNN architecture, specifically each pooling by a
factor of p will increase the stride by a corresponding factor.

VII. POLICY LEARNING

A. Policy

Given an arbitrarily sized depth image y, the FC-GQ-CNN
policy discretizes the action space based on grasp center
pixel, angular bin, and gripper depth. The granularity of the
former two are determined by the architecture, whereas the
latter is a policy parameter. Once we have formed this action
space, we can efficiently evaluate it with the FC-GQ-CNN
and take the argmax (IV.1).

B. FC-GQ-CNN Training

We train the 4-DOF GQ-CNN on 96x96 depth image
thumbnails, ytrain, of individual grasps. We optimize the pa-
rameters of the network using backpropagation with stochas-
tic gradient descent and momentum. The network output
consists of all k angular predictions, however each training
sample corresponds to only one specific angle. Given a depth
image with grasp angle θ, we first map θ to the corresponding
angular bin, then we backpropagate only through the network
output corresponding to that particular angular bin. The net-
work weights are initialized using a Kaiming initializer [9].
The network architecture and optimization framework are
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Fig. 2: Grasping policy based on a Fully Convolutional Grasp Quality Convolutional Neural Network (FC-GQ-CNN). (Top) 4-DOF evaluation of an
arbitrarily sized depth image y by the network. Convolutional layers in the latter half of the network (highlighted in blue) were originally fully connected
layers in the 4-DOF GQ-CNN architecture. (Bottom) Given a depth image, the policy queries the network and takes the argmax to return the highest
quality grasp, highlighted in red.

written in Python using Tensorflow. All training was done
on Ubuntu 16.04 with an NVIDIA Titan Xp and an Intel
Core i7-6850K clocked at 3.6 GHz.

VIII. EXPERIMENTS

To characterize the effect of training distribution on FC-
GQ-CNN policy performance, we perform experiments on
singulated objects both in a quasi-static simulator and on
a physical robot. We also probe the effect of action space
granularity and choice of ε on policy performance in sim-
ulation. Finally, to test generalization and performance in
clutter, we perform experiments on a physical robot with 25
novel objects placed in a bin.

All experiments were performed on a desktop running
Ubuntu 16.04 with an NVIDIA Titan Xp and an Intel Core
i7-6850k clocked at 3.6GHz. Physical experiments were per-
formed on an ABB YuMi with custom silicone fingertips [7]
and a high-res Photoneo PhoXi S depth sensor (See Fig. 3
Top Left). In this setup, GCT comprises 26% of the total
grasping cycle.

A. Object Sets

We use 4 different object sets in our experiments:

1) Thingiverse large is a cleaned and pruned set of 1,600
3D CAD models from Thingiverse [1] used by Daniel-
czuk et al. [5].

2) Thingiverse mini is a sub-set of 10 objects from thin-
giverse large with varying geometry.

3) Adv is the adversarial object set proposed by Mahler
et al. [21] (Fig. 3 Top Right).

4) Novel is a set of 25 physical objects with diverse
geometries used to test generalization and performance
in dense clutter (Fig. 3 Bottom Right).

Parallel Jaw
   Gripper

Deposit Bin

Picking Bin

Fig. 3: (Top Left) The experimental setup consisting of an ABB YuMi with
custom silicone fingertips [7] and a high-res Photoneo PhoXi depth sensor.
The experimental objective is to move objects from the picking bin to the
deposit bin. (Top Right) The 8 adversarial objects used by Mahler et al. [21].
(Bottom Right) The 25 novel objects with diverse geometries used to test
generalization. (Bottom Left) The 25 novel objects arranged in a bin to
simulate dense clutter.

B. Training Distribution

We characterize the effect of training distribution on policy
performance in simulation by training and testing an FC-
GQ-CNN policy on singulated objects from thingiverse mini
with datasets of varying size (measured in unique states per
object) sampled with the following data collection policies:

1) Uniform 3D Antipodal Action Space (APD-3D) [24]
2) Uniform 2D Antipodal Action Space with Supervisor

Guidance (APD-2D+SUP) [21]
3) 4D Discrete Action Space with Supervisor Guidance

(FC-GQ-CNN+SUP)
We choose these specific distributions as a spectrum from
fully off-policy (1) to our proposed guided on-policy ap-



Training Distribution Reliability(%) AP(%)
APD-3D 72.5 91.2

APD-2D+SUP 65.0 69.0
FC-GQ-CNN+SUP 87.5 97.7

TABLE I: Performance on a physical robot of the FC-GQ-CNN policy
versus training distribution measured on a set of 8 known adversarial objects
in singulation over 80 evaluations, 10 per object. For comparison, GQ-CNN
is able to reach 83% and 91%, accordingly [21].

proach (3). Policy (2) is chosen as an intermediate because
it contains grasps closer to those evaluated by the learned
FC-GQ-CNN policy, but still constrained by antipodality.

We evaluate the reliability of the resulting learned poli-
cies for 250 evaluations of grasping each object. On each
evaluation, the object is placed in a stable resting pose in a
given 2D position on a planar worksurface, the policy plans
a parallel-jaw grasp, and the grasp is evaluated with robust
quasi-static wrench resistance [22] for a known direction of
gravity. To test whether or not performance differences are
due to sample approximation error, we evaluate reliability
over increasing dataset sizes by varying the number of unique
positions and orientations of each object from 5 to 100.

Fig. 1 (Bottom) shows the results. Across all dataset sizes,
the policy trained with the FC-GQ-CNN+SUP guided on-
policy training distribution performs significantly better than
the other policies, suggesting more efficient learning. The
policies trained on APD-3D and APD-2D+SUP have sig-
nificantly lower performance than the supervisor even with
100 states per object. We hypothesize that APD-2D+SUP
outperforms APD-3D because it is a larger subset of the
FC-GQ-CNN+SUP training distribution, but lacks sufficient
coverage of the policy action space.

Next we extend experiments on training distribution to a
physical robot by training and testing an FC-GQ-CNN policy
on singulated objects from adv using the three different
distributions. We evaluate the resulting policies with 10
grasp attempts per object. Table I shows the results. As we
hypothesized, the FC-GQ-CNN+SUP distribution performs
significantly better than the off-policy approaches. However,
we do not find the same trend as in simulation where
the APD-2D+SUP distribution performs in-between the off-
policy supervisor and our proposed on-policy method. In
fact, the off-policy supervisor performs surprisingly well.
Mahler et al. [21] found similar performance.

C. Sensitivity Experiments

The granularity of the policy action space can have a
significant impact on the speed and reliability of dense
approaches, in particular the trade-off between the two. A
very high granularity will result in a very precise policy,
however producing a dense-enough output for this granu-
larity will be computationally expensive and require a large
grasp computation time (GCT). On the other extreme, a low
granularity will result in a policy that is quick to evaluate
due to significantly reduced computation, but is imprecise
because it never evaluates many grasps, some of which could

Policy Rel.(%) AP(%) GCT(s) MPPH
PJ Heuristic 53.4 77.1 2.0 162

GQ-CNN 75.8 96.0 1.5 250
GQ-CNN(∗) 81.2 93.8 3.0 236
FC-GQ-CNN 85.6 95.2 0.6 296

TABLE II: Performance of PJ Heuristic, GQ-CNN, and FC-GQ-CNN on bin
picking with 25 novel objects on a physical robot. GQ-CNN(∗) is a version
of GQ-CNN with increased CEM samples, increasing the performance of
CEM at the cost of rate. The FC-GQ-CNN outperforms the GQ-CNN, GQ-
CNN(∗), and PJ heuristic in rate and reliability. The higher AP of GQ-CNN
suggests that it fails to find a grasp on failures rather than better predicting
grasp quality.

Policy GCT(s) # Evaluations CTPG(ms)
GQ-CNN 1.485 400 3.7125

FC-GQ-CNN 0.625 2,008,064 0.0003

TABLE III: Comparison of the number of grasps evaluated, GCT, and
computation time per grasp (CTPG) for GQ-CNN and FC-GQ-CNN on
a 386x516 depth image.

be robust.
We characterize the effect of the policy action space

granularity on performance in simulation by training and
testing an FC-GQ-CNN policy on singulated objects from
thingiverse mini using the FC-GQ-CNN+SUP distribution.
However, now we independently vary the number of angular
bins k and stride s in the FC-GQ-CNN architecture, and the
number of depth bins d used in the FC-GQ-CNN policy.
Fig. 4 shows the results of experiments. The goal is to
maximize reliability while minimizing GCT. We find that the
best choice of these parameters is s = 4, d = 16, k = 16,
that is we evaluate the image in pixel-wise strides of 4,
bin the depth into 16 bins, and have angular bins of size
180/16 = 11.25 deg.

D. Novel Objects in Clutter

Robots in warehouses must be able to pick not only
singulated objects, but more importantly objects in dense
clutter. In order to test generalization and performance in
clutter, we train an FC-GQ-CNN on the FC-GQ-CNN+SUP
distribution with objects placed in heaps (which simulates
real-world clutter) sampled from thingiverse large. We then
test the policy’s ability to completely clear a bin consisting
of all the objects from novel (Fig. 3 Bottom Left) by
picking only a single object at a time. If more than one
object is picked, we arbitrarily choose a single object to
count and place the rest back into the bin. We compare
performance on 5 rollouts against a carefully tuned parallel
jaw heuristic and GQ-CNN [21] trained using the APD-2D
training distribution, which is on-policy for the standard GQ-
CNN. We find that the FC-GQ-CNN policy performs best
overall, achieving 296 MPPH. Results are shown in Table II.

E. Efficiency of FC-GQ-CNN Policy

We can quantify the efficiency of the proposed FC-GQ-
CNN policy with the millions of grasps it evaluates in
a single pass of the policy and the amortized time per
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Fig. 5: Reliability of FC-GQ-CNN policy versus choice of ε in simulation on
thingiverse mini and adv. Too low of an ε lacks sufficient guiding examples,
whereas too large of an epsilon causes covariate shift. We find that the ideal
choice is ε = 0.1.

individual grasp as shown in Table III. This 1,200x speedup
in computation time per grasp significantly outperforms
previous iterative sampling and ranking policies such as the
cross-entropy method (CEM).

F. Choice of ε

We explore the choice of epsilon and its effect on relia-
bility in simulation by training and testing an FC-GQ-CNN
policy on singulated objects from thingiverse mini and adv
using the FC-GQ-CNN+SUP distribution with 20 evaluations
of grasping each object. Results are shown in Fig. 5. We find
the highest reliability when ε = 0.1, which we use in all
experiments. If we set ε = 0, resulting in a fully on-policy
distribution, reliability drops significantly. We hypothesize
that there are not enough positive guiding examples in the
training distribution. This is corroborated by the steeper
drop on adv, since challenging objects benefit more from
supervisor guidance. As we increase ε past 0.1, reliability

starts to drop, suggesting covariate shift.

IX. DISCUSSION AND FUTURE WORK

In this paper, we present a novel on-policy data collection
policy that combines grasps sampled from the policy action
space with guiding samples from a supervisor. We use this
distribution to train a 4-DOF Fully Convolutional Grasp
Quality CNN (FC-GQ-CNN). Physical robot experiments
show that the FC-GQ-CNN policy significantly increases the
number of grasps considered by 5000x in 0.625s to achieve
up to 296 mean picks per hour (MPPH) compared to 250
MPPH for policies based on iterative grasp sampling and
evaluation.

In future work, we will analyze the differences between
the FC-GQ-CNN and iterative approaches such as CEM, in
particular whether or not our FC-GQ-CNN is able to find a
more optimal grasp. We hypothesize that this might be the
case considering the high AP in Table II, which suggests that
the GQ-CNN is confident in its grasp ranking, meaning that
the decrease in reliability is because the CEM is unable to
properly cover the action space to find the best grasp. We
will also explore 6-DOF grasps and suction approaches such
as Dex-Net 3.0 [22].
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[6] A. Depierre, E. Dellandréa, and L. Chen, “Jacquard: A large scale
dataset for robotic grasp detection,” in Proc. IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2018.

[7] M. Guo, D. V. Gealy, J. Liang, J. Mahler, A. Goncalves, S. McKinley,
J. A. Ojea, and K. Goldberg, “Design of parallel-jaw gripper tip
surfaces for robust grasping,” in Robotics and Automation (ICRA),
2017 IEEE International Conference on. IEEE, 2017, pp. 2831–
2838.

[8] A. Gupta, A. Murali, D. P. Gandhi, and L. Pinto, “Robot learning
in homes: Improving generalization and reducing dataset bias,” in
Advances in Neural Information Processing Systems, 2018, pp. 9111–
9121.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision,
2015, pp. 1026–1034.

[10] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot,
D. Horgan, J. Quan, A. Sendonaris, G. Dulac-Arnold et al., “Deep
q-learning from demonstrations,” in AAAI Conference on Artifical
Intelligence, 2018.

[11] E. Johns, S. Leutenegger, and A. J. Davison, “Deep learning a
grasp function for grasping under gripper pose uncertainty,” in Proc.
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). IEEE,
2016, pp. 4461–4468.

[12] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang,
D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke, and S. Levine,
“QT-Opt: Scalable deep reinforcement learning for vision-based
robotic manipulation,” in Conference on Robot Learning (CoRL),
2018.

[13] D. Kappler, J. Bohg, and S. Schaal, “Leveraging big data for grasp
planning,” in Proc. IEEE Int. Conf. Robotics and Automation (ICRA),
2015.

[14] S. Kumra and C. Kanan, “Robotic grasp detection using deep convo-
lutional neural networks,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 769–776.

[15] M. Laskey, J. Lee, R. Fox, A. Dragan, and K. Goldberg, “Dart:
Noise injection for robust imitation learning,” in Conference on Robot
Learning (CoRL), 2017.

[16] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic
grasps,” Int. Journal of Robotics Research (IJRR), vol. 34, no. 4-5, pp.
705–724, 2015.

[17] S. Levine and V. Koltun, “Guided policy search,” in International
Conference on Machine Learning, 2013, pp. 1–9.

[18] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning
hand-eye coordination for robotic grasping with deep learning and
large-scale data collection,” The International Journal of Robotics
Research, vol. 37, no. 4-5, pp. 421–436, 2018.

[19] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431–3440.

[20] J. Mahler and K. Goldberg, “Learning deep policies for robot bin
picking by simulating robust grasping sequences,” in Conference on
Robot Learning (CoRL), 2017, pp. 515–524.

[21] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A.
Ojea, and K. Goldberg, “Dex-net 2.0: Deep learning to plan robust
grasps with synthetic point clouds and analytic grasp metrics,” in Proc.
Robotics: Science and Systems (RSS), 2017.

[22] J. Mahler, M. Matl, X. Liu, A. Li, D. V. Gealy, and K. Y. Goldberg,
“Dex-net 3.0: Computing robust vacuum suction grasp targets in point
clouds using a new analytic model and deep learning,” 2018 IEEE
International Conference on Robotics and Automation (ICRA), pp. 1–
8, 2018.

[23] J. Mahler, R. Platt, A. Rodriguez, M. Ciocarlie, A. Dollar, R. Detry,
M. A. Roa, H. Yanco, A. Norton, J. Falco et al., “Guest editorial
open discussion of robot grasping benchmarks, protocols, and metrics,”
IEEE Transactions on Automation Science and Engineering, vol. 15,
no. 4, pp. 1440–1442, 2018.

[24] J. Mahler, F. T. Pokorny, B. Hou, M. Roderick, M. Laskey, M. Aubry,
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