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Abstract— Indoor plants in homes and commercial buildings
such as malls, offices, airports, and hotels, can benefit from
precision irrigation to maintain healthy growth and reduce
water consumption. As active valves are too costly, and ongoing
precise manual adjustment of drip emitters is impractical,
we explore how the Toyota HSR mobile manipulator robot
can autonomously adjust low-cost passive emitters. To pro-
vide sufficient accuracy for gripper alignment, we designed a
lightweight, modular Emitter Localization Device (ELD) with
cameras and LEDs that can be non-invasively mounted on the
arm. This paper presents details of the design, algorithms,
and experiments with adjusting emitters using a two-phase
procedure: 1) aligning the robot base using the build-in hand
camera, and 2) aligning the gripper axis with the emitter axis
using the ELD. We report success rates and sensitivity analysis
to tune computer vision parameters and joint motor gains.
Experiments suggest that emitters can be adjusted with 95%
success rate in approximately 20 seconds.

I. INTRODUCTION

Drip irrigation is the most widespread and well-known
irrigation method in agriculture, whereby water is delivered
to the plants via a network of perforated tubes [1]. The
amount of water delivered to each plant is regulated by
setting the irrigation timing — frequency and duration —
and by choosing the flow-rate of the drip irrigation emitter.
Precision irrigation is the selective control of individual
plants’ irrigation levels based on its needs.

The challenge of indoor precision irrigation is that physical
conditions can be highly variable between plants, often
even in the same proximity [2]. Plants irrigated by the
same tube may have different morphology, lighting, air
flow, or drainage, and therefore have different water-stress
levels under the same irrigation schedule. Near-infrared and
thermal sensing technologies can measure water-stress levels,
indicating the amount of water the plant needs [3]. Precision
irrigation then has the potential to close the sensing–actuation
loop, and optimize and equalize water-stress levels across
plants at the single-plant resolution. This would prevent
over-watering, reduce fresh water usage, and increase plant
vitality.

To adjust the irrigation level per plant we propose using
adjustable passive flow-rate drip irrigation emitters (Fig-
ure 1b, 2b) which cost under $0.30. The flow-rate can be
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Fig. 1: Emitter Localization Device (ELD). (a) Front view of
the CAD model of the ELD. Mounted on the ELD body are
two color cameras facing inwards, five LEDs, an Arduino
board, and LED drivers. (b) ELD mounted on a Toyota
Human Support Robot (HSR) gripper using a Velcro strap.
(c) The HSR grasping the red cap of a drip irrigation emitter.

changed by rotating the emitter cap. This is much more cost
effective than active irrigation valves at about $30 per unit.

In this paper we present a novel approach to adjusting
emitters using an autonomous mobile robotic manipulator.
We propose a procedure where the robot positions its base
in front of an emitter, then reaches the emitter, grasps it, and
rotates the emitter cap to the desired angle.

We present the Emitter Localization Device (ELD), a
custom sensing and lighting system that is mountable on a
manipulator having a parallel jaw gripper. We also propose
vision and control algorithms for autonomously reaching
and grasping emitters. We implemented this approach on a
Toyota Human Support Robot (HSR1), and used it to tune
parameters and evaluate the system in experiments reported
in this paper.

This paper makes three contributions:
1) Emitter Localization Device (ELD). We present a

1http://www.toyota-global.com/innovation/partner_
robot/family_2.html
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detachable stereo camera device designed to facilitate
the detection of adjustable drip irrigation emitters in
indoor environments, with two color cameras and five
controllable light sources (Figure 1).

2) Vision algorithm for localizing irrigation emitters.
We propose a machine-vision algorithm for detecting
the position and orientation of emitters in lateral im-
ages from the two ELD cameras. We test different light
intensities and configurations.

3) Robot positioning, reaching, and grasping algo-
rithm. We propose an algorithm for controlling a
mobile robotic manipulator to approach and grasp
drip emitters based on visual feedback from the ELD
cameras.

The paper is organized as follows: Section II discusses
related work and the current state of the art. Section III
defines the problem, assumptions, and limitations. Section IV
presents the methods we propose, including the developed
device and the vision and control algorithms. Section V
overviews the autonomous system for adjusting emitters.
Section VI describes the experiments conducted to evaluate
the approach.

II. RELATED WORK

To the best of our knowledge there are currently no robotic
systems that directly address precision irrigation in indoor
settings.

A. Adjusting indoor plant irrigation levels

Indoor growing operations exist in scales ranging from in-
home gardens, to distributed urban farms [4], to vast indoor
warehouses [5].

Unmanned Ground Vehicles (UGVs) and robotic arms
have been used in a variety of automated growing systems.
A UGV with an in-hand camera and vision for indoor
tomato growing was demonstrated by Correll et al. [6] and
Nagaraja et al. [7], with irrigation dispensed from an on-
board water container. The iPlant robot [8] is an indoor
UGV with several different tools and attachments for plant
manipulation along greenhouse rows. Autonomous vision-
based indoor harvesting of tomatoes was demonstrated by
Taqi et al. [9]. An industrial Kuka robot arm with in-hand
cameras and lighting was used for indoor irrigation by Scharr
et al. [10].

Gealy et al. [11] developed the DATE (Device for Au-
tomated Tuning of Emitters), a hand-held device that can
systematically adjust emitters. The device was designed for a
human worker to attach it to an emitter to adjust the emitter’s
flow-rate, based on location-specific information provided
by a cloud-based control algorithm that determines desired
irrigation levels based on UAV-collected data. The DATE
addresses the problem of accurately adjusting the emitter
cap, however a human operator needs to reach each emitter,
which is highly time-consuming when hundreds of emitters
are to be adjusted.

B. Object detection in plant-growing environments

A key challenge in precision irrigation is active explo-
ration, which involves positioning the robot’s sensors to
obtain measurements that reduce uncertainty in the state of
the robot and the environment [12], [13], [14].

Lottes et al. [15] used feature extraction and near-infrared
(NIR) imaging to separate plant leaves from a soil back-
ground. An industrial-scale farm robot was recently de-
veloped by Bawden et al. [16] which used a combination
of RGB and NIR cameras to separate weeds from crops.
Botterill et al. [17] addressed the lighting and perception
problem by constructing a mobile 3.5m×2m×2.5m ‘room’
containing lights and a robotic arm that moves along the
length of a vineyard row to harvest grapes.

Recently, Bargoti et al. [18] successfully used a multi-layer
perceptron for fruit detection and localization in orchards
with a single RGB camera, a task reminiscent of emitter
detection. However, it remains unclear whether this approach
can yield sufficient positional accuracy for object interaction
in real settings.

C. Robotic manipulation in outdoor environments

Silwal et al. [19] recently developed an apple-picking
robotic platform consisting of a custom arm and hand
mounted on an all-terrain vehicle. A similar custom apparatus
for indoor growing applications was created by Bac et
al. [20], that consisted of a rail-mounted system that moves
between rows of bell peppers in a greenhouse. Both of these
approaches are potentially limited by custom single-purpose
hardware if the problem includes plants in an unstructured
environment.

A UGV with a robotic arm such as the Toyota HSR
can be used for a multitude of tasks [21]. Small UGVs
with simple manipulators have been deployed for weed
retrieval [22], weed detection [23], and precision herbicide
deployment [24], [25].

Large-scale UGVs operating in distributed systems have
been used for outdoor agricultural settings [26] and imple-
mented as autonomous tractors for outdoor harvesting [27],
[28]. With inexpensive computer vision sensors, global po-
sitioning systems, LIDAR, and Inertial Measurement Units
(IMUs), robotics research over the past two decades have
led to many examples of autonomous robotic vehicles in
agriculture [29].

III. PROBLEM STATEMENT

A. Definition and Notation

We study the problem of adjusting drip irrigation emitters
in an indoor environment using a mobile robotic manipu-
lator. The objective is to maximize success rate and speed.
Success is defined as reaching a specified emitter, grasping
it approximately in line with its rotation axis, and rotating it
a specified angle.

A further requirement is the modularity of the hardware
modification of the robotic manipulator. In particular, it
should be easy to redesign the device to fit other robotic
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Fig. 2: Notation of rotation and translation axes for (a) the
HSR base, arm, and gripper; and (b) the adjustable emitter.

manipulators; mounting the device should be easy and re-
movable without impacting the main hardware; the design
should reduce imprecision in mounting and the algorithms
should tolerate the remaining imprecision; the device should
be lightweight; and communication and power should be
supplied separately from the main hardware.

The mobile robotic manipulator we use, a Toyota Human
Support Robot (HSR), consists of an omnidirectional moving
base with a laser scanner, and an arm with a wide-angle in-
hand camera and a parallel jaw gripper (see Figure 2). With
respect to a fixed coordinate frame (~x, ~y, ~z), we denote the
absolute base position and horizontal orientation (yaw) by
(xb, yb, ψb), and the gripper position and vertical orientation
(pitch) by (xg, yg, zg, θg). The arm of the Toyota HSR cannot
rotate horizontally independently of the base, and only ψb
controls the gripper’s yaw ψg = ψb. The gripper’s roll φg is
only used to adjust the emitter.

The database of emitter cap locations and rotations (rolls)
is denoted by {(xie, yie, zie, φie) : 1 ≤ i ≤ n}, where n is
the number of emitters. Each emitter has an unknown pitch
θie. The robot is issued a sequence of adjustment commands
of the form (xie, y

i
e, z

i
e,∆φ), directing it to rotate emitter i

by an angle ∆φ. While handling emitter i, we simplify the
notation by defining the positive x axis to be directed towards
the emitter, i.e., the emitter’s yaw is always ψie = 180◦.

B. Assumptions

We assume each plant is irrigated by a single adjustable
drip emitter with a red cap that is attached to a black
irrigation tube. We also assume that the plant are green
without red hue flowers. We assume that each emitter is
clearly visible to the robot’s in-hand camera at distances
below its initial distance of roughly 43cm, under existing
light conditions. We also assume that no other red objects

(a) (b) (c)

Fig. 3: ELD prototypes. (a) Prototype A: wide camera angles
(˜90◦ from the ELD’s symmetry plane) with three LEDs
pointing forward. (b) Prototype B: camera angles of 25◦

with five LEDs. (c) Prototype C: this model was used in
the experiments; camera angles of 45◦ and five LEDs. Three
LEDs are pointing forward and two sideways. LEDs are
positioned on either side of each camera to allow experiments
with different light configurations.

are visible to the robot during the task. We assume that
the emitter locations in the database are accurate to within
10cm, which is less than half the distance between emitters,
allowing the robot to uniquely identify each specified emitter
by cropping input image to include exactly one emitter.

The plants, irrigation tube, and emitters, are set on a rack
of known width, that is assumed to have a base surface
detectable by the robot’s laser scanner. Since we define the
positive x axis to be directed towards the emitters and plant
rack, the base surface of the rack is in the yz plane. When
the robot faces perpendicular to the rack, i.e., ψb ' 0, it can
successfully rotate an emitter if the emitter’s and gripper’s
rotation axes φ are approximately in line, i.e., their pitches
θe and θg differ by 180◦± 3◦. We assume that the gripper’s
range allows it to reach these pitch values for all emitters,
which are between −20◦ and +20◦.

IV. METHODS

We use the Toyota Human Support Robot (HSR) (Fig-
ure 2, 6b), which consists of an omnidirectional mobile
platform with a maximum speed of 0.22 m/s, a 5-DoF robotic
arm that can reach 450mm in depth and 0–1350mm in height
with payload of 1.2kg, and a parallel jaw gripper (Figure 1).
The sensors of the HSR include stereo vision, an RGB-D
camera, two wide-angle cameras (in head and in hand), a
laser scanner, and more. In this work we only use the wide-
angle in-hand camera and the laser scanner.

A. Emitter Localization Device

We designed an Emitter Localization Device (ELD) to
facilitate the detection and localization of adjustable emitters.
The body of the ELD is designed as a mount for cameras
and lighting equipment on the robot’s hand. Since the robotic
platform being used in this work is the Toyota HSR, the
ELD body was design specifically to fit the HSR hand
(Figure 1). The ELD is attached securely to the top part
of the HSR hand using a Velcro strap. This design makes
attaching and detaching the ELD easy, fast, and reversible
without impacting the main HSR hardware.

The ELD body is assembled from two parts: the main body
used for mounting on the HSR hand and for carrying the



electronics and lights, and wings used to carry the cameras
and lights (Figure 3). Two principles guided the design of the
ELD. On the one hand, we prefer for the cameras to point
sideways to the emitter for enhanced identifiability of the
emitter pitch θe: when a cylinder is viewed from the side,
the resulting image is a rectangle whose upper and lower
sides are slanted in parallel to the cylinder’s rotation axis
(Figure 4). On the other hand, we prefer to locate the cameras
as posterior as possible on the device to avoid collisions
with obstacles while approaching the emitter, and to allow
free rotation of the emitter while grasping (Figure 1c). The
evolution of the ELD included the design, manufacturing,
and evaluation of three prototypes that differently trade off
these two principles (Figure 3). The main variability between
these prototypes is in the horizontal angle of the cameras and
the number of light sources and their positions.

For the experiments presented in Section VI we choose
Prototype C (Figure 3c) since this model allows safe rotation
of the emitter cap, while the camera angles facilitate reliable
detection of the emitter’s pitch θe. Light sources on either
side of each camera allowed us to experiment with different
light configurations, as detailed in Section IV-B.

The body of the ELD is 3D-printed using PLA material.
The printing volume is 137.2cm3 and the printed weight
is 166g and the total weight is 280g. Two color cameras
(Logitech c920, resolution 480×640) are positioned inward
to view the adjustable emitter from two sides, which enables
detection of the emitter’s edges to determine its pitch θe. Five
spot LEDs (12v, 0.5W) are mounted to provide consistent
lighting around the gripper. A single LED lights the front of
the detected object (Figure 1a, LED 3), while one more LED
on either side of each camera add to the light coverage of the
object from each camera’s point of view (Figure 1a, LEDs
1–2, 4–5). The light intensity of each LED is set by a micro-
controller board (Arduino Uno) and LED drivers (PicoBuck)
(Figures 1a). The device can be adapted to fit other robotic
arms and end effectors by redesigning the body of the ELD
and re-positioning the cameras and the light sources.

B. Emitter detection algorithm

We use color thresholding, edge detection, and the Hough
transform to localize emitters. The vision algorithm is ap-
plied to the RGB images captured from each inward ELD
camera (Figure 4 lower-left inset), and its output is the
detected emitter’s center of mass and orientation in pixel
space (xp, yp, αp). These correspond, through calibration
(Section V-A), to the relative translation and pitch rotation
between the gripper and the emitter, (xe − xg), (ze − zg),
and (θe − θg), and are later used to plan the motion of the
robot gripper (Section V-B).

The algorithm operates in two steps: the first detects
the silhouette of the emitter in the image, and the second
determines its position and orientation. The detection step is
based on identifying all large red regions of the image, and
choosing the one with the highest red hue value. Detection
operates as follows:

Fig. 4: Emitter detection algorithm. Lower-left inset: input
image. (a) Extract red regions. (b) Remove small objects
as noise. (c) Extract the object with the highest red hue
value and its center of mass. (d) Apply the Canny edge
detector and the Hough transform to find straight lines.
Center: algorithm’s output, emitter center of mass (xp, yp)
depicted by the blue dot, and orientation αp depicted by the
slope of the yellow line.

1) Extract red regions in the image by creating two
channel-ratio masks, red–green and red–blue, and fil-
ter by a threshold c on their sum, i.e., (red/green +
red/blue) > c (Figure 4a).

2) Discard small objects in the image as noise using the
Erode and Dilate morphological operations with kernel
size 5× 5 (Figure 4b).

3) Filter out objects smaller than 3000 pixels. The average
pixel size of the emitter as captured by the ELD
cameras is roughly 4500 when ELD detection starts,
and larger afterwards.

4) Determine the bounding box of each remaining object,
and filter out objects with height–width ratio smaller
than 0.7 and larger than 1.3. The emitter is a cylinder
of similar height and diameter, and its bounding box
is roughly square from all viewpoints.

5) Select the object which has the highest red hue value,
and perform hole filling (Figure 4c).

The position and orientation extraction step is based on
the geometrical observation that when the cylinder is viewed
from an angle, say 45◦, the circular sides appear in the
silhouette as approximately elliptic curves connected by
straight lines. With this in mind, we extract the edges of the
detected object (Figure 4d) using the Canny edge detector
and apply the Hough transform to find straight lines in the
edge image. We choose the line with the highest confidence
as representing the emitter angle (φe) (Figure 4 center
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Fig. 5: True Positive Rate (TPR) and False Positive Rate
(FPR) emitter detection sensitivity analysis. (a) Sensitivity
to the threshold c on the sum of red–green and red–blue
channel-ratio masks, and to the LED configurat on (1-2-
3-4-5, 2-3-4, or 1-3-5), under LED intensity 5, as well as
thumbnails of the detected masks (LED configuration 2-3-
4). (b) Low sensitivity to LED intensity.

image).
We conducted sensitivity analysis of the threshold value

c of the detection step over the range [2.3, 4.7]; of the
lighting intensity over the range [1, 19]; and of different
LED configurations: 1-2-3-4-5, 2-3-4, and 1-3-5 (Figure 1a).
The lighting intensity value represent the PWM value where
255 is the full power of the LED (0.5w). For each light
combination (intensity and configuration), a raw image was
captured from each of the two ELD cameras in a grasp-
ready position, processed using different threshold values,
and evaluated against a manually segmented ground truth.
We evaluated each setting on the resulting true-positive rate
(TPR; ratio of correctly detected pixels to true emitter pixels)
and false-positive rate (FPR; ratio of incorrectly detected
pixels to non-emitter pixels).

The sensitivity analysis reveals how increasing the thresh-
old c affects emitter detection. Figure 5a also shows thumb-
nails of the detected emitter under different threshold values.

Based on these results we choose for the experiments of
Section VI the threshold c = 2.7 for which the TPR is 99%
and the FPR is relatively low (0.19%).

The LED intensity setting does not appear to affect emitter
detection (Figure 5b), likely due to automatic light correction
by the ELD cameras. The LED configuration was shown to
have some impact on emitter detection (Figures 5a, 5b). We
choose to use the middle LEDs (2-3-4), with intensity 2.

C. Mobile platform positioning algorithm

Before it can begin visual servoing, the robot must position
its base in an initial position in front of the correct emitter
where it can see the emitter with its in-hand camera. On the
HSR, we use the in-base Hokuyo UST-20LX laser scanner
for this initial positioning of the mobile platform. The laser
scanner provides an estimated distance to the nearest floor-
level obstacle in multiple directions from the platform, from
which we infer the robot’s base position and orientation
(xb, yb, ψb) relative to the plant rack. The mobile platform
positioning algorithm operates as follows:

1) Preprocess input data. The HSR laser scanner occa-
sionally fails to provide input in the correct format, a
vector of distance estimates in 963 directions. Invalid
input is discarded.

2) Convert each input component (ψi, di) indicating an
obstacle at distance di in direction ψi, to the (xi, yi)
position of the obstacle, where xi = di sin(ψi) and
yi = di cos(ψi).

3) Discretize the positions (xi, yi) (in centimeters) to
positions in a centered 250× 250 image, i.e., (bxic+
125, byic+ 125).

4) Apply the Hough transform to detect lines in the
image. The dominant straight line is assumed to be
the plant rack’s base surface.

5) For each line j detected:
a) Isolate the line by applying its mask to the scan

image.
b) Compute the line length lj , middle point (xj , yj),

and angle ψj .
c) Filter out lines of length differing from the known

width of the rack (85cm in our experiments), i.e.,
having lj < 80cm or lj > 90cm.

d) Select the remaining line with the highest confi-
dence.

This procedure determines the plant rack’s base surface to
have its middle point and orientation at (xj , yj , ψj) in the
robot’s coordinate frame. This output can then be used to
control the HSR to the desired position and orientation in
the plant rack’s coordinate frame, which is facing the rack
perpendicularly at a fixed distance (43cm) in front of the
specified emitter.

V. SYSTEM OVERVIEW

A. Calibration process

ELD calibration establishes a correspondence between the
detected position and orientation of the emitter in pixel



space (xp, yp, αp) (Section IV-B) and the relative translation
and pitch rotation between the gripper and the emitter,
(xe − xg), (ze − zg), and (θe − θg). Since grasping and
rotating the emitter is only possible when the position and
pitch of the emitter and the gripper are approximately in line,
calibration determines the mapping from pixel-space position
and orientation to gripper control needed for visual servoing.

Calibration is required each time that the ELD is attached
to the robot’s arm, and follows these steps:

1) Manually control the robot into a grasping position as
shown in Figure 1c. In our experiments we control
the HSR by teleoperation. The human operator should
verify that the emitter grasp is sturdy and that the
gripper’s rotation axis is in line with that of the emitter.

2) Open the gripper without moving the arm, as shown
in Figure 1b.

3) Detect the position and orientation of the emitter
(xp, yp, αp) in both ELD images, as described in
Section IV-B.

4) Store the detected position and orientation as the pixel-
space goal state of the emitter.

B. Emitter adjustment procedure

The robotic task in this work is to respond to a command
(xie, y

i
e, z

i
e,∆φ) by autonomously rotating the cap of the

ith adjustable emitter by an angle of ∆φ. To do so, the
robot must precisely position its gripper in the correct spatial
position and orientation, which in turn requires the robot
to position its base and arm accordingly. Unfortunately, the
omnidirectional base of the HSR has large rotational errors
in its motion.

To rely as little as possible on the HSR base, we fix its
position early and perform the remaining motion using only
the robotic arm. The procedure follows these steps:

1) Laser-based positioning step: using the algorithm pre-
sented in Section IV-C, the HSR base moves to a
preset position relative to the known rough position
of the emitter, in which the emitter should be visible
to the in-hand camera. We apply PID control to the
desired translation and rotation determined by the
mobile platform positioning algorithm, until the HSR
reaches the preset position of 43cm from the rack,
facing perpendicular to the rack in front of the specified
emitter.

2) Vision-based positioning step: the goal of this step is
to position the HSR base more accurately, so that the
rest of the reaching motion towards the emitter can be
performed by the arm without moving the base. The
robot makes a slight forward motion towards the plant
rack, to a distance of 38cm from which the arm can
reach the emitter. The difference from the previous step
is that the lateral and vertical components of the motion
are now determined by detecting the emitter in the in-
hand camera image using standard red color extraction.
We then apply PID controller to the pixel position of
the emitter to bring it to the center of the in-hand
image, fine-tuning for yg ' ye and zg ' ze (Figure 2).

Laser-based positioning is still used to maintain the
heading ψb ' 0 and control the forward motion on the
x axis.

3) ELD-based reaching step: in this step the HSR base
remains fixed, and only the arm is reaching for the
emitter. We apply the emitter detection algorithm de-
scribed in Section IV-B to the images captured by
the ELD cameras to detect the emitter’s position and
orientation in pixel space (xp, yp, αp), and average
them between the two cameras. We then apply a PID
controller to the difference between these values and
the goal state store during calibration. The output of
the PID controller is the intended motion of the gripper
in coordinates (xg, zg, θg) (yg ' yb is fixed by the
base), which translates into control of the HSR joints
according to: θ1 = arccos(xg/L), θ2 = θg + 180◦− θ1,
and zarm = zg−L sin θ1, where L is the length of the
HSR arm link.

Using the two camera design contributes to the robustness
of the system and in future application can be used to
accurately measure the distance to the target. Following these
positioning and reaching steps, the robot proceeds to grasp
the emitter by closing its gripper, rotate the emitter cap by
rolling the gripper the specified degree, releasing the grasp,
and moving the base 15cm backward.

VI. EXPERIMENTS

We experiment with the Toyota HSR to evaluate the device
and methods proposed in Section V. We used nine house-
plants arranged on a rack on three shelves as illustrated in
Figure 6a. In order to evaluate the robustness of the proposed
approach, we use three plant varieties, Basil, Thyme, and
Mint, which diversifies the background colors and the layouts
of the plants (Figure 6b). An irrigation tube of diameter
16mm is attached to each shelf (Figure 6c). Three Penta
Angel adjustable emitters are attached to each irrigation tube,
approximately at the center of each pot (Figure 6c). These
emitters are red cylinders with 10mm height and 12mm
diameter.

We begin each experiment by manually positioning the
HSR in the vicinity of the plant rack. The HSR is then
issued the sequence of commands (xie, y

i
e, z

i
e,∆θ

◦)i=1,...,9 to
the emitter adjustment procedure of Section V, whereby the
robot should reach each emitter in turn, adjust it, back away,
and continue to the next emitter. In each experiment we time
separately the vision-based positioning step, the ELD-based
reaching step, and the grasping step. A human experimenter
marks each grasping attempt as a success or a failure.

In preliminary experiment we perform sensitivity analysis
on the proportional gain parameters of the PID controllers
mentioned in Section V-B. The initial proportional gains
Kp, determined by a short process of manual trial-and-error
tuning, were Kxb

p = 20, Kyb
p = 5, Kψb

p = 1, Kxg
p = 1,

K
zg
p = 5, and K

θg
p = 1. The integral and derivative gains

Ki and Kd were all set to 1, except for Kzg
d = 2, and

K
θg
i = K

θg
d = 0. The sensitivity analysis applies a multiplier
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Fig. 6: Plant rack setup. (a) Houseplants arrangement on the
shelves. (b) Experimental setup of plant rack and Toyota
HSR mobile robotic manipulator. (c) Three adjustable emit-
ters attached to an irrigation tube.

in the range [75%, 120%] uniformly to all proportional gains
except Kθg

p (Figure 7).
Figure 7a reports the total time and success rate of the

task, the latter dropping from close to 100% to about 60%
as the gain is increased. Figures 7b and 7c break down the
total time for the vision-based positioning and ELD-based
reaching steps, respectively. The steps for grasping, rotation,
release, and moving back add a total of about 3 seconds to
each emitter’s adjustment process. While the gain multiplier
does not significantly affect the duration of the positioning
step, it does slightly accelerate the reaching step. However,
this minor improvement in task completion time comes at
a high cost of frequent failures. Based on these results, we
select 84% as the multiplier for the proportional controller
gains, which are finally Kxb

p = 16.8, Kyb
p = 4.2, Kψb

p =

0.84, Kxg
p = 0.84, Kzg

p = 4.2, and Kθg
p = 1.

VII. CONCLUSIONS AND FUTURE WORK

A novel approach to precision irrigation using the Toyota
HSR robot in an indoor environment setup was developed.
This paper explores how the Toyota HSR robot can support
indoor precision irrigation using a novel low-cost Emitter
Localization Device (ELD) mounted on the arm of the
mobile manipulator to reach and adjust low-cost passive drip
irrigation emitters. We describe the design of the device
with stereo cameras and LED lighting and visual servoing

(a)

(b)

(c)

Fig. 7: Sensitivity of total time and success rate to the
multiplier of proportional controller gains. The multiplier
was applied uniformly to all proportional gains except Kθg

p ,
and 84% was selected to maximize success rate. (a) Average
total time (black) and success rate (green) for adjusting 9
emitters. (b) and (c) Total time and number of control cycles
for the vision-based positioning and ELD-based reaching
steps, respectively. We use 84 to obtain 95% success in
20sec.

algorithms and gain-tuning experiments that achieve 95%
reliability in approx 20 seconds per emitter.

Future work will include more extensive experiments with



longer tasks and more plant and emitter types. By employing
a differential approach to the two ELD cameras, we may
improve robustness to base positioning and orientation. In
future work we will also introduce a new ELD design
with adjustable camera rotation, which would allow active
tracking of the object and eliminate the need for a central
camera such the HSR wide-angle in-hand camera. Another
future direction is mounting an IR camera on the ELD to
detect the water stress of each plant.
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